Skip to main content

System Identification Methods

  • Chapter
Applied Control Systems Design
  • 3385 Accesses

Abstract

In this chapter, we provide an introductory survey of the methods that have been developed for identification of continuous-time systems from samples of input–output data. The methods include

  1. 1.

    The indirect method, where first a discrete-time model is estimated from the sampled data and then an equivalent continuous-time model is calculated,

  2. 2.

    The direct method based on concepts of approximate numerical integration, where a continuous-time model is obtained directly without going through the intermediate step of first determining a discrete-time model, and

  3. 3.

    Subspace identification algorithms, where deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms are treated.

These methods estimate state sequences directly from the given data, either explicitly or implicitly, through an orthogonal or oblique projection of the row spaces of certain block Hankel matrices of data into the row spaces of other block Hankel matrices, followed by a singular value decomposition (SVD) to determine the order, the observability matrix and/or the state sequence.

The purpose of this chapter is to provide an introductory survey of the methods that have been developed for identification of continuous-time systems from samples of input–output data. The two basic approaches may be described as

  1. 1.

    The indirect method, where a discrete-time model is first estimated from the sampled data and then an equivalent continuous-time model is calculated, and

  2. 2.

    The direct method based on concepts of approximate numerical integration, where a continuous-time model is obtained directly without going through the intermediate step of first determining a discrete-time model.

Next, we give a short introduction to subspace identification algorithms. Deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms are treated. These methods estimate state sequences directly from the given data, either explicitly or implicitly, through an orthogonal or oblique projection of the row spaces of certain block Hankel matrices of data into the row spaces of other block Hankel matrices, followed by a singular value decomposition (SVD) to determine the order, the observability matrix and/or the state sequence. The extraction of the state space model is then achieved through the solution of a least squares problem. Each of these steps can be elegantly implemented using well-known numerical linear algebra algorithms such as the singular value decomposition and the QR decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this case, the predictor regressor vector is identical to the measurement vector.

  2. 2.

    Effectively, if the correction term is null, one holds the previous value of the estimated parameters.

  3. 3.

    In equations of the form of (3.24) the vector ϕ is generally called the observation vector. In this particular case, it corresponds to the measurement vector.

  4. 4.

    A positive definite matrix is characterized by: (i) each diagonal term is positive; (ii) the matrix is symmetric; (iii) the determinants of all principal matrix minors are positive. See the Appendix.

  5. 5.

    One can derives from (3.28) that an optimal value for α is α≈1/ϕ(t)t ϕ(t).

  6. 6.

    This is the real minimum with the condition that the second derivative of the criterion, with respect to \(\hat{\theta}(t)\) is positive, that is \(\frac{\partial^{2}J(t)}{\partial\hat{\theta}(t)^{2}} = 2\sum_{i=1}^{t}\phi(i-1)\phi(i-1)^{t} > 0\), as it is in general the case for \(t \geq \mathrm{dim } \theta\) (see also Sect. 3.3).

  7. 7.

    This equivalent form is particularly useful in analyzing and understanding the algorithm.

References

  1. Akaike, H.: Stochastic theory of minimal realization. IEEE Trans. Autom. Control 19, 667–674 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akaike, H.: Markovian representation of stochastic processes by canonical variables. SIAM J. Control 13(1), 162–173 (1977)

    Article  MathSciNet  Google Scholar 

  3. Aoki, M.: State Space Modeling of Time Series. Springer-Verlag, Berlin (1987)

    Book  MATH  Google Scholar 

  4. Astrom, K.J., Eykhoff, P.: System identification—A survey. Automatica 7(2), 123–162 (1971)

    Article  MathSciNet  Google Scholar 

  5. Bauer, D.: Order estimation for subspace methods. Automatica 37, 1561–1573 (2001)

    Article  MATH  Google Scholar 

  6. Bauer, D., Ljung, L.: Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms. Automatica 38(5), 763–773 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, D., Deistler, M., Scherrer, W.: Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs. Automatica 35, 1243–1254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergboer, N., Verdult, V., Verhaegen, M.: An efficient implementation of maximum likelihood identification of LTI state-space models by local gradient search. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, pp. 616–621. IEEE Press, Piscataway (2002)

    Google Scholar 

  9. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  10. Brewer, J.W.: Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 25(9), 772–781 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruls, J., Chou, C.T., Haverkamp, B., Verhaegen, M.: Linear and non-linear system identification using separable least-squares. Eur. J. Control 5(1), 116–128 (1999)

    MATH  Google Scholar 

  12. Chiuso, A., Picci, G.: Some algorithmic aspects of subspace identification with inputs. Int. J. Appl. Math. Comput. Sci. 11(1), 55–75 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Cho, Y., Xu, G., Kailath, T.: Fast identification of state space models via exploitation of displacement structure. IEEE Trans. Autom. Control AC-39(10), 2004–2017 (1994)

    MathSciNet  Google Scholar 

  14. Cho, Y., Xu, G., Kailath, T.: Fast recursive identification of state space models via exploitation of displacement structure. Automatica 30(1), 45–59 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chou, C.T., Verhaegen, M.: Subspace algorithms for the identification of multivariable dynamic errors-in-variables models. Automatica 33(10), 1857–1869 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chui, N.L.C., Maciejowski, J.M.: Realization of stable models with subspace methods. Automatica 32(11), 1587–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Clarke, D.: Generalized least squares estimation of parameters of a dynamic model. In: Proc. First IFAC Symposium on Identification in Automatic Control Systems, pp. 3–17 (1967)

    Google Scholar 

  18. Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control part I: The basic algorithm. Automatica 23(2), 137–148 (1987)

    Article  MATH  Google Scholar 

  19. Dahlen, A., Lindquist, A., Mari, J.: Experimental evidence showing that stochastic subspace identification methods may fail. Syst. Control. Lett. 34, 303–312 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. David, B.: Parameter estimation in nonlinear dynamical systems with correlated noise. Ph D thesis, Universite Catholique de Louvain, Louvain LaNeuve, Belgium (2001)

    Google Scholar 

  21. David, B., Bastin, G.: An estimator of the inverse covariance matrix and its application to ML parameter estimation in dynamical systems. Automatica 37(1), 99–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. De Bruyne, F., Gevers, M.: Identification for control: Can the optimal restricted complexity model always be indentified. In: Proc. of the 33rd IEEE Conference on Decision and Control, Orlando, Florida, pp. 3912–3917. IEEE Press, Piscataway (1994)

    Google Scholar 

  23. De Moor, B., Van Overschee, P.: Graphical User Interface Software for System Identification. Tech. Rep. Report 94-06I, ESAT-SISTA, Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium (1994)

    Google Scholar 

  24. De Moor, B., Van Overschee, P., Favoreel, W.: Algorithms for subspace state-space system identification: An overview. Appl. Comput. Control Signals Circuits. 1, 247–311 (1999)

    Article  Google Scholar 

  25. Desai, U.B., Pal, D.: A transformation approach to stochastic model reduction. IEEE Trans. Autom. Control AC-29(12), 1097–1100 (1984)

    Article  MathSciNet  Google Scholar 

  26. Desai, U.B., Kirkpatrick, R.D., Pal, D.: A realization approach to stochastic model reduction. Int. J. Control 42(2), 821–838 (1985)

    Article  MATH  Google Scholar 

  27. Dorf, R., Bishop, R.: Modern Control Systems, 8th edn. Addison-Wesley, New York (1998)

    MATH  Google Scholar 

  28. Faure, P.: Stochastic realization algorithms. In: Mehra, R., Lainiotis, D. (eds.) System Identification: Advances and Case Studies. Academic Press, San Diego (1976)

    Google Scholar 

  29. Favoreel, W., De Moor, B., Van Overschee, P.: Subspace identification of bilinear systems subject to white inputs. IEEE Trans. Autom. Control 44(6), 1157–1165 (1999)

    Article  MATH  Google Scholar 

  30. Favoreel, W., De Moor, B., Van Overschee, P.: Subspace state space system identification for industrial processes. J. Process Control 10, 149–155 (2000)

    Article  Google Scholar 

  31. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice – a survey. Automatica 25(3), 335–348 (1989)

    Article  MATH  Google Scholar 

  32. Gevers, M.: Towards a joint design of identification and control. In: Trentelman, H.L., Willems, J.C. (eds.) Essays on Control: Perspectives in the Theory and Its Applications, pp. 111–151. Birkhauser, Boston (1993)

    Google Scholar 

  33. Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10(2), 413–432 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  35. Hanzon, B., Ober, R.J.: Overlapping block-balanced canonical forms and parametrizations: The stable SISO case. SIAM J. Control Optim. 35(1), 228–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hanzon, B., Ober, R.J.: Overlapping block-balanced canonical forms for various classes of linear systems. Linear Algebra Appl. 281, 171–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hanzon, B., Peeters, R.L.M.: Balanced parameterizations of stable SISO all-pass systems in discrete time. Math. Control Signals Syst. 13(3), 240–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hanzon, B., Peeters, R., Olivi, M.: Balanced parameterizations of discrete-time stable all-pass systems and the tangential Schur algorithm. In: Proc. of the European Control Conference, Karlsruhe, 1999. Duisburg: Universitat Duisburg (CD Info: http://www.uniduisburg.de/euca/ecc99/proceedi.htm)

  39. Haverkamp, B.: Subspace method identification, theory and practice. Ph D Thesis, Delft University of Technology, Delft, The Netherlands (2000)

    Google Scholar 

  40. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. John Wiley and Sons, New York (1996)

    Google Scholar 

  41. Ho, B.L., Kalman, R.E.: Effective construction of linear state-variable models from input/output functions. Regelungstechnik 14(12), 545–548 (1966)

    MATH  Google Scholar 

  42. Jansson, M., Wahlberg, B.: A linear regression approach to state-space subspace system identification. Signal Process. 52(2), 103–129 (1996)

    Article  MATH  Google Scholar 

  43. Jansson, M., Wahlberg, B.: On consistency of subspace methods for system identification. Automatica 34(12), 1507–1519 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Johansson, R.: System Modeling and Identification. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  45. Juricek, B.C., Seborg, D.E., Larimore, W.E.: Identification of the Tennessee Eastman challenge process with subspace methods. Control Engineering Practice 9(12), 1337–1351 (2001)

    Article  Google Scholar 

  46. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. Am. Soc. Mech. Eng., J. Basic Eng. 83(1), 35–45 (1960)

    Article  Google Scholar 

  47. Kalman, R.E.: Mathematical description of linear dynamical systems. SIAM J. Control 1, 152–192 (1963)

    MathSciNet  MATH  Google Scholar 

  48. Kung, S.Y.: A new identification method and model reduction algorithm via singular value decomposition. In: Proc. the 12th Asilomar Conference on Circuits, Systems and Computations, pp. 705–714 (1978)

    Google Scholar 

  49. Landau, Y.D.: Adaptive Control: The Model Reference Approach. Marcel Dekker, New York (1979)

    MATH  Google Scholar 

  50. Larimore, W.E.: Statistical optimality and canonical variate analysis system identification. Signal Process. 52(2), 131–144 (1996)

    Article  MATH  Google Scholar 

  51. Lee, L.H., Poolla, K.: Identification of linear parameter-varying systems using nonlinear programming. J. Dyn. Syst. Meas. Control 121(1), 71–78 (1999)

    Article  Google Scholar 

  52. Lindquist, A., Picci, G.: Canonical correlation analysis, approximate covariance extension, and identification of stationary time series. Automatica 32(4), 709–733 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ljung, L.: Convergence analysis of parametric identification methods. IEEE Trans. Autom. Control 23(5), 770–783 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ljung, J.: System Identification: Theory for the User, 2nd edn. Prentice Hall, New Jersey (1999)

    Google Scholar 

  55. Lovera, M., Gustafsson, T., Verhaegen, M.: Recursive subspace identification of linear and non-linear wiener state-space models, Automatica 36(8), 1639–1650 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mathworks, System identification toolbox 7.4, available at http://www.mathworks.com/products/sysid.

  57. McKelvey, T.: Identification of state-space model from time and frequency data. PhD thesis, Linkoping University, Linkoping, Sweden (1995)

    Google Scholar 

  58. McKelvey, T., Akcay, H., Ljung, L.: Subspace-based identification of infinite-dimensional multivariable systems from frequency-response data. Automatica 32(6), 885–902 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  59. McKelvey, T., Helmersson, A.: System identification using overparametrized model class – improving the optimization algorithm. In: Proc. 36th IEEE Conference on Decision and Control, San Diego, Piscataway, pp. 2984–2989. IEEE Press, New Jersey (1997)

    Chapter  Google Scholar 

  60. Moonen, M., De Moor, B., Vandenberghe, L., Vandewalle, J.: On- and off-line identification of linear state-space models. Int. J. Control 49(1), 219–232 (1989)

    MATH  Google Scholar 

  61. More, J.J.: The Levenberg–Marquardt algorithm: Implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. Lecture Notes in Mathematics, vol. 630, pp. 106–116. Springer-Verlag, Berlin (1978)

    Chapter  Google Scholar 

  62. Overschee, P.V., De Moor, Bart: N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1), 75–93 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  63. Peternell, K., Scherrer, W., Deistler, M.: Statistical analysis of novel subspace identification methods. Signal Process. 52(2), 161–177 (1996)

    Article  MATH  Google Scholar 

  64. Picci, G., Katayama, T.: Stochastic realization with exogenous inputs and subspace-methods identification. Signal Process. 52(2), 145–160 (1996)

    Article  MATH  Google Scholar 

  65. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1986)

    Google Scholar 

  66. Schaper, C.D., Larimore, W.E., Seborg, D.E., Mellichamp, D.A.: Identification of chemical processes using canonical variate analysis. Comput. Chem. Eng. 18(1), 55–69 (1994)

    Article  Google Scholar 

  67. Silverman, L.: Realization of linear dynamical systems. IEEE Trans. Autom. Control AC-16, 554–567 (1971)

    Article  Google Scholar 

  68. Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.Y., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: A unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  Google Scholar 

  69. Soderstrom, T., Stoica, P.: System Identification. Prentice-Hall, New York (1989)

    Google Scholar 

  70. Soeterboek, R.: Predictive Control: A Unified Approach. Prentice-Hall, New York (1992)

    MATH  Google Scholar 

  71. Stoica, P., Jansson, M.: MIMO system identification: State-space and subspace approximations versus transfer function and instrumental variables. IEEE Trans. Signal Process. 48(11), 3087–3099 (2001)

    Article  MathSciNet  Google Scholar 

  72. Tatematsu, K., Hamada, D., Uchida, K., Wakao, S., Onuki, T.: New approaches with sensorless drives. IEEE Ind. Appl. Mag. 6(4), 44–50 (2000)

    Article  Google Scholar 

  73. Van den Hof, P.M.J., Schrama, R.J.P.: Identification and control – closed loop issues. In: Preprints of the IFAC Symposium on System Identification, Copenhagen, Denmark, pp. 1–13. Elsevier Science Ltd, Oxford (1994)

    Google Scholar 

  74. Van Gestel, T., Suykens, J., Van Dooren, P., De Moor, B.: Identification of stable models in subspace identification by using regularization. IEEE Trans. Autom. Control 46(9), 1416–1420 (2001)

    Article  MATH  Google Scholar 

  75. Van Overschee, P., De Moor, B.: Subspace algorithms for the stochastic identification problem. Automatica 29, 649–660 (1993)

    Article  MATH  Google Scholar 

  76. Van Overschee, P., De Moor, B.: N4SID-subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1), 75–94 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  77. Van Overschee, P., De Moor, B.: A unifying theorem for three subspace system identification algorithms. Automatica 31(12), 1853–1864 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  78. Van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems: Theory, Implementation and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (1996)

    Book  MATH  Google Scholar 

  79. Verdult, V., Verhaege, M.: Identification of multivariable bilinear state space systems based on subspace techniques and separable least squares optimization. Int. J. Control 74(18), 1824–1836 (2001)

    Article  MATH  Google Scholar 

  80. Verdult, V., Verhaege, M.: Subspace identification of multivariable linear parameter-varying systems. Automatica 38(5), 805–814 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  81. Verhaegen, M.: Realization of covariance sequences. In: Proc. the Toeplitz Memorial Conference, Tel Aviv, Israel (1981)

    Google Scholar 

  82. Verhaegen, M.: A new class of algorithms in linear system theory. PhD thesis, KU Leuven, Leuven, Belgium (1985)

    Google Scholar 

  83. Verhaegen, M.: Application of a subspace model identification technique to identify LTI systems operating in closed-loop. Automatica 29(4), 1027–1040 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  84. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input–output data. Automatica 30(1), 61–74 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  85. Verhaegen, M., Dewilde, P.: Subspace model identification Part 2: Analysis of the elementary output-error state-space model identification algorithm. Int. J. Control 56(5), 1211–1241 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  86. Verhaegen, M., Dewilde, P.: Subspace model identification Part 1: The output-error state-space model identification class of algorithms. Int. J. Control 56(5), 1187–1210 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  87. Verhaegen, M., Dewilde, P.: Subspace model identification Part 3: Analysis of the ordinary output-error state-space model identification algorithm. Int. J. Control 56(3), 555–586 (1993)

    Article  Google Scholar 

  88. Verhaegen, M., Westwick, D.: Identifying MIMO Hammerstein systems in the context of subspace model identification methods. Int. J. Control 63(2), 331–349 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  89. Verhaegen, M., Yu, X.: A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems. Automatica 31(2), 201–216 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  90. Viberg, M.: Subspace-based methods for the identification of linear time-invariant systems. Automatica 31(12), 1835–1851 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  91. Viberg, M., Wahlberg, B., Ottersten, B.: Analysis of state-space system identification methods based on instrumental variables and subspace fitting. Automatica 33(9), 1603–1616 (1997)

    Article  MathSciNet  Google Scholar 

  92. Wahlberg, B., Ljung, L.: Design variables for bias distribution in transfer function estimation. IEEE Trans. Autom. Control 31(2), 134–144 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  93. Westwick, D., Verhaegen, M.: Identifying MIMO Wiener systems using subspace model identification methods. Signal Process. 52, 235–258 (1996)

    Article  MATH  Google Scholar 

  94. Zeiger, H., McEwen, A.: Approximate linear realization of given dimension via Ho’s algorithm. IEEE Trans. Autom. Control 19, 153–154 (1974)

    Article  MATH  Google Scholar 

  95. Zhu, Y.: Multivariable System Identification for Process Control. Pergamon, Lexington (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mahmoud, M.S., Xia, Y. (2012). System Identification Methods. In: Applied Control Systems Design. Springer, London. https://doi.org/10.1007/978-1-4471-2879-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2879-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2878-6

  • Online ISBN: 978-1-4471-2879-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics