Skip to main content

First Steps toward Automatically Generating Bipedal Robotic Walking from Human Data

  • Conference paper
  • First Online:
Robot Motion and Control 2011

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 422))

Abstract

This paper presents the first steps toward automatically generating robotic walking from human walking data through the use of human-inspired control. By considering experimental human walking data, we discover that certain outputs of the human, computed from the kinematics, display the same “universal” behavior; moreover, these outputs can be described by a remarkably simple class of functions, termed canonical human walking functions, with a high degree of accuracy. Utilizing these functions, we consider a 2D bipedal robot with knees, and we construct a control law that drives the outputs of the robot to the outputs of the human. Explicit conditions are derived on the parameters of the canonical human walking functions that guarantee that the zero dynamics surface is partially invariant through impact, i.e., conditions that guarantee partial hybrid zero dynamics. These conditions therefore can be used as constraints in an optimization problem that minimizes the distance between the human data and the output of the robot. In addition, we demonstrate through simulation that these conditions automatically generate a stable periodic orbit for which the fixed point can be explicitly computed. Therefore, using only human data, we are able to automatically generate a stable walking gait for a bipedal robot which is as “human-like” as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Movie of of the robotic walking obtained via human-inspired hybrid zero dynamics, http://www.youtube.com/watch?v=72hSW44qMgw

  2. Website for data set and related papers, http://www.eecs.berkeley.edu/~ramv/HybridWalker

  3. YouTube page for AMBER lab, http://www.youtube.com/user/ProfAmes

  4. Ambrose, R., Aldridge, H., Askew, R., Burridge, R., Bluethmann, W., Diftler, M., Lovchik, C., Magruder, D., Rehnmark, F.: Robonaut: NASA’s space humanoid. IEEE Intelligent Systems and their Applications 15(4), 57–63 (2000)

    Article  Google Scholar 

  5. Ames, A.D., Gregg, R., Wendel, E., Sastry, S.: On the geometric reduction of controlled three-dimensional bipedal robotic walkers. In: Lagrangian and Hamiltonian Methods for Nonlinear Control. LNCIS, vol. 366, pp. 183–196. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Ames, A.D., Sinnet, R.W., Wendel, E.D.B.: Three-dimensional kneed bipedal walking: A hybrid geometric approach. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 16–30. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Ames, A.D., Vasudevan, R., Bajcsy, R.: Human-data based cost of bipedal robotic walking. In: Hybrid Systems: Computation and Control, Chicago, IL (2011)

    Google Scholar 

  8. Au, S.K., Dilworth, P., Herr, H.: An ankle-foot emulation system for the study of human walking biomechanics. In: IEEE Intl. Conf. Robotics and Automation, Orlando, pp. 2939–2945 (2006)

    Google Scholar 

  9. Braun, D.J., Goldfarb, M.: A control approach for actuated dynamic walking in bipedal robots. IEEE TRO 25(6), 1292–1303 (2009)

    Google Scholar 

  10. Chevallereau, C., Bessonnet, G., Abba, G., Aoustin, Y.: Bipedal Robots: Modeling, Design and Walking Synthesis. Wiley-ISTE, New York (2009)

    Google Scholar 

  11. Chevallereau, C., Formal’sky, A., Djoudi, D.: Tracking a joint path for the walk of an underactuated biped. Robotica 22(1), 15–28 (2004)

    Article  Google Scholar 

  12. Childs, D.W.: Dynamics in Engineering Practice, 10 edn. CRC Press (2010)

    Google Scholar 

  13. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE TAC 46(1), 51–64 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Grizzle, J.W., Chevallereau, C., Ames, A.D., Sinnet, R.W.: 3D bipedal robotic walking: models, feedback control, and open problems. In: IFAC Symposium on Nonlinear Control Systems, Bologna (2010)

    Google Scholar 

  15. Heller, M.O., Bergmann, G., Deuretzbacher, G., Dürselen, L., Pohl, M., Claes, L., Haas, N.P., Duda, G.N.: Musculo-skeletal loading conditions at the hip during walking and stair climbing. J. of Biomechanics 34(1), 883–893 (2001)

    Article  Google Scholar 

  16. Hürmüzlü, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Intl. J. of Robotics Research 13(1), 82–92 (1994)

    Article  Google Scholar 

  17. Kuo, A.D.: Energetics of actively powered locomotion using the simplest walking model. Journal of Biomechanical Engineering 124, 113–120 (2002)

    Article  Google Scholar 

  18. McGeer, T.: Passive dynamic walking. Intl. J. of Robotics Research 9(2), 62–82 (1990)

    Article  Google Scholar 

  19. Morris, B., Grizzle, J.: A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. In: IEEE Conf. on Decision and Control, Seville, Spain (2005)

    Google Scholar 

  20. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  21. Sastry, S.S.: Nonlinear Systems: Analysis, Stability and Control. Springer, New York (1999)

    MATH  Google Scholar 

  22. Sauer, P., Kozłowski, K.R., Morita, Y., Ukai, H.: Ankle robot for people with drop foot – case study. In: Kozłowski, K.R. (ed.) Robot Motion and Control 2009. LNCIS, vol. 396, pp. 443–452. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Schaub, T., Scheint, M., Sobotka, M., Seiberl, W., Buss, M.: Effects of compliant ankles on bipedal locomotion. In: EEE/RSJ International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  24. Sinnet, R., Powell, M., Jiang, S., Ames, A.D.: Compass gait revisited: A human data perspective with extensions to three dimensions. Submitted for publication, available upon request

    Google Scholar 

  25. Sinnet, R., Powell, M., Shah, R., Ames, A.D.: A human-inspired hybrid control approach to bipedal robotic walking. In: 18th IFAC World Congress, Milano, Italy (2011)

    Google Scholar 

  26. Sinnet, R.W., Ames, A.D.: 2D bipedal walking with knees and feet: A hybrid control approach. In: 48th IEEE Conference on Decision and Control, Shanghai, P.R. China (2009)

    Google Scholar 

  27. Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. IEEE TAC 50(7), 1025–1031 (2005)

    MathSciNet  Google Scholar 

  28. Srinivasan, S., Raptis, I.A., Westervelt, E.R.: Low-dimensional sagittal plane model of normal human walking. ASME J. of Biomechanical Eng. 130(5) (2008)

    Google Scholar 

  29. Srinivasan, S., Westervelt, E., Hansen, A.: A low-dimensional sagittal-plane forward-dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users. ASME J. of Biomechanical Eng. 131 (2009)

    Google Scholar 

  30. Vasudevan, R., Ames, A.D., Bajcsy, R.: Using persistent homology to determine a human-data based cost for bipedal walking. In: 18th IFAC World Congress, Milano, Italy (2011)

    Google Scholar 

  31. Vukobratović, M., Borovac, B., Surla, D., Stokic, D.: Biped Locomotion. Springer, Berlin (1990)

    MATH  Google Scholar 

  32. Wendel, E., Ames, A.D.: Rank properties of Poincaré maps for hybrid systems with applications to bipedal walking. In: Hybrid Systems: Computation and Control, Stockholm, Sweden (2010)

    Google Scholar 

  33. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  34. Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE TAC 48(1), 42–56 (2003)

    MathSciNet  Google Scholar 

  35. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley Interscience, New York (1990)

    Google Scholar 

  36. Zatsiorsky, V.M.: Kinematics of Human Motion, 1 edn. Human Kinetics (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Ames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer London

About this paper

Cite this paper

Ames, A.D. (2012). First Steps toward Automatically Generating Bipedal Robotic Walking from Human Data. In: Kozłowski, K. (eds) Robot Motion and Control 2011. Lecture Notes in Control and Information Sciences, vol 422. Springer, London. https://doi.org/10.1007/978-1-4471-2343-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2343-9_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2342-2

  • Online ISBN: 978-1-4471-2343-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics