Skip to main content

Protective Effects of Chronic Intermittent Hypoxia Against Myocardial Ischemia/Reperfusion Injury

  • Chapter
  • First Online:
Intermittent Hypoxia and Human Diseases

Abstract

Accumulated evidence has shown that adaptation to chronic hypobaric intermittent hypoxia (IH) increases myocardial tolerance to the subsequent severe hypoxia, Ca2+ overload, or ischemia/reperfusion (I/R) injury. Attractively, this form of protection is noninvasive, persists longer than ischemic preconditioning, and has less side effects such as right ventricular hypertrophy compared with the chronic continuous hypoxia. The cardioprotective effects are largely dependent on the degree and duration of IH. Therefore, to identify suitable cycle length, the number of hypoxic episodes per day, degree, and duration of chronic hypobaric IH is important for clinical application. In addition, elucidation of the mechanisms underlying chronic IH-induced cardioprotection is of basic and clinical importance. To address these issues, this chapter focuses primarily on the cardioprotective effects of chronic hypobaric IH in the improvement of myocardial contractile dysfunction and in the reduction of arrhythmias due to Ca2+ overload or I/R injury. The recent progresses in the understanding of the mechanisms, especially related to the cellular adaptation, are discussed. The knowledge we have got from this area should provide new insights into the understanding of the intrinsic defensive mechanism and have impact on the exploring of new therapeutic approaches in the protection of the heart against ischemic heart diseases and other stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Action potential

APD:

Action potential duration

AT1:

Angiotensin II type 1

ATP:

Adenosine triphosphate

[Ca2+]i :

Intracellular free Ca2+ concentration

CaMKII:

Ca2+/calmodulin-dependent kinase II

CF:

Coronary flow

ERP:

Effective refractory period

ET-1:

Endothelin-1

GS I:

Glycogen synthase I

KATP :

ATP-sensitive potassium

HAH:

High-altitude hypoxia

IH:

Intermittent hypoxia

Ica-L :

L-type calcium channel

INa/Ca :

NCX currents

Ito :

Outward potassium channel

IPC:

Ischemic preconditioning

I/R:

Ischemia/reperfusion

MPTP:

Mitochondrial permeability transition pore

NCX:

Na+/Ca2+ exchanger

OSA:

Obstructive sleep apnea

PKA:

Protein kinase A

PKC:

Protein kinase C

PLB:

Phospholamban

RP:

Resting potential

RyR:

Ryanodine receptor

SERCA2:

Sarcoplasmic reticulum Ca2+-ATPase isoforms 2

SR:

Sarcoplasmic reticulum

VEGF:

Vascular endothelial growth factor

References

  1. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    Article  PubMed  CAS  Google Scholar 

  2. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    Article  PubMed  CAS  Google Scholar 

  3. Hurtado A. Some clinical aspects of life at high altitudes. Ann Intern Med. 1960;53:247–58.

    PubMed  CAS  Google Scholar 

  4. Kopecky M, Daum S. Adaptation of the myocardium to altitude anoxia. Cesk Fysiol. 1958;7:218–9 [In Czech].

    PubMed  CAS  Google Scholar 

  5. Poupa O, Krofta K, Prochazka J, et al. Acclimation to simulated high altitude and acute cardiac necrosis. Fed Proc. 1966;25:1243–6.

    PubMed  CAS  Google Scholar 

  6. Meerson FZ, Gomzakov OA, Shimkovich MV. Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol. 1973;31:30–4.

    Article  PubMed  CAS  Google Scholar 

  7. Widimsky J, Urbanova D, Ressl J, et al. Effect of intermittent altitude hypoxia on the myocardium and lesser circulation in the rat. Cardiovasc Res. 1973;7:798–808.

    Article  PubMed  CAS  Google Scholar 

  8. McGrath JJ, Prochazka J, Pelouch V, et al. Physiological responses of rats to intermittent high-altitude stress: effects of age. J Appl Physiol. 1973;34:289–93.

    PubMed  CAS  Google Scholar 

  9. Asemu G, Papousek F, Ostadal B, et al. Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial KATP channel. J Mol Cell Cardiol. 1999;31:1821–31.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu WZ, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol. 2006;40:96–106.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu HF, Dong JW, Zhu WZ, et al. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci. 2003;73:1275–87.

    Article  PubMed  CAS  Google Scholar 

  12. Neckar J, Markova I, Novak F, et al. Increased expression and altered subcellular distribution of PKC-delta in chronically hypoxic rat myocardium: involvement in cardioprotection. Am J Physiol Heart Circ Physiol. 2005;288:H1566–72.

    Article  PubMed  CAS  Google Scholar 

  13. Xie Y, Zhu Y, Zhu WZ, et al. Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2005;288:H2594–602.

    Article  PubMed  CAS  Google Scholar 

  14. Leon-Velarde F, Monge CC, Vidal A, et al. Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis. Exp Hematol. 1991;19:257–60.

    PubMed  CAS  Google Scholar 

  15. Zhuang J, Zhou Z. Protective effects of intermittent hypoxic adaptation on myocardium and its mechanisms. Biol Signals Recept. 1999;8:316–22.

    Article  PubMed  CAS  Google Scholar 

  16. Xie Y, Zhu WZ, Zhu Y, et al. Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury. Life Sci. 2004;76:559–72.

    Article  PubMed  CAS  Google Scholar 

  17. McGuire M, Bradford A. Chronic intermittent hypoxia increases haematocrit and causes right ventricular hypertrophy in the rat. Respir Physiol. 1999;117:53–8.

    Article  PubMed  CAS  Google Scholar 

  18. Beguin PC, Joyeux-Faure M, Godin-Ribuot D, et al. Acute intermittent hypoxia improves rat myocardium tolerance to ischemia. J Appl Physiol. 2005;99:1064–9.

    Article  PubMed  CAS  Google Scholar 

  19. Belaidi E, Ramond A, Joyeux-Faure M, et al. Contrasting effects of intermittent hypoxia on myocardial ischemic tolerance. In: Xi L, Serebrovskaya TV, editors. Intermittent hypoxia: from molecular mechanisms to clinical applications. New York: Nova; 2009. p. 3–18.

    Google Scholar 

  20. Meerson FZ, Ustinova EE, Orlova EH. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol. 1987;10(12):783–9.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Y, Zhong N, Zhu HF, et al. Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium. Sheng Li Xue Bao. 2000;52:89–92 [In Chinese].

    PubMed  CAS  Google Scholar 

  22. Meerson FZ, Ustinova EE, Manukhina EB. Prevention of cardiac arrhythmias by adaptation to hypoxia: regulatory mechanisms and cardiotropic effect. Biomed Biochim Acta. 1989;48:S83–8.

    PubMed  CAS  Google Scholar 

  23. Meerson FZ, Beloshitskii PV, Vorontsova EI, et al. Effect of adaptation to continuous and intermittent hypoxia on heart resistance to ischemic and reperfusion arrhythmias. Patol Fiziol Eksp Ter. 1989; May-June (3):48–50 [In Russian].

    Google Scholar 

  24. Naryzhnaia NV, Neckar J, Maslov LN, et al. The role of sarcolemmal and mitochondrial KATP-channels in realization of the cardioprotection and antiarrhythmic effect of different regimens of hypobaric adaptation. Ross Fiziol Zh Im I M Sechenova. 2009;95:837–49 [In Russian].

    PubMed  CAS  Google Scholar 

  25. Vovc E. The antiarrhythmic effect of adaptation to intermittent hypoxia. Folia Med (Plovdiv). 1998;40:51–4.

    CAS  Google Scholar 

  26. Zhang Y, Zhong N, Zhou ZN. Estradiol potentiates antiarrhythmic and antioxidative effects of intermittent hypoxic rat heart. Acta Pharmacol Sin. 2000;21:609–12.

    PubMed  CAS  Google Scholar 

  27. Asemu G, Neckar J, Szarszoi O, et al. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res. 2000;49:597–606.

    PubMed  CAS  Google Scholar 

  28. Meerson FZ, Vovk VI. Effects of adaptation to stress exposure and periodic hypoxia on bioelectric activity of cardiomyocytes of isolated heart in ischemia and reperfusion. Biull Eksp Biol Med. 1991;112:573–5 [In Russian].

    PubMed  CAS  Google Scholar 

  29. Zhang Y, Zhong N, Zhou ZN. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle. Life Sci. 2000;67:2465–71.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou J, Tian M, Zhang Y, et al. Effects of intermittent hypoxia on transient outward current in rat ventricular myocytes. Sheng Li Xue Bao. 1999;51:187–92 [In Chinese].

    PubMed  CAS  Google Scholar 

  31. Zhang Y, Zhong N, Zhou ZN. Effects of chronic intermittent hypobaric hypoxia on the L-type calcium current in rat ventricular myocytes. High Alt Med Biol. 2010;11:61–7.

    Article  PubMed  CAS  Google Scholar 

  32. McGrath JJ, Bullard RW. Altered myocardial performance in response to anoxia after high-altitude exposure. J Appl Physiol. 1968;25:761–4.

    PubMed  CAS  Google Scholar 

  33. Zhong N, Zhang Y, Zhu HF, et al. Myocardial capillary angiogenesis and coronary flow in ischemia tolerance rat by adaptation to intermittent high altitude hypoxia. Acta Pharmacol Sin. 2002;23:305–10.

    PubMed  Google Scholar 

  34. Ding HL, Zhu HF, Dong JW, et al. Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury. Acta Pharmacol Sin. 2005;26:315–22.

    Article  PubMed  CAS  Google Scholar 

  35. Yu Z, Wang ZH, Yang HT. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2009;297:H735–42.

    Article  PubMed  CAS  Google Scholar 

  36. Ding HL, Zhu HF, Dong JW, et al. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci. 2004;75:2587–603.

    Article  PubMed  CAS  Google Scholar 

  37. Ventura-Clapier R, Veksler V. Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness. Circ Res. 1994;74:920–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kopylov I, Golubeva LI. Effect of adaptation to periodic hypoxia on the resistance of the indicators of energy metabolism and myocardial contraction in acute anoxia and reoxygenation. Biull Eksp Biol Med. 1991;111:22–5 [In Russian].

    Article  PubMed  Google Scholar 

  39. Kolar F, Jezkova J, Balkova P, et al. Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 2007;292:H224–30.

    Article  PubMed  CAS  Google Scholar 

  40. Xu WQ, Yu Z, Xie Y, et al. Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats. Basic Res Cardiol. 2011;106:329–42.

    Article  PubMed  CAS  Google Scholar 

  41. del Pilar V, Garcia-Godos F, Woolcott OO, et al. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia. J Nucl Cardiol. 2006;13:69–74.

    Article  Google Scholar 

  42. Przyklenk K, Whittaker P. Cardioprotection via adaptation to hypoxia: expanding the timeline and targets? Basic Res Cardiol. 2011;106:325–8.

    Article  PubMed  Google Scholar 

  43. Ostadal B, Ostadalova I, Dhalla NS. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev. 1999;79:635–59.

    PubMed  CAS  Google Scholar 

  44. Zhu WZ, Dong JW, Ding HL, et al. Postnatal development in intermittent hypoxia enhances resistance to myocardial ischemia/reperfusion in male rats. Eur J Appl Physiol. 2004;91:716–22.

    Article  PubMed  Google Scholar 

  45. Ostadal B, Kolar F, Pelouch V, et al. Ontogenetic differences in cardiopulmonary adaptation to chronic hypoxia. Physiol Res. 1995;44:45–51.

    PubMed  CAS  Google Scholar 

  46. Ostadalova I, Ostadal B, Jarkovska D, et al. Ischemic preconditioning in chronically hypoxic neonatal rat heart. Pediatr Res. 2002;52:561–7.

    PubMed  CAS  Google Scholar 

  47. Zhang H, Yang CY, Wang YP, et al. Effects of different modes of intermittent hypobaric hypoxia on ischemia/reperfusion injury in developing rat hearts. Sheng Li Xue Bao. 2007;59:660–6.

    PubMed  CAS  Google Scholar 

  48. Chvojkova Z, Ostadalova I, Ostadal B. Low body weight and cardiac tolerance to ischemia in neonatal rats. Physiol Res. 2005;54:357–62.

    PubMed  CAS  Google Scholar 

  49. Ostadalova I, Ostadal B, Kolar F. Effect of prenatal hypoxia on contractile performance and responsiveness to Ca2+ in the isolated perinatal rat heart. Physiol Res. 1995;44:135–7.

    PubMed  CAS  Google Scholar 

  50. Ostadal B, Prochazka J, Pelouch V, et al. Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia. Physiol Bohemoslov. 1984;33:129–38.

    PubMed  CAS  Google Scholar 

  51. Wauthy P, Pagnamenta A, Vassalli F, et al. Right ventricular adaptation to pulmonary hypertension: an interspecies comparison. Am J Physiol Heart Circ Physiol. 2004;286:H1441–7.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang Y, Yang HT, Zhou ZN. The cardioprotection of intermittent hypoxic adaptation. Sheng Li Xue Bao. 2007;59:601–13 [In Chinese].

    PubMed  CAS  Google Scholar 

  53. Kayar SR, Banchero N. Myocardial capillarity in acclimation to hypoxia. Pflugers Arch. 1985;404:319–25.

    Article  PubMed  CAS  Google Scholar 

  54. Reller MD, Morton MJ, Giraud GD, et al. Maximal myocardial blood flow is enhanced by chronic hypoxemia in late gestation fetal sheep. Am J Physiol. 1992;263:H1327–9.

    PubMed  CAS  Google Scholar 

  55. Rakusan K, Chvojkova Z, Oliviero P, et al. The effect of intermittent normobaric hypoxia on myocardial structure in rats. Hypoxia Med J. 1997;5:3–8.

    Google Scholar 

  56. Rakusan K, Chvojkova Z, Oliviero P, et al. ANG II type 1 receptor antagonist irbesartan inhibits coronary angiogenesis stimulated by chronic intermittent hypoxia in neonatal rats. Am J Physiol Heart Circ Physiol. 2007;292:H1237–44.

    Article  PubMed  CAS  Google Scholar 

  57. Leblanc N, Hume JR. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science. 1990;248:372–6.

    Article  PubMed  CAS  Google Scholar 

  58. Chen L, Lu XY, Li J, et al. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol. 2006;290:C1221–9.

    Article  PubMed  CAS  Google Scholar 

  59. Piper HM. The calcium paradox revisited: an artefact of great heuristic value. Cardiovasc Res. 2000;45:123–7.

    Article  PubMed  CAS  Google Scholar 

  60. Yeung HM, Kravtsov GM, Ng KM, et al. Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. Am J Physiol Cell Physiol. 2007;292:C2046–56.

    Article  PubMed  CAS  Google Scholar 

  61. Said M, Vittone L, Mundina-Weilenmann C, et al. Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Am J Physiol Heart Circ Physiol. 2003;285:H1198–205.

    PubMed  CAS  Google Scholar 

  62. Miyamae M, Camacho SA, Weiner MW, et al. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol. 1996;271(5 Pt 2):H2145–53.

    PubMed  CAS  Google Scholar 

  63. Cao CM, Yan WY, Liu J, et al. Attenuation of mitochondrial, but not cytosolic, Ca2+ overload reduces myocardial injury induced by ischemia and reperfusion. Acta Pharmacol Sin. 2006;27:911–8.

    Article  PubMed  CAS  Google Scholar 

  64. Gao H, Chen L, Yang HT. Activation of alpha1B-adrenoceptors alleviates ischemia/reperfusion injury by limitation of mitochondrial Ca2+ overload in cardiomyocytes. Cardiovasc Res. 2007;75:584–95.

    Article  PubMed  CAS  Google Scholar 

  65. Li J, Zhang H, Zhu WZ, et al. Preservation of the pHi during ischemia via PKC by intermittent hypoxia. Biochem Biophys Res Commun. 2007;356:329–33.

    Article  PubMed  CAS  Google Scholar 

  66. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38:291–300.

    Article  PubMed  CAS  Google Scholar 

  67. Carrozza Jr JP, Bentivegna LA, Williams CP, et al. Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res. 1992;71:1334–40.

    Article  PubMed  CAS  Google Scholar 

  68. Snow JB, Kanagy NL, Walker BR, et al. Rat strain differences in pulmonary artery smooth muscle ca entry following chronic hypoxia. Microcirculation. 2009;16:603–14.

    Article  PubMed  CAS  Google Scholar 

  69. Cazorla O, Ait MY, Goret L, et al. Effects of high-altitude exercise training on contractile function of rat skinned cardiomyocyte. Cardiovasc Res. 2006;71:652–60.

    Article  PubMed  CAS  Google Scholar 

  70. Kusuoka H, Porterfield JK, Weisman HF, et al. Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest. 1987;79:950–61.

    Article  PubMed  CAS  Google Scholar 

  71. Gao WD, Atar D, Backx PH, et al. Relationship between intracellular calcium and contractile force in stunned myocardium: direct evidence for decreased myofilament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. Circ Res. 1995;76:1036–48.

    Article  PubMed  CAS  Google Scholar 

  72. Kentish JC, Allen DG. Is force production in the myocardium directly dependent upon the free energy change of ATP hydrolysis? J Mol Cell Cardiol. 1986;18:879–84.

    Article  PubMed  CAS  Google Scholar 

  73. Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004;61:365–71.

    Article  PubMed  CAS  Google Scholar 

  74. Bass A, Ostadal B, Prochazka J, et al. Intermittent high altitude-induced changes in energy metabolism in the rat myocardium and their reversibility. Physiol Bohemoslov. 1989;38:155–61.

    PubMed  CAS  Google Scholar 

  75. McNulty PH, Ng C, Liu WX, et al. Autoregulation of myocardial glycogen concentration during intermittent hypoxia. Am J Physiol. 1996;271:R311–9.

    PubMed  CAS  Google Scholar 

  76. Lebkova NP, Chizhov AI, Bobkov I. The adaptational intracellular mechanisms regulating energy homeostasis during intermittent normobaric hypoxia. Ross Fiziol Zh Im I M Sechenova. 1999;85:403–11 [In Russian].

    PubMed  CAS  Google Scholar 

  77. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116:434–48.

    Article  PubMed  CAS  Google Scholar 

  78. Lukyanova LD, Germanova EL, Kopaladze RA. Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation. Bull Exp Biol Med. 2009;147:400–4.

    Article  PubMed  CAS  Google Scholar 

  79. Samaja M, Veicsteinas A, Milano G. Effects of intermittent versus chronic hypoxia on myocardial ischemic tolerance. In: Xi L, Serebrovskaya TV, editors. Intermittent hypoxia: from molecular mechanisms to clinical applications. New York: Nova; 2009. p. 19–52.

    Google Scholar 

  80. Neckar J, Papousek F, Novakova O, et al. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res Cardiol. 2002;97:161–7.

    Article  PubMed  Google Scholar 

  81. Milano G, Corno AF, Lippa S. Chronic and intermittent hypoxia induce different degrees of myocardial tolerance to hypoxia-induced dysfunction. Exp Biol Med. 2002;227:389–97.

    CAS  Google Scholar 

Download references

Acknowledgments

Some of the studies were supported partially by grants from Major State Basic Research Development Program of People’s Republic of China (2006CB504106; 2007CB512100) and Knowledge Innovation Program of the CAS (KSCX2-YW-R-75).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang-Tian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Yang, HT., Zhang, Y., Wang, ZH., Zhou, ZN. (2012). Protective Effects of Chronic Intermittent Hypoxia Against Myocardial Ischemia/Reperfusion Injury. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics