Skip to main content

Activation of Inflammatory Circulating Factors by Intermittent Hypoxia in Sleep Apnea Syndrome

  • Chapter
  • First Online:
Intermittent Hypoxia and Human Diseases

Abstract

Obstructive sleep apnea syndrome (OSAS), characterized by intermittent and recurrent pauses in respiration during sleep, constitutes an independent risk factor for cardiovascular morbidity. Intermittent hypoxia (IH) is the hallmark of OSAS. A large number of clinical studies, cell culture, and animal models utilizing IH delineate the central role of oxidative stress in OSAS. These facilitate increased interactions of blood leukocytes with endothelial cells, resulting in endothelial injury and dysfunction. Such events can promote the development of cardiovascular morbidities in OSAS. IH can activate several global signaling pathways and various transcription factors such as nuclear factor κB and hypoxia-inducible factor 1α, which play a key role in mediating the inflammatory and cardiovascular consequences in OSAS. This chapter summarized the current literature and our own data on phenotype, functional changes, and inflammatory responses of various blood cells exposed to IH in vivo and in vitro. We focus on the causal relationships between IH and atherogenic transformation of monocytes, lymphocytes, and neutrophils in OSAS patients and on the molecular mechanisms of the cell dysfunctions developed under IH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OSAS:

Obstructive sleep apnea syndrome

IH:

Intermittent hypoxia

nCPAP:

Nasal continuous positive air pressure

HIF:

Hypoxia-inducible factor

AHI:

Apnea-hypopnea index

ROS:

Reactive oxygen species

ECs:

Endothelial cells

EPO:

Erythropoietin

VEGF:

Vascular endothelial growth factor

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

DCs:

Dendritic cells

Ox-LDL:

Oxidized low-density lipoprotein

PMA:

Phorbol myristate acetate

HUVEC:

Human umbilical vein endothelial cells

HCAEC:

Human coronary artery endothelial cells

NA:

Neutrophil apoptosis

IHD:

Ischemic heart disease

TNF:

Tumor necrotic factor

References

  1. Alberti A, Sarchielli P, Gallinella E, et al. Plasma cytokine levels in patients with obstructive sleep apnea syndrome: a preliminary study. J Sleep Res. 2003;12:305–11.

    Article  PubMed  Google Scholar 

  2. Arnardottir ES, Mackiewicz M, Gislason T, et al. Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep. 2009;32:447–70.

    PubMed  Google Scholar 

  3. Atkeson A, Yeh SY, Malhotra A, et al. Endothelial function in obstructive sleep apnea. Prog Cardiovasc Dis. 2009;51:351–62.

    Article  PubMed  CAS  Google Scholar 

  4. Baetta R, Corsini A. Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis. 2010;210:1–13.

    Article  PubMed  CAS  Google Scholar 

  5. Baguet JP, Hammer L, Levy P, et al. The severity of oxygen desaturation is predictive of carotid wall thickening and plaque occurrence. Chest. 2005;128:3407–12.

    Article  PubMed  Google Scholar 

  6. Barcelo A, Barbe F, de la Pena M, et al. Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment. Eur Respir J. 2006;27:756–60.

    Article  PubMed  CAS  Google Scholar 

  7. Barcelo A, Miralles C, Barbe F, et al. Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J. 2000;16:644–7.

    Article  PubMed  CAS  Google Scholar 

  8. Battistini L, Borsellino G, Sawicki G, et al. Phenotypic and cytokine analysis of human peripheral blood gamma delta T cells expressing NK cell receptors. J Immunol. 1997;159:3723–30.

    PubMed  CAS  Google Scholar 

  9. Bayazit YA, Yilmaz M, Erdal E, et al. Role of nitric oxide synthase gene intron 4 and exon 7 polymorphisms in obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol. 2009;266:449–54.

    Article  PubMed  Google Scholar 

  10. Bazzano LA, Khan Z, Reynolds K, et al. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension. 2007;50:417–23.

    Article  PubMed  CAS  Google Scholar 

  11. Becker HF, Jerrentrup A, Ploch T, et al. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation. 2003;107:68–73.

    Article  PubMed  Google Scholar 

  12. Belaidi E, Joyeux-Faure M, Ribuot C, et al. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. J Am Coll Cardiol. 2009;53:1309–17.

    Article  PubMed  CAS  Google Scholar 

  13. Bluestone JA, Khattri R, Sciammas R, et al. TCR gamma delta cells: a specialized T-cell subset in the immune system. Annu Rev Cell Dev Biol. 1995;11:307–53.

    Article  PubMed  CAS  Google Scholar 

  14. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006;37:208–22.

    Article  PubMed  CAS  Google Scholar 

  15. Bosco MC, Puppo M, Blengio F, et al. Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology. 2008;213:733–49.

    Article  PubMed  CAS  Google Scholar 

  16. Bostrom KB, Hedner J, Melander O, et al. Interaction between the angiotensin-converting enzyme gene insertion/deletion polymorphism and obstructive sleep apnoea as a mechanism for hypertension. J Hypertens. 2007;25:779–83.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks JT, Elvidge GP, Glenny L, et al. Variations within oxygen-regulated gene expression in humans. J Appl Physiol. 2009;106:212–20.

    Article  PubMed  CAS  Google Scholar 

  18. Caldwell CC, Kojima H, Lukashev D, et al. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol. 2001;167:6140–9.

    PubMed  CAS  Google Scholar 

  19. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood. 1994;84:2068–101.

    PubMed  CAS  Google Scholar 

  20. Chen L, Einbinder E, Zhang Q, et al. Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med. 2005;172:915–20.

    Article  PubMed  Google Scholar 

  21. Chiang AA. Obstructive sleep apnea and chronic intermittent hypoxia: a review. Chin J Physiol. 2006;49:234–43.

    PubMed  CAS  Google Scholar 

  22. Christou K, Moulas AN, Pastaka C, et al. Antioxidant capacity in obstructive sleep apnea patients. Sleep Med. 2003;4:225–8.

    Article  PubMed  Google Scholar 

  23. Constantinidis J, Ereliadis S, Angouridakis N, et al. Cytokine changes after surgical treatment of obstructive sleep apnoea syndrome. Eur Arch Otorhinolaryngol. 2008;265:1275–9.

    Article  PubMed  Google Scholar 

  24. Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112:645–57.

    Article  PubMed  CAS  Google Scholar 

  25. Crowley MP, Reich Z, Mavaddat N, et al. The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the gammadelta T cell, G8. J Exp Med. 1997;185:1223–30.

    Article  PubMed  CAS  Google Scholar 

  26. Crowther M, Brown NJ, Bishop ET, et al. Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol. 2001;70:478–90.

    PubMed  CAS  Google Scholar 

  27. Dematteis M, Julien C, Guillermet C, et al. Intermittent hypoxia induces early functional cardiovascular remodeling in mice. Am J Respir Crit Care Med. 2008;177:227–35.

    Article  PubMed  Google Scholar 

  28. Diefenbach K, Kretschmer K, Bauer S, et al. Endothelin-1 gene variant Lys198Asn and plasma endothelin level in obstructive sleep apnea. Cardiology. 2009;112:62–8.

    Article  PubMed  CAS  Google Scholar 

  29. DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol. 2009;30:547–56.

    Article  PubMed  CAS  Google Scholar 

  30. Drager LF, Bortolotto LA, Figueiredo AC, et al. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2007;176:706–12.

    Article  PubMed  CAS  Google Scholar 

  31. Drager LF, Bortolotto LA, Lorenzi MC, et al. Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2005;172:613–8.

    Article  PubMed  Google Scholar 

  32. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    PubMed  CAS  Google Scholar 

  33. Dunican AL, Leuenroth SJ, Grutkoski P, et al. TNFalpha-induced suppression of PMN apoptosis is mediated through interleukin-8 production. Shock. 2000;14:284–8; discussion 288–9.

    Article  PubMed  CAS  Google Scholar 

  34. Dyugovskaya L, Lavie P, Hirsh M, et al. Activated CD8+ T-lymphocytes in obstructive sleep apnoea. Eur Respir J. 2005;25:820–8.

    Article  PubMed  CAS  Google Scholar 

  35. Dyugovskaya L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med. 2002;165:934–9.

    PubMed  Google Scholar 

  36. Dyugovskaya L, Lavie P, Lavie L. Phenotypic and functional characterization of blood gammadelta T cells in sleep apnea. Am J Respir Crit Care Med. 2003;168:242–9.

    Article  PubMed  Google Scholar 

  37. Dyugovskaya L, Lavie P, Lavie L. Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea. Ann N Y Acad Sci. 2005;1051:340–50.

    Article  PubMed  CAS  Google Scholar 

  38. Dyugovskaya L, Polyakov A, Lavie P, et al. Delayed neutrophil apoptosis in patients with sleep apnea. Am J Respir Crit Care Med. 2008;177:544–54.

    Article  PubMed  CAS  Google Scholar 

  39. Dyugovskaya L, Polyakov A, Lavie P, et al. Intermittent hypoxia-induced neutrophil survival is mediated via mitochondrial pathways by MAP kinases activation. Am J Respir Crit Care Med. 2010;A6635:181.

    Google Scholar 

  40. Dyugovskaya L, Polyakov A, Ginsberg D, et al. Molecular pathways of spontaneous and TNF-α-mediated neutrophil apoptosis under intermittent hypoxia. Am J Respir Cell Mol Biol. 2011;44:1–9.

    Article  CAS  Google Scholar 

  41. Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.

    PubMed  CAS  Google Scholar 

  42. Elliott MJ, Gamble JR, Park LS, et al. Inhibition of human monocyte adhesion by interleukin-4. Blood. 1991;77:2739–45.

    PubMed  CAS  Google Scholar 

  43. Emeson EE, Robertson Jr AL. T lymphocytes in aortic and coronary intimas. Their potential role in atherogenesis. Am J Pathol. 1988;130:369–76.

    PubMed  CAS  Google Scholar 

  44. Ericson SG, Zhao Y, Gao H, et al. Interleukin-6 production by human neutrophils after Fc-receptor cross-linking or exposure to granulocyte colony-stimulating factor. Blood. 1998;91:2099–107.

    PubMed  CAS  Google Scholar 

  45. Fernandez Pujol B, Lucibello FC, Gehling UM, et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000;65:287–300.

    Article  PubMed  CAS  Google Scholar 

  46. Ferrari R. The role of TNF in cardiovascular disease. Pharmacol Res. 1999;40:97–105.

    Article  PubMed  CAS  Google Scholar 

  47. Fletcher EC, Orolinova N, Bader M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol. 2002;92:627–33.

    Article  PubMed  CAS  Google Scholar 

  48. Fox S, Leitch AE, Duffin R, et al. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2:216–27.

    Article  PubMed  CAS  Google Scholar 

  49. Friedlander AH, Yueh R, Littner MR. The prevalence of calcified carotid artery atheromas in patients with obstructive sleep apnea syndrome. J Oral Maxillofac Surg. 1998;56:950–4.

    Article  PubMed  CAS  Google Scholar 

  50. Furze RC, Rankin SM. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J. 2008;22:3111–9.

    Article  PubMed  CAS  Google Scholar 

  51. Galea P, Brezinschek R, Lipsky PE, et al. Phenotypic characterization of CD4-/alpha beta TCR+ and gamma delta TCR+ T cells with a transendothelial migratory capacity. J Immunol. 1994;153:529–42.

    PubMed  CAS  Google Scholar 

  52. George J, Shoenfeld Y, Gilburd B, et al. Requisite role for interleukin-4 in the acceleration of fatty streaks induced by heat shock protein 65 or Mycobacterium tuberculosis. Circ Res. 2000;86:1203–10.

    Article  PubMed  CAS  Google Scholar 

  53. Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell. 2001;104:503–16.

    Article  PubMed  CAS  Google Scholar 

  54. Greenberg H, Ye X, Wilson D, et al. Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun. 2006;343:591–6.

    Article  PubMed  CAS  Google Scholar 

  55. Griffioen KJ, Kamendi HW, Gorini CJ, et al. Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia. J Neurophysiol. 2007;97:2059–66.

    Article  PubMed  Google Scholar 

  56. Haddad JJ, Fahlman CS. Redox- and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine? Biochem Biophys Res Commun. 2002;297:163–76.

    Article  PubMed  CAS  Google Scholar 

  57. Hannah S, Mecklenburgh K, Rahman I, et al. Hypoxia prolongs neutrophil survival in vitro. FEBS Lett. 1995;372:233–7.

    Article  PubMed  CAS  Google Scholar 

  58. Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol. 2001;21:1876–90.

    Article  PubMed  CAS  Google Scholar 

  59. Hayday AC. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000;18:975–1026.

    Article  PubMed  CAS  Google Scholar 

  60. He YW, Malek TR. Interleukin-7 receptor alpha is essential for the development of gamma delta  +  T cells, but not natural killer cells. J Exp Med. 1996;184:289–93.

    Article  PubMed  CAS  Google Scholar 

  61. Htoo AK, Greenberg H, Tongia S, et al. Activation of nuclear factor kappaB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath. 2006;10:43–50.

    Article  PubMed  Google Scholar 

  62. Ichikawa H, Kokura S, Aw TY. Role of endothelial mitochondria in oxidant production and modulation of neutrophil adherence. J Vasc Res. 2004;41:432–44.

    Article  PubMed  CAS  Google Scholar 

  63. Ikuta K, Lee HC, Ye SK. Role of the IL-7 receptor in gamma-delta T cell development. Chem Immunol. 2001;79:29–42.

    Article  PubMed  CAS  Google Scholar 

  64. Imagawa S, Yamaguchi Y, Ogawa K, et al. Interleukin-6 and tumor necrosis factor-alpha in patients with obstructive sleep apnea-hypopnea syndrome. Respiration. 2004;71:24–9.

    Article  PubMed  CAS  Google Scholar 

  65. Itzhaki S, Lavie L, Pillar G, et al. Endothelial dysfunction in obstructive sleep apnea measured by peripheral arterial tone response in the finger to reactive hyperemia. Sleep. 2005;28:594–600.

    PubMed  Google Scholar 

  66. Jelic S, Bartels MN, Mateika JH, et al. Arterial stiffness increases during obstructive sleep apneas. Sleep. 2002;25:850–5.

    PubMed  Google Scholar 

  67. Jelic S, Padeletti M, Kawut SM, et al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation. 2008;117:2270–8.

    Article  PubMed  CAS  Google Scholar 

  68. Johnson JL, Newby AC. Macrophage heterogeneity in atherosclerotic plaques. Curr Opin Lipidol. 2009;20:370–8.

    Article  PubMed  CAS  Google Scholar 

  69. Jolly SR, Kane WJ, Hook BG, et al. Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J. 1986;112:682–90.

    Article  PubMed  CAS  Google Scholar 

  70. Jordan W, Cohrs S, Degner D, et al. Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm. 2006;113:239–54.

    Article  PubMed  CAS  Google Scholar 

  71. Jun J, Savransky V, Nanayakkara A, et al. Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1274–81.

    Article  PubMed  CAS  Google Scholar 

  72. Kahaleh MB, Fan PS, Otsuka T. Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro. Clin Immunol. 1999;91:188–95.

    Article  PubMed  CAS  Google Scholar 

  73. Kato M, Roberts-Thomson P, Phillips BG, et al. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation. 2000;102:2607–10.

    Article  PubMed  CAS  Google Scholar 

  74. Kettritz R, Gaido ML, Haller H, et al. Interleukin-8 delays spontaneous and tumor necrosis factor-alpha-mediated apoptosis of human neutrophils. Kidney Int. 1998;53:84–91.

    Article  PubMed  CAS  Google Scholar 

  75. Khew-Goodall Y, Wadham C, Stein BN, et al. Stat6 activation is essential for interleukin-4 induction of P-selectin transcription in human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:1421–9.

    Article  PubMed  CAS  Google Scholar 

  76. Kin H, Wang NP, Halkos ME, et al. Neutrophil depletion reduces myocardial apoptosis and attenuates NFkappaB activation/TNFalpha release after ischemia and reperfusion. J Surg Res. 2006;135:170–8.

    Article  PubMed  CAS  Google Scholar 

  77. Kleindienst R, Xu Q, Willeit J, et al. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol. 1993;142:1927–37.

    PubMed  CAS  Google Scholar 

  78. Kumar GK, Rai V, Sharma SD, et al. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006;575:229–39.

    Article  PubMed  CAS  Google Scholar 

  79. Lattimore JD, Wilcox I, Nakhla S, et al. Repetitive hypoxia increases lipid loading in human macrophages-a potentially atherogenic effect. Atherosclerosis. 2005;179:255–9.

    Article  PubMed  CAS  Google Scholar 

  80. Lavie L. Obstructive sleep apnoea syndrome – an oxidative stress disorder. Sleep Med Rev. 2003;7:35–51.

    Article  PubMed  Google Scholar 

  81. Lavie L. Sleep apnea syndrome, endothelial dysfunction, and cardiovascular morbidity. Sleep. 2004;27:1053–5.

    PubMed  Google Scholar 

  82. Lavie L. Intermittent hypoxia: the culprit of oxidative stress, vascular inflammation and dyslipidemia in obstructive sleep apnea. Expert Rev Respir Med. 2008;2:75–84.

    Article  PubMed  CAS  Google Scholar 

  83. Lavie L. Oxidative stress – a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis. 2009;51:303–12.

    Article  PubMed  CAS  Google Scholar 

  84. Lavie L, Dyugovskaya L, Polyakov A. Biology of peripheral blood cells in obstructive sleep apnea – the tip of the iceberg. Arch Physiol Biochem. 2008;114:244–54.

    Article  PubMed  CAS  Google Scholar 

  85. Lavie L, Lavie P. Ischemic preconditioning as a possible explanation for the age decline relative mortality in sleep apnea. Med Hypotheses. 2006;66:1069–73.

    Article  PubMed  Google Scholar 

  86. Lavie L, Lavie P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J. 2009;33:1467–84.

    Article  PubMed  CAS  Google Scholar 

  87. Lavie L, Lotan R, Hochberg I, et al. Haptoglobin polymorphism is a risk factor for cardiovascular disease in patients with obstructive sleep apnea syndrome. Sleep. 2003;26:592–5.

    PubMed  Google Scholar 

  88. Lavie L, Polotsky V. Cardiovascular aspects in obstructive sleep apnea syndrome – molecular issues, hypoxia and cytokine profiles. Respiration. 2009;78:361–70.

    Article  PubMed  CAS  Google Scholar 

  89. Lavie L, Vishnevsky A, Lavie P. Evidence for lipid peroxidation in obstructive sleep apnea. Sleep. 2004;27:123–8.

    PubMed  Google Scholar 

  90. Lavie P, Herer P, Lavie L. Mortality risk factors in sleep apnoea: a matched case–control study. J Sleep Res. 2007;16:128–34.

    Article  PubMed  Google Scholar 

  91. Lee YW, Kuhn H, Kaiser S, et al. Interleukin 4 induces transcription of the 15-lipoxygenase I gene in human endothelial cells. J Lipid Res. 2001;42:783–91.

    PubMed  CAS  Google Scholar 

  92. Leopold JA, Loscalzo J. Oxidative enzymopathies and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1332–40.

    Article  PubMed  CAS  Google Scholar 

  93. Leuenroth SJ, Grutkoski PS, Ayala A, et al. Suppression of PMN apoptosis by hypoxia is dependent on Mcl-1 and MAPK activity. Surgery. 2000;128:171–7.

    Article  PubMed  CAS  Google Scholar 

  94. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  95. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65:S140–6.

    Article  PubMed  Google Scholar 

  96. Lin L, Finn L, Zhang J, et al. Angiotensin-converting enzyme, sleep-disordered breathing, and hypertension. Am J Respir Crit Care Med. 2004;170:1349–53.

    Article  PubMed  Google Scholar 

  97. Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101:2883–8.

    Article  PubMed  CAS  Google Scholar 

  98. Lukashev D, Klebanov B, Kojima H, et al. Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol. 2006;177:4962–5.

    PubMed  CAS  Google Scholar 

  99. Malhotra A, White DP. Obstructive sleep apnoea. Lancet. 2002;360:237–45.

    Article  PubMed  Google Scholar 

  100. Mallat Z, Besnard S, Duriez M, et al. Protective role of interleukin-10 in atherosclerosis. Circ Res. 1999;85:e17–24.

    Article  PubMed  CAS  Google Scholar 

  101. Mantovani A, Garlanda C, Introna M, et al. Regulation of endothelial cell function by pro- and anti-inflammatory cytokines. Transplant Proc. 1998;30:4239–43.

    Article  PubMed  CAS  Google Scholar 

  102. Marin JM, Carrizo SJ, Vicente E, et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365:1046–53.

    PubMed  Google Scholar 

  103. Marx N, Imhof A, Froehlich J, et al. Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary artery disease. Circulation. 2003;107:1954–7.

    Article  PubMed  CAS  Google Scholar 

  104. McGown AD, Makker H, Elwell C, et al. Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy. Sleep. 2003;26:710–6.

    PubMed  Google Scholar 

  105. McKellar GE, McCarey DW, Sattar N, et al. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol. 2009;6:410–7.

    Article  PubMed  CAS  Google Scholar 

  106. McNicholas WT, Bonsigore MR. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;29:156–78.

    Article  PubMed  CAS  Google Scholar 

  107. Mecklenburgh KI, Walmsley SR, Cowburn AS, et al. Involvement of a ferroprotein sensor in hypoxia-mediated inhibition of neutrophil apoptosis. Blood. 2002;100:3008–16.

    Article  PubMed  CAS  Google Scholar 

  108. Milleron O, Pilliere R, Foucher A, et al. Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study. Eur Heart J. 2004;25:728–34.

    Article  PubMed  Google Scholar 

  109. Minet E, Michel G, Mottet D, et al. Transduction pathways involved in hypoxia-inducible factor-1 phosphorylation and activation. Free Radic Biol Med. 2001;31:847–55.

    Article  PubMed  CAS  Google Scholar 

  110. Minoguchi K, Tazaki T, Yokoe T, et al. Elevated production of tumor necrosis factor-alpha by monocytes in patients with obstructive sleep apnea syndrome. Chest. 2004;126:1473–9.

    Article  PubMed  CAS  Google Scholar 

  111. Minoguchi K, Yokoe T, Tazaki T, et al. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med. 2005;172:625–30.

    Article  PubMed  Google Scholar 

  112. Mohagheghpour N, Bermudez LE, Khajavi S, et al. The VLA-4/VCAM-1 molecules participate in gamma delta cell interaction with endothelial cells. Cell Immunol. 1992;143:170–82.

    Article  PubMed  CAS  Google Scholar 

  113. Monaco C, Andreakos E, Young S, et al. T cell-mediated signaling to vascular endothelium: induction of cytokines, chemokines, and tissue factor. J Leukoc Biol. 2002;71:659–68.

    PubMed  CAS  Google Scholar 

  114. Moore KW, de Waal MR, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  PubMed  CAS  Google Scholar 

  115. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34.

    Article  PubMed  CAS  Google Scholar 

  116. Nakajima T, Goek O, Zhang X, et al. De novo expression of killer immunoglobulin-like receptors and signaling proteins regulates the cytotoxic function of CD4 T cells in acute coronary syndromes. Circ Res. 2003;93:106–13.

    Article  PubMed  CAS  Google Scholar 

  117. Nakajima T, Schulte S, Warrington KJ, et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002;105:570–5.

    Article  PubMed  CAS  Google Scholar 

  118. Norman D, Loredo JS, Nelesen RA, et al. Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure. Hypertension. 2006;47:840–5.

    Article  PubMed  CAS  Google Scholar 

  119. Ohga E, Tomita T, Wada H, et al. Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol. 2003;94:179–84.

    PubMed  CAS  Google Scholar 

  120. Olivieri F, Antonicelli R, Cardelli M, et al. Genetic polymorphisms of inflammatory cytokines and myocardial infarction in the elderly. Mech Ageing Dev. 2006;127:552–9.

    Article  PubMed  CAS  Google Scholar 

  121. Ozmen J, Bobryshev YV, Lord RS. CD40 co-stimulatory molecule expression by dendritic cells in primary atherosclerotic lesions in carotid arteries and in stenotic saphenous vein coronary artery grafts. Cardiovasc Surg. 2001;9:329–33.

    Article  PubMed  CAS  Google Scholar 

  122. Pack AI, Gislason T. Obstructive sleep apnea and cardiovascular disease: a perspective and future directions. Prog Cardiovasc Dis. 2009;51:434–51.

    Article  PubMed  CAS  Google Scholar 

  123. Park SH, Kim KE, Hwang HY, et al. Regulatory effect of SOCS on NF-kappaB activity in murine monocytes/macrophages. DNA Cell Biol. 2003;22:131–9.

    Article  PubMed  CAS  Google Scholar 

  124. Patel SR, Larkin EK, Mignot E, et al. The association of angiotensin converting enzyme (ACE) polymorphisms with sleep apnea and hypertension. Sleep. 2007;30:531–3.

    PubMed  Google Scholar 

  125. Paulnock DM, Demick KP, Coller SP. Analysis of interferon-gamma-dependent and -independent pathways of macrophage activation. J Leukoc Biol. 2000;67:677–82.

    PubMed  CAS  Google Scholar 

  126. Peker Y, Hedner J, Norum J, et al. Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med. 2002;166:159–65.

    Article  PubMed  Google Scholar 

  127. Peker Y, Kraiczi H, Hedner J, et al. An independent association between obstructive sleep apnoea and coronary artery disease. Eur Respir J. 1999;14:179–84.

    Article  PubMed  CAS  Google Scholar 

  128. Peled N, Greenberg A, Pillar G, et al. Contributions of hypoxia and respiratory disturbance index to sympathetic activation and blood pressure in obstructive sleep apnea syndrome. Am J Hypertens. 1998;11:1284–9.

    Article  PubMed  CAS  Google Scholar 

  129. Peng Y, Yuan G, Overholt JL, et al. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv Exp Med Biol. 2003;536:559–64.

    Article  PubMed  Google Scholar 

  130. Peng YJ, Nanduri J, Yuan G, et al. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009;29:4903–10.

    Article  PubMed  CAS  Google Scholar 

  131. Peng YJ, Yuan G, Ramakrishnan D, et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol. 2006;577:705–16.

    Article  PubMed  CAS  Google Scholar 

  132. Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342:1378–84.

    Article  PubMed  CAS  Google Scholar 

  133. Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet. 2002;359:204–10.

    Article  PubMed  Google Scholar 

  134. Perez Fernandez R, Kaski JC. Interleukin-10 and coronary disease. Rev Esp Cardiol. 2002;55:738–50.

    PubMed  Google Scholar 

  135. Pinderski LJ, Fischbein MP, Subbanagounder G, et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient Mice by altering lymphocyte and macrophage phenotypes. Circ Res. 2002;90:1064–71.

    Article  PubMed  CAS  Google Scholar 

  136. Poggi A, Zocchi MR, Carosio R, et al. Transendothelial migratory pathways of V delta 1+ TCR gamma delta+ and V delta 2+ TCR gamma delta+ T lymphocytes from healthy donors and multiple sclerosis patients: involvement of phosphatidylinositol 3 kinase and calcium calmodulin-dependent kinase II. J Immunol. 2002;168:6071–7.

    PubMed  CAS  Google Scholar 

  137. Polotsky VY, Li J, Punjabi NM, et al. Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol. 2003;552:253–64.

    Article  PubMed  CAS  Google Scholar 

  138. Prabhakar NR, Kumar GK, Nanduri J, et al. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007;9:1397–403.

    Article  PubMed  CAS  Google Scholar 

  139. Raines EW, Ferri N. Thematic review series: the immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res. 2005;46:1081–92.

    Article  PubMed  CAS  Google Scholar 

  140. Randolph GJ. The fate of monocytes in atherosclerosis. J Thromb Haemost. 2009;7 Suppl 1:28–30.

    Article  PubMed  CAS  Google Scholar 

  141. Rehman J, Li J, Orschell CM, et al. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–9.

    Article  PubMed  Google Scholar 

  142. Ribatti D, Nico B, Crivellato E, et al. Macrophages and tumor angiogenesis. Leukemia. 2007;21:2085–9.

    Article  PubMed  CAS  Google Scholar 

  143. Ridker PM, Rifai N, Pfeffer M, et al. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000;101:2149–53.

    Article  PubMed  CAS  Google Scholar 

  144. Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453:807–11.

    Article  PubMed  CAS  Google Scholar 

  145. Roy KC, Bandyopadhyay G, Rakshit S, et al. IL-4 alone without the involvement of GM-CSF transforms human peripheral blood monocytes to a CD1a(dim), CD83(+) myeloid dendritic cell subset. J Cell Sci. 2004;117:3435–45.

    Article  PubMed  CAS  Google Scholar 

  146. Ryan S, McNicholas WT, Taylor CT. A critical role for p38 map kinase in NF-kappaB signaling during intermittent hypoxia/reoxygenation. Biochem Biophys Res Commun. 2007;355:728–33.

    Article  PubMed  CAS  Google Scholar 

  147. Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005;112:2660–7.

    Article  PubMed  CAS  Google Scholar 

  148. Sack M. Tumor necrosis factor-alpha in cardiovascular biology and the potential role for anti-tumor necrosis factor-alpha therapy in heart disease. Pharmacol Ther. 2002;94:123–35.

    Article  PubMed  CAS  Google Scholar 

  149. Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  PubMed  CAS  Google Scholar 

  150. Sanchez-Mejorada G, Rosales C. Signal transduction by immunoglobulin Fc receptors. J Leukoc Biol. 1998;63:521–33.

    PubMed  CAS  Google Scholar 

  151. Sartorius R, D’Apice L, Barba P, et al. Induction of human NK cell-mediated cytotoxicity by CD40 triggering on antigen presenting cells. Cell Immunol. 2003;221:81–8.

    Article  PubMed  CAS  Google Scholar 

  152. Scarpelli D, Cardellini M, Andreozzi F, et al. Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in caucasian italian subjects. Diabetes. 2006;55:1529–33.

    Article  PubMed  CAS  Google Scholar 

  153. Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res. 2001;49:671–80.

    Article  PubMed  CAS  Google Scholar 

  154. Schmidt D, Goronzy JJ, Weyand CM. CD4+ CD7− CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest. 1996;97:2027–37.

    Article  PubMed  CAS  Google Scholar 

  155. Schulz R, Mahmoudi S, Hattar K, et al. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med. 2000;162:566–70.

    PubMed  CAS  Google Scholar 

  156. Semenza GL, Prabhakar NR. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007;9:1391–6.

    Article  PubMed  CAS  Google Scholar 

  157. Shamsuzzaman AS, Gersh BJ, Somers VK. Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA. 2003;290:1906–14.

    Article  PubMed  CAS  Google Scholar 

  158. Sharma R, Li DZ. Role of dendritic cells in atherosclerosis. Asian Cardiovasc Thorac Ann. 2006;14:166–9.

    PubMed  Google Scholar 

  159. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 2010;10:427–39.

    Article  PubMed  CAS  Google Scholar 

  160. Soejima H, Irie A, Miyamoto S, et al. Preference toward a T-helper type 1 response in patients with coronary spastic angina. Circulation. 2003;107:2196–200.

    Article  PubMed  CAS  Google Scholar 

  161. Solana R, Mariani E. NK and NK/T cells in human senescence. Vaccine. 2000;18:1613–20.

    Article  PubMed  CAS  Google Scholar 

  162. Song L, Leung C, Schindler C. Lymphocytes are important in early atherosclerosis. J Clin Invest. 2001;108:251–9.

    PubMed  CAS  Google Scholar 

  163. Stumpf C, Lehner C, Yilmaz A, et al. Decrease of serum levels of the anti-inflammatory cytokine interleukin-10 in patients with advanced chronic heart failure. Clin Sci (Lond). 2003;105:45–50.

    Article  CAS  Google Scholar 

  164. Suzuki YJ, Jain V, Park AM, et al. Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med. 2006;40:1683–92.

    Article  PubMed  CAS  Google Scholar 

  165. Swirski FK, Weissleder R, Pittet MJ. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1424–32.

    Article  PubMed  CAS  Google Scholar 

  166. Tedgui A, Mallat Z. Interleukin-10: an anti-atherogenic cytokine? Eur J Clin Invest. 2001;31:1–2.

    Article  PubMed  CAS  Google Scholar 

  167. Teramoto S, Yamamoto H, Ouchi Y. Increased C-reactive protein and increased plasma interleukin-6 may synergistically affect the progression of coronary atherosclerosis in obstructive sleep apnea syndrome. Circulation. 2003;107:E40.

    Article  PubMed  CAS  Google Scholar 

  168. Terkeltaub RA. IL-10: an “immunologic scalpel” for atherosclerosis? Arterioscler Thromb Vasc Biol. 1999;19:2823–5.

    Article  PubMed  CAS  Google Scholar 

  169. Toffoli S, Feron O, Raes M, et al. Intermittent hypoxia changes HIF-1alpha phosphorylation pattern in endothelial cells: unravelling of a new PKA-dependent regulation of HIF-1alpha. Biochim Biophys Acta. 2007;1773:1558–71.

    Article  PubMed  CAS  Google Scholar 

  170. Valipour A, Litschauer B, Mittermayer F, et al. Circulating plasma levels of vascular endothelial growth factor in patients with sleep disordered breathing. Respir Med. 2004;98:1180–6.

    Article  PubMed  Google Scholar 

  171. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  PubMed  CAS  Google Scholar 

  172. van Exel E, Gussekloo J, de Craen AJ, et al. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes. 2002;51:1088–92.

    Article  PubMed  Google Scholar 

  173. Vanderlaan PA, Reardon CA. Thematic review series: the immune system and atherogenesis. The unusual suspects: an overview of the minor leukocyte populations in atherosclerosis. J Lipid Res. 2005;46:829–38.

    Article  PubMed  CAS  Google Scholar 

  174. Veasey SC, Davis CW, Fenik P, et al. Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep. 2004;27:194–201.

    PubMed  Google Scholar 

  175. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab. 2000;85:1151–8.

    Article  PubMed  CAS  Google Scholar 

  176. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61:481–97.

    Article  PubMed  CAS  Google Scholar 

  177. von der Thusen JH, Kuiper J, van Berkel TJ, et al. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev. 2003;55:133–66.

    Article  PubMed  CAS  Google Scholar 

  178. Walmsley SR, Print C, Farahi N, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 2005;201:105–15.

    Article  PubMed  CAS  Google Scholar 

  179. Wang SS, Schadt EE, Wang H, et al. Identification of pathways for atherosclerosis in mice: integration of quantitative trait locus analysis and global gene expression data. Circ Res. 2007;101:e11–30.

    Article  PubMed  CAS  Google Scholar 

  180. Weyand CM, Goronzy JJ, Liuzzo G, et al. T-cell immunity in acute coronary syndromes. Mayo Clin Proc. 2001;76:1011–20.

    Article  PubMed  CAS  Google Scholar 

  181. Wick G, Xu Q. Atherosclerosis – an autoimmune disease. Exp Gerontol. 1999;34:559–66.

    Article  PubMed  CAS  Google Scholar 

  182. Winnicki M, Shamsuzzaman A, Lanfranchi P, et al. Erythropoietin and obstructive sleep apnea. Am J Hypertens. 2004;17:783–6.

    Article  PubMed  CAS  Google Scholar 

  183. Xu W, Chi L, Row BW, et al. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience. 2004;126:313–23.

    Article  PubMed  CAS  Google Scholar 

  184. Yamaji-Kegan K, Su Q, Angelini DJ, et al. IL-4 is proangiogenic in the lung under hypoxic conditions. J Immunol. 2009;182:5469–76.

    Article  PubMed  CAS  Google Scholar 

  185. Yamauchi M, Kimura H. Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal. 2008;10:755–68.

    Article  PubMed  CAS  Google Scholar 

  186. Yamauchi M, Tamaki S, Tomoda K, et al. Evidence for activation of nuclear factor kappaB in obstructive sleep apnea. Sleep Breath. 2006;10:189–93.

    Article  PubMed  Google Scholar 

  187. Yang D, de la Rosa G, Tewary P, et al. Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009;30:531–7.

    Article  PubMed  CAS  Google Scholar 

  188. Yokoe T, Minoguchi K, Matsuo H, et al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation. 2003;107:1129–34.

    Article  PubMed  CAS  Google Scholar 

  189. Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31:1071–8.

    PubMed  Google Scholar 

  190. Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5.

    Article  PubMed  CAS  Google Scholar 

  191. Yuan G, Adhikary G, McCormick AA, et al. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol. 2004;557:773–83.

    Article  PubMed  CAS  Google Scholar 

  192. Yuan G, Nanduri J, Bhasker CR, et al. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem. 2005;280:4321–8.

    Article  PubMed  CAS  Google Scholar 

  193. Zhan G, Serrano F, Fenik P, et al. NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med. 2005;172:921–9.

    Article  PubMed  Google Scholar 

  194. Zhu Y, Fenik P, Zhan G, et al. Selective loss of catecholaminergic wake active neurons in a murine sleep apnea model. J Neurosci. 2007;27:10060–71.

    Article  PubMed  CAS  Google Scholar 

  195. Zidar N, Jeruc J, Balazic J, et al. Neutrophils in human myocardial infarction with rupture of the free wall. Cardiovasc Pathol. 2005;14:247–50.

    Article  PubMed  CAS  Google Scholar 

  196. Zoccal DB, Bonagamba LG, Oliveira FR, et al. Increased sympathetic activity in rats submitted to chronic intermittent hypoxia. Exp Physiol. 2007;92:79–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Peretz Lavie for his helpful comments and suggestions. We are also indebted to Prof. Lena Lavie for her constructive comments and criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Dyugovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Dyugovskaya, L., Polyakov, A. (2012). Activation of Inflammatory Circulating Factors by Intermittent Hypoxia in Sleep Apnea Syndrome. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics