Skip to main content

2D Mass-spring-like Model for Prediction of a Sponge’s Behaviour upon Robotic Interaction

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXVIII (SGAI 2011)

Abstract

Deformable objects abound in nature, and future robots must be able to predict how they are going to behave in order to control them. In this paper we present a method capable of learning to predict the behaviour of deformable objects. We use a mass-spring-like model, which we extended to better suit our purposes, and apply it to the concrete scenario of robotic manipulation of an elastic deformable object. We describe a procedure for automatically calibrating the parameters for the model taking images and forces from a real sponge as ground truth. We use this ground truth to provide error measures that drive an evolutionary process that searches the parameter space of the model. The resulting calibrated model can make good predictions for 200 frames (6.667 seconds of real time video) even when tested with forces being applied in different positions to those trained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaniuk, R., Salisbury, K.: Dynamic simulation of deformable objects using the long elements method. 10th Symposium On Haptic Interfaces For Virtual Environment And Teleoperator Systems, Proceedings pp. 58–65 (2002)

    Google Scholar 

  2. Bourguignon, D., Cani, M.P.: Controlling anisotropy in mass-spring systems. In: N. Magnenat-Thalmann, D. Thalmann, B. Arnaldi (eds.) 11th Eurographics Workshop on Computer Animation and Simulation, EGCAS 2000, August, 2000, Springer Computer Science, pp. 113–123. Springer-Verlag, Interlaken, Suisse (2000)

    Google Scholar 

  3. Burion, S., Conti, F., Petrovskaya, A., Baur, C., Khatib, O.: Identifying physical properties of deformable objects by using particle filters. 2008 Ieee International Conference On Robotics And Automation, Vols 1-9 pp. 1112–1117 (2008)

    Article  Google Scholar 

  4. Conti, F., Khatib, O., Baur, C.: Interactive rendering of deformable objects based on a filling sphere modeling approach. In: Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International Conference on, vol. 3, pp. 3716 – 3721 (2003)

    Google Scholar 

  5. Frank, B., Schmedding, R., Stachniss, C., Teschner, M., Burgard, W.: Learning the elasticity parameters of deformable objects with a manipulation robot. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010)

    Google Scholar 

  6. Fuhrmann, A., Gro, C., Luckas, V.: Interactive animation of cloth including self collision detection. Journal of WSCG 11(1), 141–148 (2003)

    Google Scholar 

  7. Gibson, S.F.F., Mirtich, B.: A survey of deformable modeling in computer graphics. Tech. rep., MERL (Mitsubishi Electric Research Laboratory) (1997)

    Google Scholar 

  8. Gonzlez-Vias,W., Mancini, H.L.: An Introduction To Materials Science. Princeton University Press, U.S.A. (2004). Translation of: Ciencia de los Materiales

    Google Scholar 

  9. Kass, M., Witkin, A., Terzopuolos, D.: Snakes: Active contour models. International Journal Of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  10. Luo, Y.H., Nelson, B.J.: Fusing force and vision feedback for manipulating deformable objects. Journal Of Robotic Systems 18(3), 103–117 (2001)

    Article  MATH  Google Scholar 

  11. Malassiotis, S., Strintzis, M.G.: Tracking textured deformable objects using a finite-element mesh. Ieee Transactions On Circuits And Systems For Video Technology 8(6), 756–774 (1998)

    Article  Google Scholar 

  12. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med Image Anal 1(2), 91–108 (1996)

    Article  Google Scholar 

  13. Morris, D., Salisbury, K.: Automatic preparation, calibration, and simulation of deformable objects. Computer Methods In Biomechanics And Biomedical Engineering 11(3), 263–279 (2008)

    Article  Google Scholar 

  14. Neuronics: Katana user manual and technical description. http://www.neuronics.ch (2004)

  15. Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving camera. In: CVPR (2010)

    Google Scholar 

  16. O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21(3), 291–294 (2002)

    Google Scholar 

  17. Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of deformable objects. Computer Vision - Eccv 2008, Pt I, Proceedings 5302, 483–496 (2008)

    Article  Google Scholar 

  18. Remde, A., Abegg, F., Worn, H.: Ein allgemainer ansatz zur montage deformierarbarer linearer objekte mit industrierobotern (a general approach for the assembly of deformable linear objects with industrial robots). In: Robotik’2000. Berlin, Germany (2000)

    Google Scholar 

  19. Saadat, M., Nan, P.: Industrial applications of automatic manipulation of flexible materials. Industrial Robot 29(5), 434–442 (2002)

    Article  Google Scholar 

  20. Saha, M., Isto, P.: Manipulation planning for deformable linear objects. Ieee Transactions On Robotics 23(6), 1141–1150 (2007)

    Article  Google Scholar 

  21. Song, Y., Bai, L.: 3d modeling for deformable objects. Articulated Motion And Deformable Objects, Proceedings 5098, 175–187 (2008)

    Article  Google Scholar 

  22. Teschner, M., Heidelberg, B., Muller, M., Gross, M.: A versatile and robust model for geometrically complex deformable solids. In: Proceedings of Computer Graphics International (CGI’04), pp. 312–319. Crete, Greece (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica E. Arriola-Rios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this paper

Cite this paper

Arriola-Rios, V.E., Wyatt, J. (2011). 2D Mass-spring-like Model for Prediction of a Sponge’s Behaviour upon Robotic Interaction. In: Bramer, M., Petridis, M., Nolle, L. (eds) Research and Development in Intelligent Systems XXVIII. SGAI 2011. Springer, London. https://doi.org/10.1007/978-1-4471-2318-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2318-7_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2317-0

  • Online ISBN: 978-1-4471-2318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics