Skip to main content

Right Ventricle and High Altitude

  • Chapter
  • First Online:
The Right Heart

Abstract

At high altitude, as hypoxia induces pulmonary vasoconstriction and increases ipulmonary arterial pressure, right ventricular (RV) function will be affected. The right ventricular function may be affected directly by the hypoxaemic challenge or indirectly through a pressure overload due, in turn to changes in the pulmonary circulation. Both animal and human studies show that moderate or transient hypoxia results in adaptive changes in right ventricle that are reversible with re-exposure to normoxic conditions and RV dysfunction is mainly due to mechanical overload from the pulmonary circulation. When hypoxia is more severe or more prolonged, it may directly impact ventricular diastolic or systolic function through mechanisms that remain to be unraveled. Chronic exposure to hypoxia in high-altitude natives suffering from Monge’s disease may lead to RV hypertrophy, RV failure and overall cardiac failure. The adrenergic system may be involved, as well as HIF, PKC or phospholamban. More studies using the latest imaging technology should give us a better understanding of RV systolic and diastolic function in humans exposed to altitude hypoxia including acute, chronic or chronic intermittent hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strniskova M, Ravingerova T, Neckar J, Kolar F, Pastorekova S, Barancik M. Changes in the expression and/or activation of regulatory proteins in rat hearts adapted to chronic hypoxia. Gen Physiol Biophys. 2006;25(1):25–41.

    CAS  PubMed  Google Scholar 

  2. Deindl E, Kolar F, Neubauer E, Vogel S, Schaper W, Ostadal B. Effect of intermittent high altitude hypoxia on gene expression in rat heart and lung. Physiol Res. 2003;52(2):147–57.

    CAS  PubMed  Google Scholar 

  3. El Hasnaoui-Saadani R, Marchant D, Pichon A, Escoubet B, Pezet M, Hilfiker-Kleiner D, Hoch M, Pham I, Quidu P, Voituron N, Journé C, Richalet JP, Favret F. Epo deficiency alters cardiac adaptation to chronic hypoxia. Respir Physiol Neurobiol. 2013;186:146–54.

    Article  PubMed  Google Scholar 

  4. Brown RD, Li M, Sullivan TM, Henry LN, Crossno Jr JT, Long CS, Garrington TP, Stenmark KR. MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2013;304:H269–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jin Y, Calvert TJ, Chen B, Chicoine LG, Joshi M, Bauer JA, Liu Y, Nelin LD. Mice deficient in Mkp-1 develop more severe pulmonary hypertension and greater lung protein levels of arginase in response to chronic hypoxia. Am J Physiol Heart Circ Physiol. 2010;298(5):H1518–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hoch M, Fischer P, Stapel B, Missol-Kolka E, Sekkali B, Scherr M, Favret F, Braun T, Eder M, Schuster-Gossler K, Gossler A, Hilfiker A, Balligand JL, Drexler H, Hilfiker-Kleiner D. Erythropoietin preserves the endothelial differentiation capacity of cardiac progenitor cells and reduces heart failure during anticancer therapies. Cell Stem Cell. 2011;9(2):131–43.

    Article  CAS  PubMed  Google Scholar 

  7. Kacimi R, Richalet JP, Crozatier B. Hypoxia-induced differential modulation of adenosinergic and muscarinic receptors in rat heart. J Appl Physiol. 1993;75(3):1123–8.

    CAS  PubMed  Google Scholar 

  8. León-Velarde F, Richalet JP, Chavez JC, Kacimi R, Rivera-Chira M, Palacios JA, Clark D. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean guinea pig heart. J Appl Physiol. 1996;81:2229–34.

    PubMed  Google Scholar 

  9. Pichon A, Zhenzhong B, Marchant D, Jin G, Voituron N, Haixia Y, Favret F, Richalet JP, Ge R-L. Cardiac adaptation to high altitude in the plateau pika (Ochotona curzoniae). Physiol Rep. 2013;1(2):e00032. doi: 10.1002/phy2.32. Epub 2013 Jul 18.

    Google Scholar 

  10. Kacimi R, Moalic JM, Aldashev A, Vatner DE, Richalet JP, Crozatier B. Differential regulation of G protein expression in rat hearts exposed to chronic hypoxia. Am J Physiol. 1995;269:H1865–73.

    CAS  PubMed  Google Scholar 

  11. Richalet JP, Le-Trong JL, Rathat C, Merlet P, Bouissou P, Kéromès A, Veyrac P. Reversal of hypoxia-induced decrease in human cardiac response to isoproterenol infusion. J Appl Physiol. 1989;67(2):523–7.

    CAS  PubMed  Google Scholar 

  12. Favret F, Richalet JP. Exercise in hypoxia: the role of the autonomous nervous system. Respir Physiol Neurobiol. 2007;158:280–6.

    Article  PubMed  Google Scholar 

  13. Germack R, Leon-Velarde F, Valdes De La Barra R, Farias J, Soto G, Richalet JP. Effect of intermittent hypoxia on cardiovascular function, adrenoceptors and muscarinic receptors in Wistar rats. Exp Physiol. 2002;87(4):453–60.

    CAS  PubMed  Google Scholar 

  14. Komniski MS, Yakushev S, Bogdanov N, Gassmann M, Bogdanova A. Interventricular heterogeneity in rat heart responses to hypoxia: the tuning of glucose metabolism, ion gradients, and function. Am J Physiol Heart Circ Physiol. 2011;300(5):H1645–52.

    Article  CAS  PubMed  Google Scholar 

  15. Adrogue JV, Sharma S, Ngumbela K, Essop MF, Taegtmeyer H. Acclimatization to chronic hypobaric hypoxia is associated with a differential transcriptional profile between the right and left ventricle. Mol Cell Biochem. 2005;278(1–2):71–8.

    Article  CAS  PubMed  Google Scholar 

  16. Chouabe C, Ricci E, Amsellem J, Blaineau S, Dalmaz Y, Favier R, Pequignot JM, Bonvallet R. Effects of aging on the cardiac remodeling induced by chronic high-altitude hypoxia in rat. Am J Physiol Heart Circ Physiol. 2004;287(3):H1246–53.

    Article  CAS  PubMed  Google Scholar 

  17. Kolàr F, Ostàdal B. Right ventricular function in rats with hypoxic pulmonary hypertension. Pflugers Arch. 1991;419(2):121–6.

    Article  PubMed  Google Scholar 

  18. Morel OE, Buvry A, Le Corvoisier P, Tual L, Favret F, León-Velarde F, Crozatier B, Richalet JP. Effects of nifedipine-induced pulmonary vasodilatation on cardiac receptors and protein kinase C isoforms in the chronically hypoxic rat. Pflugers Arch. 2003;446(3):356–64.

    CAS  PubMed  Google Scholar 

  19. Dumas de La Roque E, Bellance N, Rossignol R, Begueret H, Billaud M, dos Santos P, Ducret T, Marthan R, Dahan D, Ramos-Barbón D, Amor-Carro Ó, Savineau JP, Fayon M. Dehydroepiandrosterone reverses chronic hypoxia/reoxygenation-induced right ventricular dysfunction in rats. Eur Respir J. 2012;40(6):1420–9.

    Article  PubMed  Google Scholar 

  20. Savineau JP, Marthan R, Dumas de la Roque E. Role of DHEA in cardiovascular diseases. Biochem Pharmacol. 2013;85(6):718–26.

    Article  CAS  PubMed  Google Scholar 

  21. Hanaoka M, Kogashi K, Droma Y, Urushihata K, Kubo K. Myocardial performance index in subjects susceptible to high-altitude pulmonary edema. Intern Med. 2011;50(24):2967–73.

    Article  PubMed  Google Scholar 

  22. Brugniaux JV, Schmitt L, Robach P, Jeanvoine H, Zimmermann H, Nicolet G, Duvallet A, Fouillot JP, Richalet JP. Living high-training low: tolerance and acclimatization in elite endurance athletes. Eur J Appl Physiol. 2006;96(1):66–77.

    Article  PubMed  Google Scholar 

  23. Güvenç TS, Erer HB, Kul S, Perinçek G, Ilhan S, Sayar N, Yıldırım BZ, Doğan C, Karabağ Y, Balcı B, Eren M. Right ventricular morphology and function in chronic obstructive pulmonary disease patients living at high altitude. Heart Lung Circ. 2013;22(1):31–7.

    Article  PubMed  Google Scholar 

  24. de Vries ST, Kleijn SA, van’t Hof AW, Snaak H, van Enst GC, Kamp O, Breeman A. Impact of high altitude on echocardiographically determined cardiac morphology and function in patients with coronary artery disease and healthy controls. Eur J Echocardiogr. 2010;11(5):446–50.

    Article  PubMed  Google Scholar 

  25. Holloway CJ, Montgomery HE, Murray AJ, Cochlin LE, Codreanu I, Hopwood N, Johnson AW, Rider OJ, Levett DZ, Tyler DJ, Francis JM, Neubauer S, Grocott MP, Clarke K, Caudwell Xtreme Everest Research Group. Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest Base Camp. FASEB J. 2011;25(2):792–6.

    Article  CAS  PubMed  Google Scholar 

  26. Richalet JP, Donoso MV, Jiménez D, Antezana AM, Hudson C, Cortès G, Osorio J, Leon A. Chilean miners commuting from sea level to 4,500 m: a prospective study. High Alt Med Biol. 2002;3(2):159–66.

    Article  PubMed  Google Scholar 

  27. Brito J, Siquès P, Leon-Velarde F, De La Cruz JJ, Lopez V, Herruzo R. Chronic intermittent hypoxia at high altitude exposure for over 12 years: assessment of hematological, cardiovascular, and renal effects. High Alt Med Biol. 2007;8(3):236–44.

    Article  PubMed  Google Scholar 

  28. Boussuges A, Molenat F, Burnet H, Cauchy E, Gardette B, Sainty JM, Jammes Y, Richalet JP. Operation Everest III (COMEX’97): modifications of cardiac function secondary to altitude-induced hypoxia: an echocardiographic and Doppler study. Am J Respir Crit Care Med. 2000;161:264–70.

    Article  CAS  PubMed  Google Scholar 

  29. Richalet JP. Operation Everest III COMEX ’97. High Alt Med Biol. 2010;11(2):121–32.

    Article  PubMed  Google Scholar 

  30. Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS. Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol. 1987;63(2):531–9.

    CAS  PubMed  Google Scholar 

  31. Suarez J, Alexander JK, Houston CS. Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol. 1987;60(1):137–42.

    Article  CAS  PubMed  Google Scholar 

  32. Hultgren HN, Miller H. Human heart weight at high altitude. Circulation. 1967;35(1):207–18.

    Article  CAS  PubMed  Google Scholar 

  33. Antezana AM, Antezana G, Aparicio O, Noriega I, Velarde FL, Richalet JP. Pulmonary hypertension in high-altitude chronic hypoxia: response to nifedipine. Eur Respir J. 1998;12(5):1181–5.

    Article  CAS  PubMed  Google Scholar 

  34. Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007;115(9):1132–46.

    Article  PubMed  Google Scholar 

  35. Leon-Velarde F, Villafuerte FC, Richalet JP. Chronic mountain sickness and the heart. Prog Cardiovasc Dis. 2010;52(6):540–9.

    Article  PubMed  Google Scholar 

  36. Naeije R, Vanderpool R. Pulmonary hypertension and chronic mountain sickness. High Alt Med Biol. 2013;14(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  37. Aparicio Otero O, Romero Gutierrez F, Harris P, Anand I. Echocardiography shows persistent thickness of the wall of the right ventricle in infants at high altitude. Cardioscience. 1991;2(1):63–9.

    CAS  PubMed  Google Scholar 

  38. Huicho L, Muro M, Pacheco A, Silva J, Gloria E, Marticorena E, Niermeyer S. Cross-sectional study of echocardiographic characteristics in healthy children living at high altitude. Am J Hum Biol. 2005;17(6):704–17.

    Article  PubMed  Google Scholar 

  39. Ge RL, Ma RY, Bao HH, Zhao XP, Qi HN. Changes of cardiac structure and function in pediatric patients with high altitude pulmonary hypertension in Tibet. High Alt Med Biol. 2009;10(3):247–52.

    Article  PubMed  Google Scholar 

  40. Huez S, Faoro V, Guénard H, Martinot JB, Naeije R. Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders. Am J Cardiol. 2009;103(11):1605–9.

    Article  PubMed  Google Scholar 

  41. Hoit BD, Dalton ND, Gebremedhin A, Janocha A, Zimmerman PA, Zimmerman AM, Strohl KP, Erzurum SC, Beall CM. Elevated pulmonary artery pressure among Amhara highlanders in Ethiopia. Am J Hum Biol. 2011;23(2):168–76.

    Article  PubMed  Google Scholar 

  42. Maignan M, Rivera-Ch M, Privat C, León-Velarde F, Richalet JP, Pham I. Pulmonary pressure and cardiac function in chronic mountain sickness patients. Chest. 2009;135(2):499–504.

    Article  PubMed  Google Scholar 

  43. Rivera-Ch M, Leon-Velarde F, Huicho L. Treatment of chronic mountain sickness: critical reappraisal of an old problem. Respir Physiol Neurobiol. 2007;158(2–3):251–65.

    Article  PubMed  Google Scholar 

  44. Richalet JP, Rivera-Ch M, Maignan M, Privat C, Pham I, Macarlupu JL, Petitjean O, León-Velarde F. Acetazolamide for Monge’s disease: efficiency and tolerance of 6-month treatment. Am J Respir Crit Care Med. 2008;177(12):1370–6.

    Article  CAS  PubMed  Google Scholar 

  45. Pichon A, Connes P, Quidu P, Marchant D, Brunet J, Levy BI, Vilar J, Safeukui I, Cymbalista F, Maignan M, Richalet JP, Favret F. Acetazolamide and chronic hypoxia: effects on haemorheology and pulmonary haemodynamics. Eur Respir J. 2012;40(6):1401–9.

    Article  CAS  PubMed  Google Scholar 

  46. Naeije R, Huez S, Lamotte M, Retailleau K, Neupane S, Abramowicz D, Faoro V. Pulmonary artery pressure limits exercise capacity at high altitude. Eur Respir J. 2010;36(5):1049–55.

    Article  CAS  PubMed  Google Scholar 

  47. Kjaergaard J, Snyder EM, Hassager C, Olson TP, Oh JK, Johnson BD, Frantz RP. Right ventricular function with hypoxic exercise: effects of sildenafil. Eur J Appl Physiol. 2007;102(1):87–95.

    Article  PubMed  Google Scholar 

  48. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99(7):675–91.

    Article  CAS  PubMed  Google Scholar 

  49. Ou LC, Smith RP. Probable strain differences of rats in susceptibilities and cardiopulmonary responses to chronic hypoxia. Respir Physiol. 1983;53(3):367–77.

    Article  CAS  PubMed  Google Scholar 

  50. Aguirre JI, Morrell NW, Long L, Clift P, Upton PD, Polak JM, Wilkins MR. Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L981–7.

    CAS  PubMed  Google Scholar 

  51. Underwood DC, Bochnowicz S, Osborn RR, Louden CS, Hart TK, Ohlstein EH, Hay DW. Chronic hypoxia-induced cardiopulmonary changes in three rat strains: inhibition by the endothelin receptor antagonist SB 217242. J Cardiovasc Pharmacol. 1998;31 Suppl 1:S453–5.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng HY, Dong A, Panchatcharam M, Mueller P, Yang F, Li Z, Mills G, Chun J, Morris AJ, Smyth SS. Lysophosphatidic acid signaling protects pulmonary vasculature from hypoxia-induced remodeling. Arterioscler Thromb Vasc Biol. 2012;32(1):24–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Fredenburgh LE, Liang OD, Macias AA, Polte TR, Liu X, Riascos DF, Chung SW, Schissel SL, Ingber DE, Mitsialis SA, Kourembanas S, Perrella MA. Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells. Circulation. 2008;117(16):2114–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Tabima DM, Hacker TA, Chesler NC. Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops. Am J Physiol Heart Circ Physiol. 2010;299(6):H2069–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Setty S, Zong P, Sun W, Tune JD, Downey HF. Hypoxia-induced vasodilation in the right coronary circulation of conscious dogs: role of adrenergic activation. Auton Neurosci. 2008;138(1–2):76–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297(6):L1013–32.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao L, Sebkhi A, Nunez DJ, Long L, Haley CS, Szpirer J, Szpirer C, Williams AJ, Wilkins MR. Right ventricular hypertrophy secondary to pulmonary hypertension is linked to rat chromosome 17: evaluation of cardiac ryanodine Ryr2 receptor as a candidate. Circulation. 2001;103(3):442–7.

    Article  CAS  PubMed  Google Scholar 

  58. Baandrup JD, Markvardsen LH, Peters CD, Schou UK, Jensen JL, Magnusson NE, Ørntoft TF, Kruhøffer M, Simonsen U. Pressure load: the main factor for altered gene expression in right ventricular hypertrophy in chronic hypoxic rats. PLoS One. 2011;6(1):e15859.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Larsen KO, Sjaastad I, Svindland A, Krobert KA, Skjønsberg OH. Christensen G Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. Am J Physiol Heart Circ Physiol. 2006;291(2):H507–16.

    Article  CAS  PubMed  Google Scholar 

  60. Holt TN, Callan RJ. Pulmonary arterial pressure testing for high mountain disease in cattle. Vet Clin North Am Food Anim Pract. 2007;23(3):575–96.

    Article  PubMed  Google Scholar 

  61. Newman JH, Holt TN, Hedges LK, Womack B, Memon SS, Willers ED, Wheeler L, Phillips 3rd JA, Hamid R. High-altitude pulmonary hypertension in cattle (brisket disease): candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulm Circ. 2011;1(4):462–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Malherbe CR, Marquard J, Legg DE, Cammack KM, O’Toole D. Right ventricular hypertrophy with heart failure in Holstein heifers at elevation of 1,600 meters. J Vet Diagn Invest. 2012;24(5):867–77.

    PubMed  Google Scholar 

  63. Rong C, Yan M, Zhen-Zhong B, Ying-Zhong Y, Dian-Xiang L, Qi-Sheng M, Qing G, Yin L, Ge RL. Cardiac adaptive mechanisms of Tibetan antelope (Pantholops hodgsonii) at high altitudes. Am J Vet Res. 2012;73(6):809–13.

    Article  PubMed  Google Scholar 

  64. Sakai A, Matsumoto T, Saitoh M, Matsuzaki T, Koizumi T, Ishizaki T, Ruan ZH, Wang ZG, Chen QH, Wang XQ. Cardiopulmonary hemodynamics of blue-sheep, Pseudois nayaur, as high-altitude adapted mammals. Jpn J Physiol. 2003;53(5):377–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Richalet MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Richalet, JP., Pichon, A. (2014). Right Ventricle and High Altitude. In: Gaine, S., Naeije, R., Peacock, A. (eds) The Right Heart. Springer, London. https://doi.org/10.1007/978-1-4471-2398-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2398-9_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2397-2

  • Online ISBN: 978-1-4471-2398-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics