Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The aim of this chapter is to show the main standards applicable to evaluate indoor environments at international level. These standards show us the mean values and limiting conditions, as well as models for indoor environments. Following a methodic enumeration of standards, they are classified into general thermal comfort, local thermal comfort and indoor air quality standards. The main indices were obtained in laboratory studies, and how to employ them in real case studies is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 7730 (2005) Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria

    Google Scholar 

  2. ISO 7726 (2002) Ergonomics of the thermal environment—instruments for measuring physical quantities

    Google Scholar 

  3. Normativa Técnica de Prevención (NTP) (2011) Ministerio de Industria. http://www.insht.es. Accessed 2 Feb 2011

  4. ASHRAE Standard 55-2004 (2004) Thermal environmental conditions for human occupancy

    Google Scholar 

  5. ASHRAE Handbook (2007) HVAC applications SI units American Society of Heating, Refrigerating and Air-Conditioning Engineers, Washington DC

    Google Scholar 

  6. ASHRAE Handbook Fundamentals (2005) SI units American Society of Heating, Refrigerating and Air-Conditioning Engineers, Washington DC

    Google Scholar 

  7. Simonson CJ, Salonvaara M, Ojanen T (2001) Improving indoor climate and comfort with wooden structures. Technical Research Centre of Finland, Espoo

    Google Scholar 

  8. ASHRAE Standard 55-2004 (2004) Thermal environmental conditions for human occupancy. SI Units American Society of Heating, Refrigerating and Air-Conditioning Engineers, Washington DC

    Google Scholar 

  9. Fanger PO (1970) Thermal comfort. Doctoral thesis. Danish Technical, Copenhagen

    Google Scholar 

  10. Wargocki P, Wyon DP, Baik YK, Clausen G, Fanger PO (1999) Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air 9:165–179

    Article  Google Scholar 

  11. Fang L, Clausen G, Fanger PO (1998) Impact of temperature and humidity on perception of indoor air quality during immediate and longer whole-body exposures. Indoor Air 8(4):276–284

    Article  Google Scholar 

  12. Molina M (2000) Impacto de la temperatura y la humedad sobre la salud y el confort térmico, climatización de ambientes interiores (Tesis doctoral). Universidad de A Coruña, Spain

    Google Scholar 

  13. De Dear RJ, Auliciems A (1985) Validation of the predicted mean vote model of thermal comfort in six Australian field studies. ASHRAE Trans 91(2B):452–468

    Google Scholar 

  14. Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27:83–96

    Article  Google Scholar 

  15. Berglund L (1978) Mathematical models for predicting the thermal comfort response of building occupants. ASHRAE Transactions, vol 84. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Washington DC

    Google Scholar 

  16. Nicol F, Roaf S (1996) Pioneering new indoor temperature standard: the Pakistan project. Energy Build 23:169–174

    Article  Google Scholar 

  17. Humphreys MA (1976) Comfortable indoor temperatures related to the outdoor air temperature. Build Serv Eng 44:5–27

    Google Scholar 

  18. Toftum J, Jorgensen AS, Fanger PO (1998) Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy Build 2:1–13

    Article  Google Scholar 

  19. ASHRAE Handbook (2008) HVAC system and equipment. SI Units American Society of Heating, Refrigerating and Air-Conditioning Engineers, Washington DC, USA

    Google Scholar 

  20. Fang L, Clausen G, Fanger PO (1996) The impact of temperature and humidity on perception and emission of indoor air pollutants. Proc Indoor Air 4:349–353

    Google Scholar 

  21. Corrado V, Mechri HE, Fabrizio E (2007) Building energy performance assessment through simplified models: application of the ISO 13790 quasi-steady state method. In: Proceedings of building simulation pp 79–86

    Google Scholar 

  22. Corrado V, Fabrizio E (2007) Assessment of buildings cooling energy need through a quasi-steady state model: simplified correlation for gain-loss mismatch. Energy Build 39:569–579

    Article  Google Scholar 

  23. ISO (2005) Thermal performance of buildings-calculation of energy use for space heating and cooling. ISO/DIS 13790:2005, International Organization for Standardization, Geneva

    Google Scholar 

  24. Jokisalo J, Kurnitski J (2007) Performance of EN ISO 13790 utilisation factor heat demand calculation method in a cold climate. Energy Build 39:236–247

    Article  Google Scholar 

  25. Nielsen TR, Peuhkuri R, Weitzmann P, Gudum C (2002) Modelling building physics in Simulink. http://www.ibpt.org. Accessed 2 Feb 2011

  26. Rode C, Gudum C, Weitzmann P, Peuhkuri R, Nielsen TR, Kalagasidis AS, Hagentoft C.E. (2002). International building physics toolbox-general report. Department of Building Physics. Chalmer Institute of Technology, Sweden. Report R-02: 2002. 4

    Google Scholar 

  27. International building physics toolbox in Simulink. http://www.ibpt.org. Accessed on 2 Feb 2011

  28. Kalagasidis AS (2002) BFTools Building physics toolbox block documentation. Department of Building Physics. Chalmer Institute of Technology, Sweden

    Google Scholar 

  29. Kalagasidis AS (2002) HAM-Tools. International building physics toolbox. Block documentation. Department of Building Physics. Chalmer Institute of Technology, Sweden

    Google Scholar 

  30. Weitzmann P, Kalagasidis AS, Nielsen TR, Peuhkuri R, Hagentoft C (2003) Presentation of the international building physics toolbox for simulink. Eight international IBPSA conference, Netherlands, pp 1369–1376

    Google Scholar 

  31. International Energy Agency. http://www.iea.org. Accessed on 2 February 2011

  32. Norén A, Akander J, Isfält E, Söderström O (1999). The effect of thermal inertia on energy requirement in a Swedish building—results obtained with three calculation models. Int J Low Energy Sustain Build 1:1–16

    Google Scholar 

  33. Yongling W, Ruilun Z, Zizhong D (2000) Primary research on moisture absorption and desorption function of aerocrete as building element material for dehumidification. In: Proceedings of healthy buildings p 3

    Google Scholar 

  34. Simonson CJ, Salonvaara M, Ojalen T (2001) Improving indoor climate and comfort with wooden structures. Espoo. Technical Research Centre of Finland, VTT Publications 431.200p. + app 91 p

    Google Scholar 

  35. Olutimayin SO, Simonson CJ (2005) Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation. Int J Heat Mass Transf 48:3319–3330

    Article  Google Scholar 

  36. Talukdar P, Osanyintola OF, Olutimayin SO, Simonson CJ (2007) An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials, Part II: Experimental, numerical and analytical data. Int J Heat Mass Transf (in press). http://dx.doi.org/doi:10.1016/j.ijheatmasstransfer.2007.03.025. Accessed 2 Feb 2011

  37. Trechsel HR (ed) (1994) Moisture control in buildings. American Society for Testing and Materials (ASTM manual series: MNL 18), Philadelphia

    Google Scholar 

  38. Hens H (2011) Indoor climate in student rooms: measured values. IEA-EXCO energy conservation in buildings and community systems annex 41 “Moist-Eng” Glasgow meeting. http://www.kuleuven.be/bwf/projects/annex41/protected/data/KUL%20Oct%202004%20Paper%20A41-T3-B-04-6.pdf. Accessed 2 Feb 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Orosa .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Orosa, J.A., Oliveira, A.C. (2012). Indoor Air Standards and Models. In: Passive Methods as a Solution for Improving Indoor Environments. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2336-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2336-1_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2335-4

  • Online ISBN: 978-1-4471-2336-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics