Skip to main content

Prebiotics, Probiotics, Polyunsaturated Fatty Acids, and Bone Health

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

Improvement of peak bone mass in younger age and reducing bone loss in aging are two strategies to reduce the risk for developing osteoporosis. Modulating intestinal calcium absorption by modifying the diet can contribute to improvement of bone mass, and reduction of inflammation during menopause can help reduce the risk of bone loss. Calcium absorption takes place via an active process in the duodenum, modulated by active vitamin D, or by passive paracellular absorption that can take place throughout the intestine. Prebiotics are nondigestible carbohydrates which promote bacterial growth in the colon. Fermentation by the bacteria results in the production of organic acids which reduce the pH in the large intestine and may improve solubility of minerals increasing passive diffusion via the paracellular pathway. Increased cell proliferation and hypertrophy of the colon wall have also been reported, while some authors also report increased expression of calbindin-D9k, the protein responsible for carrying calcium through the intestinal cell. While the mechanism by which probiotics improve calcium absorption has not been proven, it is possible that the mechanism is similar to that of the prebiotics. Another dietary component that can affect intestinal calcium absorption is long-chain polyunsaturated fatty acids (LCPUFA). These have been shown to improve calcium absorption by modulating the action of vitamin D in the intestine, modulating intestinal membrane composition and thereby increasing activity of the membrane pumps responsible for transport of minerals across the basolateral membranes. The omega 3 LCPUFAs also have specific effects on bone cells and reduce inflammation which may be of benefit to bone especially during menopause. In addition, LCPUFAs may have a prebiotic effect, modulating gut microflora. The possible contribution of these dietary components to calcium absorption and bone maintenance in rats and younger as well as older adults is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus A, Matkovic V, Weaver C. Peak bone mass. Osteoporosis Int. 2000;11:985–1009.

    Article  CAS  Google Scholar 

  2. Bronner F. Recent developments in intestinal calcium absorption. Nutr Rev. 2009;67(2):109–13.

    Article  PubMed  Google Scholar 

  3. Bronner F, Pansu D. Nutritional aspects of calcium absorption. J Nutr. 1999;129:9–12.

    PubMed  CAS  Google Scholar 

  4. Bronner F. Calcium. In: O’Dell BL, Sunde RA, editors. Handbook of nutritionally essential mineral elements. New York: Marcel Dekker; 1997. p. 13–61.

    Google Scholar 

  5. Park CY, Weaver CM. Calcium and bone health: influence of prebiotics. Funct Food Rev. 2011;3(2):62–72.

    Google Scholar 

  6. Roberfroid M, Slavin J. Nondigestible oligosaccharides. Crit Rev Food Sci Nutr. 2000;40(6):461–80.

    Article  PubMed  CAS  Google Scholar 

  7. Roberfroid MB. Prebiotics and synbiotics: concepts and nutritional properties. Br J Nutr. 1998;80 Suppl 2:S197–202.

    PubMed  CAS  Google Scholar 

  8. Roberfroid MB. Concepts of functional foods: the case of inulin and oligofructose. J Nutr. 1999;129:1398S–401.

    PubMed  CAS  Google Scholar 

  9. Raschka L, Daniel H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone. 2005;37:728–35.

    Article  PubMed  CAS  Google Scholar 

  10. Chonan O, Takahashi R, Watnuki M. Role of activity of gastrointestinal microflora in absorption of calcium and magnesium in rats fed beta-4 linked galactooligosaccharides. Biosci Biotechnol Biochem. 2001;65:1872–5.

    Article  PubMed  CAS  Google Scholar 

  11. Blottiere HM, Buecher B, Galmiche JP, Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc. 2003;62:101–6.

    Article  PubMed  CAS  Google Scholar 

  12. Pérez-Conesa D, López G, Ros G. Effects of probiotic, prebiotic and symbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. J Sci Food Agric. 2007;87:1059–68.

    Article  Google Scholar 

  13. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59:6501–10.

    Article  PubMed  CAS  Google Scholar 

  14. Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K, et al. Dietary fructooligosaccharides change the concentration of calbindin-d9k differently in the mucosa of the small and large intestine of rats. J Nutr. 1998;128:934–9.

    PubMed  CAS  Google Scholar 

  15. Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R. Fructooligosaccharide consumption enhances femoral bone volume and mineral conversion in rats. J Nutr. 2000;130:1792–5.

    PubMed  CAS  Google Scholar 

  16. Ohta A, Ohtuki M, Takizawa T, Inaba H, Adachi T, Kimura S. Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomised rats. Int J Vitam Nutr Res. 1994;64:316–23.

    PubMed  CAS  Google Scholar 

  17. Ohta A, Ohtsuki M, Baba S, Adachi T, Sakata T, Sakaguchi EI. Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr. 1995;125:2417–24.

    PubMed  CAS  Google Scholar 

  18. Taguchi A, Ohta A, Abe M, Baba S, Ohtsuki M, Takizawa T, et al. The influence of fructooligosac-charides on the bone of model rats with ovariectomised osteoporosis. Sci Rep Meija Seika Kaisha. 1994; 33: 34–43.

    Google Scholar 

  19. Delzenne N, Aertsens J, Verplaetse H, Roccaro M, Roberfroid M. Effect of fermentable fructooligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 1995;57:1579–87.

    Article  PubMed  CAS  Google Scholar 

  20. Roberfroid MB, Cumps J, Devogelaer JP. Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr. 2002;132:3599–602.

    PubMed  CAS  Google Scholar 

  21. Scholz-Ahrens K, Acil Y, Schrezenmeier J. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralisation and trabecular structure in ovariectomised rats. Br J Nutr. 2002;88:365–77.

    Article  PubMed  CAS  Google Scholar 

  22. Levrat MA, Remesy C, Demigne C. High propionate acid fermentation and mineral accumulation in the caecum adapted to different levels of inulin. J Nutr. 1991;121:1730–7.

    PubMed  CAS  Google Scholar 

  23. Kruger MC, Brown KE, Collett G, Layton L, Schollum LM. The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med. 2003;228:683–8.

    CAS  Google Scholar 

  24. Chonan O, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomised rats. Biosci Biotechnol Biochem. 1995;59:236–9.

    Article  PubMed  CAS  Google Scholar 

  25. Chonan O, Watanuki M. The effect of 6-galactooligosaccharides on bone mineralisation of rats adapted to different levels of dietary calcium. Int J Vitam Nutr Res. 1996;66:244–9.

    PubMed  CAS  Google Scholar 

  26. Brommage R, Binacua C, Antille S, Carrie AL. Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J Nutr. 1993;123:2186–94.

    PubMed  CAS  Google Scholar 

  27. Schulz AGM, Von Amelsvoort JMM, Beynen AC. Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. J Nutr. 1993;123:1724–31.

    PubMed  CAS  Google Scholar 

  28. Younes H, Coudray C, Bellanger J, Demigne C, Rayssiguier Y, Remesy C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr. 2001;86:479–85.

    Article  PubMed  CAS  Google Scholar 

  29. Roberfroid M. Dietary fibers, inulin and oligofructose, a review comparing their physiological effects. Crit Rev Food Sci Nutr. 1993;33:103–48.

    Article  PubMed  CAS  Google Scholar 

  30. Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem. 2010;58:8952–7.

    Article  CAS  Google Scholar 

  31. Van der Heuvel EGHM, Muys T, Van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr. 1999;69:544–8.

    PubMed  Google Scholar 

  32. Griffin IJ, Davila PM, Abrams SA. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr. 2002;87(S2):S187–91.

    Article  PubMed  CAS  Google Scholar 

  33. Griffin IJ, Hicks PMD, Heaney RP, Abrams SA. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr Res. 2003;23:901–9.

    Article  CAS  Google Scholar 

  34. Coudray C, Bellanger J, Castiglia-Delavaud C, Remesy C, Vermorel M, Rayssiguier Y. Effect of soluble or partly soluble dietary fibers supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr. 1997;151:375–80.

    Article  Google Scholar 

  35. Van der Heuvel EGHM, Schaafsma G, Muys T, Van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme iron absorption in young healthy men. Am J Clin Nutr. 1998;67:445–51.

    PubMed  Google Scholar 

  36. Martin BD, Braun MM, Wigertz K, Bryant R, Zhao Y, Lee WH, et al. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J Am Coll Nutr. 2010;29(4):382–6.

    PubMed  CAS  Google Scholar 

  37. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82:471–6.

    PubMed  CAS  Google Scholar 

  38. Tahiri M, Tressol JC, Arnaud J, Bornet FRJ, Bouteloup-Demange C, Feillet-Coudray C, et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr. 2003;77:449–57.

    PubMed  CAS  Google Scholar 

  39. Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr. 2007;97:365–72.

    Article  PubMed  CAS  Google Scholar 

  40. Coxam V. Inulin type fructans and bone health: state of the art and perspectives in the management of osteoporosis. Br J Nutr. 2005;93(Suppl):S111–23.

    Article  PubMed  CAS  Google Scholar 

  41. De Vrese M. Health benefits of probiotics and prebiotics in women. Menopause Int. 2009;15:35–40.

    Article  PubMed  Google Scholar 

  42. Coxam V. Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutr. 2007;137:2527S–33.

    PubMed  CAS  Google Scholar 

  43. Abrams SA, Griffin IJ, Hawthorne KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr. 2007;137:2524S–6.

    PubMed  CAS  Google Scholar 

  44. Kim YY, Jang KH, Lee EY, Cho Y, Kang SA, Ha WK, et al. The effect of chicory fructan fiber on calcium absorption and bone metabolism in Korean postmenopausal women. Nutr Sci. 2004;7:151–7.

    CAS  Google Scholar 

  45. Chow J-MC. Probiotics and prebiotics: a brief overview. J Renal Nutr. 2002;12(2):76–86.

    Article  Google Scholar 

  46. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Asil Y, et al. Prebiotics, probiotics and symbiotic affect mineral absorption, bone mineral content, and bone structure. J Nutr. 2007;137:838S–46.

    PubMed  CAS  Google Scholar 

  47. Beynen AC, Baas JC, Hoekemeijer PE, Kappert HJ, Bakker MH, Koopman JP, et al. Faecal bacterial profile, nitrogen excretion and mineral absorption in healthy dogs fed supplemental oligofructose. J Anim Physiol Anim Nutr (Berl). 2002;86:298–305.

    Article  CAS  Google Scholar 

  48. Minamida K, Sujaya IN, Tamura A, Shigematsu N, Sone T, Yokota A, et al. The effects of di-D-fructofuranose-1,2:2,3-dianhydride (DFA III) administration on human intestinal microbiota. J Biosci Bioeng. 2004;98(4):244–50.

    PubMed  CAS  Google Scholar 

  49. Igarashi M, Liyama Y, Kato R, Tomita M, Asami N, Ezawa I. Effect of Bifidobacterium longum and ­lactulose on the strength of bone in ovariectomised osteoporosis rat model. Bifidus. 1994;7:139–47.

    Google Scholar 

  50. Ghanem KZ, Badawy IH, Abdel-Salam AM. Influence of yoghurt and probiotic yoghurt on the absorption of calcium, magnesium, iron and bone mineralisation in rats. Milk Sci Int. 2004;59(9–10):472–5.

    CAS  Google Scholar 

  51. Perez-Conesa D, Lopez G, Ros G. Effects of probiotic, prebiotic and symbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. J Sci Food Agric. 2007;87(6):1059–68.

    Article  CAS  Google Scholar 

  52. Narva M, Rissanen J, Jussi H, Heiki V, Kalervo V, Riita K. Effects of bioactive peptide, valyl-prolyl-proline (VPP), and Lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann Nutr Metab. 2007;51:65–74.

    Article  PubMed  CAS  Google Scholar 

  53. Perez-Conesa D, Lopez G, Abellan P, Ros G. Bioavailability of calcium, magnesium and phosphorous in rats fed probiotic, prebiotic and symbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J Sci Food Agric. 2006;86:2327–36.

    Article  CAS  Google Scholar 

  54. Kruger MC, Fear A, Chua W-H, Plimmer GG, Schollum LM. The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats. Dairy Sci Technol. 2009;89:219–31.

    Article  CAS  Google Scholar 

  55. Narva M, Nevala R, Poussa T, Korpela R. The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women. Eur J Nutr. 2004;43(2):61–8.

    Article  PubMed  CAS  Google Scholar 

  56. Cheung ALTF, Wilcox G, Walker KZ, Shah NP, Strauss B, Ashton JF, et al. Fermentation of calcium-fortified soya milk does not appear to enhance acute calcium absorption in osteopenic post-menopausal women. Br J Nutr. 2011;105:283–6.

    Article  Google Scholar 

  57. Corwin RL, Hartman TJ, Maczuga SA, Graubard BI. Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr. 2006;136:159–65.

    PubMed  CAS  Google Scholar 

  58. Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar FT, et al. Fatty acid consumption and risk of fracture in the Women’s Health Initiative. Am J Clin Nutr. 2010;92:1452–60.

    Article  PubMed  CAS  Google Scholar 

  59. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr. 2011;93:1142–51.

    Article  PubMed  CAS  Google Scholar 

  60. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker L. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hip bone mineral density and hip fracture in older adults: the Framingham Osteoporosis Study. J Bone Miner Res. 2012;27(5):1222–30.

    Article  PubMed  CAS  Google Scholar 

  61. Virtanen JK, Mozaffarian D, Cauley JA, Mukamal K, Robins J, Siscovick DS. Fish consumption, bone mineral density, and risk of hip fracture among older adults: the Cardiovascular Health Study. J Bone Miner Res. 2010;25(9):1972–9.

    Article  PubMed  Google Scholar 

  62. Fernandes G, Lawrence R, Sun D. Protective role of n-3 lipids and soy protein in osteoporosis. Prostaglandins Leukot Essent Fatty Acids. 2003;68:361–8.

    Article  PubMed  CAS  Google Scholar 

  63. Albertazzi P, Coupland K. Polyunsaturated fatty acids. Is there a role in postmenopausal osteoporosis prevention? Maturitas. 2002;42:13–8.

    Article  PubMed  CAS  Google Scholar 

  64. Maxton DG, Cynk EU, Jenkins AP, Thompson RP. Effect of dietary fat on the small intestinal mucosa. Gut. 1989;30:1252–5.

    Article  PubMed  CAS  Google Scholar 

  65. Hart MH. Essential fatty acid deficiency and postsection mucosal adaptation in the rat. Gastroenterology. 1988;94:682–8.

    PubMed  CAS  Google Scholar 

  66. Jenkins AP, Ghatai MA, Bloom SR, Thompson RP. Effects of bolus doses of fat on small intestinal structure and release of gastrin, cholecystokinin, peptide tyrosine-tyrosine, and enteroglucagon. Gut. 1992;33:218–23.

    Article  PubMed  CAS  Google Scholar 

  67. Kruger MC, Horrobin DF. Calcium metabolism, osteoporosis and essential fatty acids: a review. Prog Lipid Res. 1997;36:131–51.

    Article  PubMed  CAS  Google Scholar 

  68. Haag M, Magada NO, Claassen N, Bohmer LH, Kruger MC. Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption. Prostaglandins Leukot Essent Fatty Acids. 2003;68:423–9.

    Article  PubMed  CAS  Google Scholar 

  69. Leonard F, Haag M, Kruger MC. Modulation of intestinal vitamin D receptor availability and calcium ATPase activity by essential fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2001;64:147–50.

    Article  PubMed  CAS  Google Scholar 

  70. Van Papendorp DH, Coetzer H, Kruger MC. Biochemical profile of osteoporotic patients on essential fatty acid supplementation. Nutr Res. 1995;15:325–34.

    Article  Google Scholar 

  71. Kruger MC, de Winter R, Van Papendorp DH, Gericke GJ. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin Exp Res. 1998;10:385–94.

    CAS  Google Scholar 

  72. Salari P, Rezaie A, Larijani B, Abdollahi M. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit. 2008;14(3):RA37–44.

    PubMed  CAS  Google Scholar 

  73. Martin-Bautista E, Muñoz-Torres M, Fonolla J, Quesada M, Poyatos A, Lopez-Huertas E. Improvement of bone formation biomarkers after 1-year consumption with milk fortified with eicosapentaenoic acid, docosahexaenoic acid, oleic acid, and selected vitamins. Nutr Res. 2010;30:320–6.

    Article  PubMed  CAS  Google Scholar 

  74. Appleton KM, Fraser WD, Rogers PJ, Ness AR, Tobias JH. Supplementation with a low dose-moderate dose of n-3 long chain PUFA has no short-term effect on bone resorption in human adults. Br J Nutr. 2011;105:1145–9.

    Article  PubMed  CAS  Google Scholar 

  75. Tartibian B, Maleki BH, Kanaley J, Sadeghi K. Long-term aerobic exercise and omega-3 supplementation modulate osteoporosis through inflammatory mechanisms in post-menopausal women: a randomized, repeated measures study. Nutr Metab. 2011;8:71–83.

    Article  CAS  Google Scholar 

  76. Järvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Kärkkäinen M, Salovaara K, et al. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr. 2012;66:496–503.

    Article  PubMed  Google Scholar 

  77. Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp Biol Med. 2007;232:1275–88.

    Article  CAS  Google Scholar 

  78. Bolton-Smith C, Woodward M. Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. Eur J Clin Nutr. 1997;51:619–24.

    Article  PubMed  CAS  Google Scholar 

  79. Weiss LA, Barrett-Connor E, von Muhlen D. Ration of n-6 to n-3 fatty acids and bone mineral density in older adults. The Rachero Bernardo study. Am J Clin Nutr. 2005;81:934–8.

    PubMed  CAS  Google Scholar 

  80. Giltay EJ, Gooren LJG, Toorians A, Katan MB, Zock PL. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr. 2004;80:1167–74.

    PubMed  CAS  Google Scholar 

  81. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7:134–9.

    Article  PubMed  Google Scholar 

  82. Miggiano GA, Gagliardi L. Diet, nutrition and bone health. Clin Ther. 2005;156:47–56.

    CAS  Google Scholar 

  83. Kruger MC, Coetzee M, Haag M, Weiler H. Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone. Prog Lipid Res. 2010;49:439–49.

    Article  Google Scholar 

  84. Bomba A, Nemcová R, Gancarciková S, Herich R, Pisti J, Révajová V, et al. The influence of omega-3 polyunsaturated fatty acids (ometa-3 pufa) on lactobacilli adhesion to the intestinal mucosa and on immunity in gnotobiotic piglets. Berl Munch Tierarztl Wochenschr. 2003;116(7–8):312–6.

    PubMed  CAS  Google Scholar 

  85. Andersen AD, Mølbak L, Michaelsen KF, Lauritzen L. Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation. J Pediatr Gastroenterol Nutr. 2011;53(3):303–9.

    Article  PubMed  CAS  Google Scholar 

  86. Nielsen S, Nielsen DS, Lauritzen L, Jakobsen M, Michaelsen KF. Impact of diet on the intestinal microbiota in 10-month-old infants. J Pediatr Gastroenterol Nutr. 2007;44:613–8.

    Article  PubMed  CAS  Google Scholar 

  87. Kankaanpää PE, Salminen SJ, Isolauri E, Lee YK. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett. 2001;194:149–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlena C. Kruger PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kruger, M.C., Coetzee, M. (2013). Prebiotics, Probiotics, Polyunsaturated Fatty Acids, and Bone Health. In: Burckhardt, P., Dawson-Hughes, B., Weaver, C. (eds) Nutritional Influences on Bone Health. Springer, London. https://doi.org/10.1007/978-1-4471-2769-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2769-7_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2768-0

  • Online ISBN: 978-1-4471-2769-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics