Skip to main content

Renal Diseases and Bone: Emerging Therapeutics

  • Chapter
  • First Online:
Bone-Metabolic Functions and Modulators

Part of the book series: Topics in Bone Biology ((TBB,volume 7))

  • 1058 Accesses

Abstract

Disorders of bone metabolism occur relatively early in the presence of chronic kidney disease (CKD). They become more prevalent as kidney function declines and are common in dialysis patients. A new designation, chronic kidney disease–mineral and bone disorders (CKD-MBD), has been advocated by the Kidney Disease: Improving Global Outcomes (KDIGO) group to broadly describe the interrelationship of the disorders that involve mineral metabolism, skeletal disorders, and soft tissue calcification associated with CKD [79]. In addition to characterizing the effect of renal diseases on skeletal homeostasis, we will also discuss both current and emerging strategies aimed at correcting the biochemical parameters that lead to the resultant mineral and bone disorders. The clinician must recognize that the approach to a patient with CKD-MBD involves multiple considerations and interventions; there is no one pharmacologic therapy that will independently correct the disordered mineral metabolism of CKD. This chapter will concentrate on the skeletal disorders associated with metabolic acidosis [45, 46].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:396–9.

    PubMed  CAS  Google Scholar 

  2. Barreto DV, Fd B, de Carvalho AB, Cuppari L, Draibe SA, Dalboni MA, Moyses RM, Neves KR, Jorgetti V, Miname M, Santos RD, Canziani ME. Phosphate binder impact on bone remodeling and coronary calcification – results from the BRiC study. Nephron Clin Pract. 2008;110:c273–283283.

    PubMed  CAS  Google Scholar 

  3. Barzel US. The role of bone in acid base metabolism. In: Barzel US, editor. Osteoporosis. New York: Grune and Stratton; 1970. p. 199.

    Google Scholar 

  4. Barzel US. Osteoporosis II: an overview. In: Barzel US, editor. Osteoporosis II. New York: Grune and Stratton; 1976. p. 1.

    Google Scholar 

  5. Barzel US. The skeleton as an ion exchange system: Implications for the role of acid–base imbalance in the genesis of osteoporosis. J Bone Miner Res. 1995;10:1431–6.

    PubMed  CAS  Google Scholar 

  6. Beck N, Webster SK. Effects of acute metabolic acidosis on parathyroid hormone action and calcium mobilization. Am J Physiol. 1976;230:127–31.

    PubMed  CAS  Google Scholar 

  7. Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.

    PubMed  CAS  Google Scholar 

  8. Bettice JA. Skeletal carbon dioxide stores during metabolic acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 16). 1984;247:F326–30.

    CAS  Google Scholar 

  9. Bettice JA, Gamble Jr JL. Skeletal buffering of acute metabolic acidosis. Am J Physiol. 1975;229:1618–24.

    PubMed  CAS  Google Scholar 

  10. Bishop MC, Ledingham JG. Alkali treatment of renal osteodystrophy. Br Med J. 1972;4:529.

    PubMed  CAS  Google Scholar 

  11. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–17.

    PubMed  CAS  Google Scholar 

  12. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    PubMed  CAS  Google Scholar 

  13. Block GA, Spiegel DM, Erlich J, Mehta R, Lindbergh J, Dreisbach A, Raggi P. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68:1815–24.

    PubMed  CAS  Google Scholar 

  14. Block GA, Zaun D, Smits G, Persky M, Brillhart S, Nieman K, Liu J, St Peter WL. Cinacalcet hydrochloride treatment significantly improves all-cause and cardiovascular survival in a large cohort of hemodialysis patients. Kidney Int. 2010;78:578–89.

    PubMed  CAS  Google Scholar 

  15. Brown EM. Clinical lessons from the calcium-sensing receptor. Nat Clin Pract Endocrinol Metab. 2007;3:122–33.

    PubMed  CAS  Google Scholar 

  16. Brown EM. Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR). Biochem Pharmacol. 2010;80:297–307.

    PubMed  CAS  Google Scholar 

  17. Bushinsky DA. Net proton influx into bone during metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 23). 1988;254:F306–10.

    CAS  Google Scholar 

  18. Bushinsky DA. Net calcium efflux from live bone during chronic metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 25). 1989;256:F836–42.

    CAS  Google Scholar 

  19. Bushinsky DA. Metabolic acidosis. In: Jacobson HR, Striker GE, Klahr S, editors. The principles and practice of nephrology. St. Louis: Mosby; 1995. p. 924–32.

    Google Scholar 

  20. Bushinsky DA. Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory acidosis. Am J Physiol Cell Physiol. 1995;268:C80–8.

    CAS  Google Scholar 

  21. Bushinsky DA. The contribution of acidosis to renal osteodystrophy. Kidney Int. 1995;47:1816–32.

    PubMed  CAS  Google Scholar 

  22. Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol (Renal Fluid Electrolyte Physiol 40). 1996;271:F216–22.

    CAS  Google Scholar 

  23. Bushinsky DA. Bone disease in moderate renal failure: cause, nature and prevention. Annu Rev Med. 1997;48:167–76.

    PubMed  CAS  Google Scholar 

  24. Bushinsky DA. Renal osteodystrophy. Philadelphia: Lippincott-Raven; 1998. p. 1–514.

    Google Scholar 

  25. Bushinsky DA. Acid–base imbalance and the skeleton. Eur J Nutr. 2001;40:238–44.

    PubMed  CAS  Google Scholar 

  26. Bushinsky DA. Acid–base balance and bone health. In: Holick MF, Dawson-Hughes B, editors. Nutrition and bone health. Totowa: Humana Press, Inc.; 2004. p. 279–304.

    Google Scholar 

  27. Bushinsky DA. Disorders of calcium and phosphorus homeostasis. In: Greenberg A, editor. Primer on kidney diseases. 4th ed. San Diego: Academic; 2005. p. 120–30.

    Google Scholar 

  28. Bushinsky DA, Chabala JM, Gavrilov KL, Levi-Setti R. Effects of in vivo metabolic acidosis on midcortical bone ion composition. Am J Physiol Renal Physiol. 1999;277:F813–9.

    CAS  Google Scholar 

  29. Bushinsky DA, Chabala JM, Levi-Setti R. Ion microprobe analysis of mouse calvariae in vitro: evidence for a “bone membrane”. Am J Physiol Endocrinol Metab. 1989;256:E152–8.

    CAS  Google Scholar 

  30. Bushinsky DA, Gavrilov K, Chabala JM, Featherstone JDB, Levi-Setti R. Effect of metabolic acidosis on the potassium content of bone. J Bone Miner Res. 1997;12:1664–71.

    PubMed  CAS  Google Scholar 

  31. Bushinsky DA, Gavrilov K, Stathopoulos VM, Krieger NS, Chabala JM, Levi-Setti R. Effects of osteoclastic resorption on bone surface ion composition. Am J Physiol Cell Physiol. 1996;271:C1025–31.

    CAS  Google Scholar 

  32. Bushinsky DA, Goldring JM, Coe FL. Cellular contribution to pH-mediated calcium flux in neonatal mouse calvariae. Am J Physiol (Renal Fluid Electrolyte Physiol 17). 1985;248:F785–9.

    CAS  Google Scholar 

  33. Bushinsky DA, Krieger NS, Geisser DI, Grossman EB, Coe FL. Effects of pH on bone calcium and proton fluxes in vitro. Am J Physiol (Renal Fluid Electrolyte Physiol 14). 1983;245:F204–9.

    CAS  Google Scholar 

  34. Bushinsky DA, Lam BC, Nespeca R, Sessler NE, Grynpas MD. Decreased bone carbonate content in response to metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 34). 1993;265:F530–6.

    CAS  Google Scholar 

  35. Bushinsky DA, Lechleider RJ. Mechanism of proton-induced bone calcium release: calcium carbonate-dissolution. Am J Physiol (Renal Fluid Electrolyte Physiol 22). 1987;253:F998–1005.

    CAS  Google Scholar 

  36. Bushinsky DA, Levi-Setti R, Coe FL. Ion microprobe determination of bone surface elements: effects of reduced medium pH. Am J Physiol (Renal Fluid Electrolyte Physiol 19). 1986;250:F1090–7.

    CAS  Google Scholar 

  37. Bushinsky DA, Nilsson EL. Additive effects of acidosis and parathyroid hormone on mouse osteoblastic and osteoclastic function. Am J Physiol Cell Physiol. 1995;269:C1364–70.

    CAS  Google Scholar 

  38. Bushinsky DA, Parker WR, Alexander KM, Krieger NS. Metabolic, but not respiratory, acidosis increases bone PGE2 levels and calcium release. Am J Physiol (Renal Fluid Electrolyte Physiol). 2001;281:F1058–66.

    CAS  Google Scholar 

  39. Bushinsky DA, Sessler NE. Critical role of bicarbonate in calcium release from bone. Am J Physiol (Renal Fluid Electrolyte Physiol 32). 1992;263:F510–5.

    CAS  Google Scholar 

  40. Bushinsky DA, Sessler NE, Glena RE, Feather­stone JDB. Proton-induced physicochemical calcium release from ceramic apatite disks. J Bone Miner Res. 1994;9:213–20.

    PubMed  CAS  Google Scholar 

  41. Bushinsky DA, Sessler NE, Krieger NS. Greater unidirectional calcium efflux from bone during metabolic, compared with respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 31). 1992;262:F425–31.

    CAS  Google Scholar 

  42. Bushinsky DA, Smith SB, Gavrilov KL, Gavrilov LF, Levi-Setti R. Chronic acidosis-induced alteration in bone bicarbonate and phosphate. Am J Physiol Renal Physiol. 2003;285:F532–9.

    PubMed  Google Scholar 

  43. Bushinsky DA, Smith SB, Gavrilov KL, Gavrilov LF, Li J, Levi-Setti R. Acute acidosis-induced alteration in bone bicarbonate and phosphate. Am J Physiol Renal Physiol. 2002;283:F1091–7.

    PubMed  Google Scholar 

  44. Bushinsky DA, Wolbach W, Sessler NE, Mogilevsky R, Levi-Setti R. Physicochemical effects of acidosis on bone calcium flux and surface ion composition. J Bone Miner Res. 1993;8:93–102.

    PubMed  CAS  Google Scholar 

  45. Bushinsky DA. Acidosis and bone. In: Burckhardt P, Dawson-Hughes B, Weaver CM, editors. Nutritional influences on bone health. 1st ed. London: Springer; 2010. p. 161–7.

    Google Scholar 

  46. Bushinsky DA. Acidosis and renal bone disease. In: Olgaard K, Salusky IB, Silver J, editors. The spectrum of mineral and bone disorders in chronic kidney disease. 2nd ed. New York: Oxford University Press; 2010. p. 253–65.

    Google Scholar 

  47. Bushinsky DA. Contribution of intestine, bone, kidney, and dialysis to extracellular fluid calcium content. Clin J Am Soc Nephrol. 2010;5:S12–22.

    PubMed  CAS  Google Scholar 

  48. Cantor TL. Lack of evidence for administering vitamin D analogs to kidney failure patients to improve survivability. Clin Nephrol. 2009;72:97–104.

    PubMed  CAS  Google Scholar 

  49. Canzanello VJ, Bodvarsson M, Kraut JA, Johns CA, Slatopolsky E, Madias NE. Effect of chronic respiratory acidosis on urinary calcium excretion in the dog. Kidney Int. 1990;38:409–16.

    PubMed  CAS  Google Scholar 

  50. Chabala JM, Levi-Setti R, Bushinsky DA. Alteration in surface ion composition of cultured bone during metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 30). 1991;261:F76–84.

    CAS  Google Scholar 

  51. Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62:245–52.

    PubMed  CAS  Google Scholar 

  52. Chertow GM, Pupim LB, Block GA, Correa-Rotter R, Drueke TB, Floege J, Goodman WG, London GM, Mahaffey KW, Moe SM, Wheeler DC, Albizem M, Olson K, Klassen P, Parfrey P. Evaluation of cinacalcet therapy to lower cardiovascular events (EVOLVE): rationale and design overview. Clin J Am Soc Nephrol. 2007;2:898–905.

    PubMed  CAS  Google Scholar 

  53. Cochran M, Wilkinson R. Effect of correction of metabolic acidosis on bone mineralization rates in patients with renal osteomalacia. Nephron. 1975;15:98–110.

    PubMed  CAS  Google Scholar 

  54. Connor A. Novel therapeutic agents and strategies for the management of chronic kidney disease mineral and bone disorder. Postgrad Med J. 2009;85:274–9.

    PubMed  CAS  Google Scholar 

  55. Cunningham J, Danese M, Olson K, Klassen P, Chertow GM. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68:1793–800.

    PubMed  CAS  Google Scholar 

  56. Danese MD, Belozeroff V, Smirnakis K, Rothman KJ. Consistent control of mineral and bone disorder in incident hemodialysis patients. Clin J Am Soc Nephrol. 2008;3:1423–9.

    PubMed  Google Scholar 

  57. Domrongkitchaiporn S, Pongsakul C, Stitchantrakul W, Sirikulchayanonta V, Ongphiphadhanakul B, Radinahamed P, Karnsombut P, Kunkitti N, ­Ruang-raksa C, Rajatanavin R. Bone mineral density and histology in distal renal tubular acidosis. Kidney Int. 2001;59:1086–93.

    PubMed  CAS  Google Scholar 

  58. Domrongkitchaiporn S, Pongskul C, Sirikulchayanonta V, Stitchantrakul W, Leeprasert V, Ongphiphadhanakul B, Radinahamed P, Rajatanavin R. Bone histology and bone mineral density after correction of acidosis in distal renal tubular acidosis. Kidney Int. 2002;62:2160–6.

    PubMed  CAS  Google Scholar 

  59. Drueke TB. Klotho, FGF23, and FGF receptors in chronic kidney disease: a yin-yang situation? Kidney Int. 2010;78:1057–60.

    PubMed  Google Scholar 

  60. Elder G. Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res. 2002;17:2094–105.

    PubMed  CAS  Google Scholar 

  61. Fenton TR, Eliasziw M, Lyon AW, Tough SC, Hanley DA. Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. Am J Clin Nutr. 2008;88:1159–66.

    PubMed  CAS  Google Scholar 

  62. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res. 2009;24(11):1835–40.

    PubMed  CAS  Google Scholar 

  63. Frassetto L, JrRC M, Sebastian A. Long-term persistence of the urine calcium-lowering effect of potassium bicarbonate in postmenopausal women. J Clin Endocrinol Metab. 2005;90:831–4.

    PubMed  CAS  Google Scholar 

  64. Frassetto L, Sebastian A. Age and systemic acid–base equilibrium: analysis of published data. J Gerontol A Biol Sci Med Sci. 1996;51:B91–9.

    PubMed  CAS  Google Scholar 

  65. Frassetto LA, Morris Jr RC, Sebastian A. Effect of age on blood acid–base composition in adult humans: role of age-related renal functional decline. Am J Physiol (Renal Fluid Electrolyte Physiol 40). 1996;271:F1114–22.

    CAS  Google Scholar 

  66. Frick KK, Bushinsky DA. Chronic metabolic acidosis reversibly inhibits extracellular matrix gene expression in mouse osteoblasts. Am J Physiol Renal Physiol. 1998;275:F840–7.

    CAS  Google Scholar 

  67. Frick KK, Bushinsky DA. In vitro metabolic and respiratory acidosis selectively inhibit osteoblastic matrix gene expression. Am J Physiol Renal Physiol. 1999;277:F750–5.

    CAS  Google Scholar 

  68. Frick KK, Bushinsky DA. Metabolic acidosis stimulates RANK ligand RNA expression in bone through a cyclooxygenase dependent mechanism. J Bone Miner Res. 2003;18:1317–25.

    PubMed  CAS  Google Scholar 

  69. Frick KK, Jiang L, Bushinsky DA. Acute metabolic acidosis inhibits the induction of osteoblastic egr-1 and type 1 collagen. Am J Physiol Cell Physiol. 1997;272:C1450–6.

    CAS  Google Scholar 

  70. Frick KK, LaPlante K, Bushinsky DA. RANK ligand and TNF-α mediate acid-induced bone calcium efflux in vitro. Am J Physiol Renal Physiol. 2005;289:F1005–11.

    PubMed  CAS  Google Scholar 

  71. Frick KK, Krieger NS, Nehrke K, Bushinsky DA. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J Bone Miner Res. 2009;24:305–13.

    PubMed  CAS  Google Scholar 

  72. Goodman AD, Lemann Jr J, Lennon EJ, Relman AS. Production, excretion, and net balance of fixed acid in patients with renal acidosis. J Clin Invest. 1965;44:495–506.

    PubMed  CAS  Google Scholar 

  73. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H, Wolf M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–92.

    PubMed  Google Scholar 

  74. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116:2062–72.

    PubMed  CAS  Google Scholar 

  75. Institute of Medicine (IOM). Dietary reference intakes for calcium and vitamin D. Washington, D.C.: National Academies Press; 2010.

    Google Scholar 

  76. Kalantar-Zadeh K, Kuwae N, Regidor DL, Kovesdy CP, Kilpatrick RD, Shinaberger CS, McAllister CJ, Budoff MJ, Salusky IB, Kopple JD. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006;70:771–80.

    PubMed  CAS  Google Scholar 

  77. Kaneko TM, Foley RN, Gilbertson DT, Collins AJ. Clinical epidemiology of long-bone fracture in patients receiving hemodialysis. Clin Orthop Relat Res. 2007;457:188–93.

    PubMed  Google Scholar 

  78. Kaye M, Frueth AJ, Silverman M. A study of vertebral bone powder from patients with chronic renal failure. J Clin Invest. 1970;49:442–53.

    PubMed  CAS  Google Scholar 

  79. Kidney Disease: Improving Global Outcomes CKD-MBD work group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention and treatment of Chronic Kidney-Disease-Mineral Bone Disorder (CKD-MBD). Kidney Int. 2009;79:S1–130.

    Google Scholar 

  80. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis. 2005;45:978–93.

    PubMed  CAS  Google Scholar 

  81. Kraut JA, Madias NE. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol. 2010;6:274–85.

    PubMed  CAS  Google Scholar 

  82. Krieger NS, Frick KK, Bushinsky DA. Cortisol inhibits acid-induced bone resorption in vitro. J Am Soc Nephrol. 2002;13:2534–9.

    PubMed  CAS  Google Scholar 

  83. Krieger NS, Hefley TJ. Differential effects of parathyroid hormone on protein phosphorylation in two osteoblast-like cell populations isolated from neonatal mouse calvaria. Calcif Tissue Int. 1989;44:192–9.

    PubMed  CAS  Google Scholar 

  84. Krieger NS, Parker WR, Alexander KM, Bushinsky DA. Prostaglandins regulate acid-induced cell-mediated bone resorption. Am J Physiol Renal Physiol. 2000;279:F1077–82.

    PubMed  CAS  Google Scholar 

  85. Krieger NS, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol (Renal Fluid Electrolyte Physiol 31). 1992;262:F442–8.

    CAS  Google Scholar 

  86. Krieger NS, Frick KK, LaPlante SK, Michalenka A, Bushinsky DA. Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro. J Bone Miner Res. 2007;22:907–17.

    PubMed  CAS  Google Scholar 

  87. Kurtz I, Maher T, Hulter HN, Schambelan M, Sebastian A. Effect of diet on plasma acid–base composition in normal humans. Kidney Int. 1983;24:670–80.

    PubMed  CAS  Google Scholar 

  88. Lau K, Rodriquez Nichols F, Tannen RL. Renal excretion of divalent ions in response to chronic acidosis: evidence that systemic pH is not the controlling variable. J Lab Clin Med. 1987;109:27–33.

    PubMed  CAS  Google Scholar 

  89. Lefebvre A, de Vernejoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C. Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int. 1989;36:1112–8.

    PubMed  CAS  Google Scholar 

  90. Lemann Jr J. The urinary excretion of calcium, magnesium and phosphorus. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Kelseyville: American Society for Bone and Mineral Research; 1990. p. 36–9.

    Google Scholar 

  91. Lemann Jr J, Gray RW, Pleuss JA. Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney Int. 1989;35:688–95.

    PubMed  Google Scholar 

  92. Lemann Jr J, Adams ND, Wilz DR, Brenes LG. Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int. 2000;58:1267–77.

    PubMed  CAS  Google Scholar 

  93. Lemann Jr J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol Renal Physiol. 2003;285:F811–32.

    PubMed  CAS  Google Scholar 

  94. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, Andress DL. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2006;71:31–8.

    PubMed  Google Scholar 

  95. Litzow JR, Lemann Jr J, Lennon EJ. The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. J Clin Invest. 1967;46:280–6.

    PubMed  CAS  Google Scholar 

  96. Ludwig MG, Vanek M, Gueirine D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K. Proton-sensing G-protein-coupled receptors. Nature. 2003;425:93–8.

    PubMed  CAS  Google Scholar 

  97. McSherry E. Acidosis and growth in nonuremic renal disease. Kidney Int. 1978;14:349–54.

    PubMed  CAS  Google Scholar 

  98. Mitch WE. Metabolic and clinical consequences of metabolic acidosis. J Nephrol. 2006;19 suppl 9:S70–7575.

    PubMed  CAS  Google Scholar 

  99. Mittalhenkle A, Gillen DL, Steigbigel RT. Increased risk of mortality associated with hip fracture in the dialysis population. Am J Kidney Dis. 2004;44:672–9.

    PubMed  Google Scholar 

  100. Miyazaki Y, Setoguchi M, Yoshida S, Higuchi Y, Akizuki S, Yamamoto S. The mouse osteopontin gene. Expression in monocytic lineages and complete nucleotide sequence. J Biol Chem. 1990;265:14432–8.

    PubMed  CAS  Google Scholar 

  101. Mora Palma FJ, Ellis HA, Cook DB, Dewar JH, Ward MK, Wilkinson R, Kerr DNS. Osteomalacia in patients with chronic renal failure before dialysis or transplantation. Q J Med. 1983;52:332–48.

    PubMed  CAS  Google Scholar 

  102. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42:S1–201.

    Google Scholar 

  103. Neuman WF, Neuman MW. The chemical dynamics of bone mineral. Chicago: University Chicago Press; 1958.

    Google Scholar 

  104. Ott SM. Review article: bone density in patients with chronic kidney disease stages 4–5. Nephrology (Carlton). 2009;14:395–403.

    Google Scholar 

  105. Palmer SC, McGregor DO, Macaskill P, Craig JC, Elder GJ, Strippoli GF. Meta-analysis: vitamin D compounds in chronic kidney disease. Ann Intern Med. 2007;147:840–53.

    PubMed  Google Scholar 

  106. Pellegrino ED, Blitz RM. The composition of human bone in uremia. Medicine. 1965;44:397–418.

    PubMed  CAS  Google Scholar 

  107. Pellegrino ED, Blitz RM, Letteri JM. Inter-relationships of carbonate, phosphate, monohydrogen phosphate, calcium, magnesium, and sodium in uraemic bone: comparison of dialyzed and non-dialyzed patients. Clin Sci Mol Med. 1977;53:307–16.

    PubMed  CAS  Google Scholar 

  108. Pilbeam CC, Kawaguchi H, Hakeda Y, Voznesensky O, Alander CB, Raisz LG. Differential regulation of the inducible and constitutive prostaglandin endoperoxide synthase in osteoblastic MC3T3-E1 cells. J Biol Chem. 1993;268:25643–9.

    PubMed  CAS  Google Scholar 

  109. Qazi RA, Martin KJ. Vitamin D in kidney disease: pathophysiology and the utility of treatment. Endocrinol Metab Clin North Am. 2010;39:355–63.

    PubMed  CAS  Google Scholar 

  110. Quarles DL. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest. 2009;118:3820–8.

    Google Scholar 

  111. Qunibi W, Moustafa M, Muenz LR, He DY, Kessler PD, Diaz-Buxo JA, Budoff M. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the calcium acetate Renagel evaluation-2 (CARE-2) study. Am J Kidney Dis. 2008;51:952–65.

    PubMed  CAS  Google Scholar 

  112. Raisz LG. Physiologic and pathologic roles of prostaglandins and other eicosanoids in bone metabolism. J Nutr. 1995;125:2024S–7.

    PubMed  CAS  Google Scholar 

  113. Raisz LG. Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartilage. 1999;7:419–21.

    PubMed  CAS  Google Scholar 

  114. Raisz LG, Fall PM, Petersen DN, Lichtler A, Kream BE. Prostaglandin E2 inhibits alpha 1(1) procollagen gene transcription and promoter activity in the immortalized rat osteoblastic clonal cell line Py1a. Mol Endocrinol. 1993;7:17–22.

    PubMed  CAS  Google Scholar 

  115. Rizzoli R, Bonjour JP. Dietary protein and bone health. J Bone Miner Res. 2004;19:527–31.

    PubMed  Google Scholar 

  116. Sakhaee K, Nicar M, Hill K, Pak CY. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int. 1983;24:348–52.

    PubMed  CAS  Google Scholar 

  117. Schaefer KE, Pasquale S, Messier AA, Shea M. Phasic changes in bone CO2 fractions, calcium, and phosphorus during chronic hypercapnia. J Appl Physiol. 1980;48:802–11.

    PubMed  CAS  Google Scholar 

  118. Schwartz WB, Hall III PW, Hays RM, Relman AS. On the mechanism of acidosis in chronic renal disease. J Clin Invest. 1959;38:39–52.

    PubMed  CAS  Google Scholar 

  119. Schwartz WB, Relman AS. Acidosis in renal disease. N Eng J Med. 1957;256:1184–6.

    CAS  Google Scholar 

  120. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris Jr RC. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330:1776–81.

    PubMed  CAS  Google Scholar 

  121. Shoben AB, Rudser KD, de Boer IH, Young B, Kestenbaum B. Association of oral calcitriol with improved survival in nondialyzed CKD. J Am Soc Nephrol. 2008;19:1613–9.

    PubMed  CAS  Google Scholar 

  122. Smith WL. Prostanoid biosynthesis and mechanisms of action. Am J Physiol. 1992;263:F181–91.

    PubMed  CAS  Google Scholar 

  123. Sprague SM, Krieger NS, Bushinsky DA. Aluminum inhibits bone nodule formation and calcification in vitro. Am J Physiol (Renal Fluid Electrolyte Physiol 33). 1993;264:F882–90.

    CAS  Google Scholar 

  124. Sprague SM, Krieger NS, Bushinsky DA. Greater inhibition of in vitro bone mineralization with metabolic than respiratory acidosis. Kidney Int. 1994;46:1199–206.

    PubMed  CAS  Google Scholar 

  125. St Peter WL, Li S, Liu J, Gilbertson DT, Arneson TJ, Collins AJ. Effects of monthly dose and regular dosing of intravenous active vitamin D use on mortality among patients undergoing hemodialysis. Pharmacotherapy. 2009;29:154–64.

    PubMed  Google Scholar 

  126. Stein GS, Lian JB, Stein JL, van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation (Review). Physiol Rev. 1996;76:593–629.

    PubMed  CAS  Google Scholar 

  127. Sugiura S, Inaguma D, Kitagawa A, Murata M, Kamimura Y, Sendo S, Hamaguchi K, Nagaya H, Tatematsu M, Kurata K, Yuzawa Y, Matsuo S. Administration of alfacalcidol for patients with predialysis chronic kidney disease may reduce cardiovascular disease events. Clin Exp Nephrol. 2010;14:43–50.

    PubMed  CAS  Google Scholar 

  128. Suki WN, Zabaneh R, Cangiano JL, Reed J, Fischer D, Garrett L, Ling BN, Chasan-Taber S, Dillon MA, Blair AT, Burke SK. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72:1130–7.

    PubMed  CAS  Google Scholar 

  129. Takahashi Y, Tanaka A, Nakamura T, Fukuwatari T, Shibata K, Shimada N, Ebihara I, Koide H. Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int. 2004;65:1099–104.

    PubMed  CAS  Google Scholar 

  130. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349:446–56.

    PubMed  CAS  Google Scholar 

  131. Teng M, Wolf M, Ofsthun MN, Lazarus JM, Hernan MA, Camargo Jr CA, Thadhani R. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol. 2005;16:1115–25.

    PubMed  CAS  Google Scholar 

  132. Tentori F, Hunt WC, Stidley CA, Rohrscheib MR, Bedrick EJ, Meyer KB, Johnson HK, Zager PG. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int. 2006;70:1858–65.

    PubMed  CAS  Google Scholar 

  133. Tentori F, Albert JM, Young EW, Blayney MJ, Robinson BM, Pisoni RL, Akiba T, Greenwood RN, Kimata N, Levin NW, Piera LM, Saran R, Wolfe RA, Port FK. The survival advantage for haemodialysis patients taking vitamin D is questioned: findings from the dialysis outcomes and practice patterns study. Nephrol Dial Transplant. 2009;24:963–72.

    PubMed  CAS  Google Scholar 

  134. Tomura H, Mogi C, Sato K, Okajima F. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal. 2005;17:1466–76.

    PubMed  CAS  Google Scholar 

  135. Uhlig K, Berns JS, Kestenbaum B, Kumar R, Leonard MB, Martin KJ, Sprague SM, Goldfarb S. KDOQI US commentary on the 2009 KDIGO clinical practice guideline for the diagnosis, evaluation, and treatment of CKD-mineral and bone disorder (CKD-MBD). Am J Kidney Dis. 2010;55:773–99.

    PubMed  Google Scholar 

  136. Wada M, Nagano N, Furuya Y, Chin J, Nemeth EF, Fox J. Calcimimetic NPS R-568 prevents parathyroid hyperplasia in rats with severe secondary hyperparathyroidism. Kidney Int. 2000;57:50–8.

    PubMed  CAS  Google Scholar 

  137. Widdowson EM, Dickerson JWT. Chemical composition of the body. In: Comar CL, Bronner F, editors. Mineral metabolism. New York: Academic Press, Inc.; 1964. p. 1–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Bushinsky M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Krieger, N.S., Bushinsky, D.A. (2012). Renal Diseases and Bone: Emerging Therapeutics. In: Bronner, F., Farach-Carson, M., Roach, H. (eds) Bone-Metabolic Functions and Modulators. Topics in Bone Biology, vol 7. Springer, London. https://doi.org/10.1007/978-1-4471-2745-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2745-1_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2744-4

  • Online ISBN: 978-1-4471-2745-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics