Skip to main content

Passive Devices for Upper Limb Training

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

About five million people in North America alone have weak or paralyzed upper limbs due to stroke or spinal cord injury. Motor rehabilitation can improve hand and arm function in many of these people, but in the current healthcare climate, the time and resources devoted to physical and occupational therapy after injury are inadequate. This represents an opportunity for technology to be introduced that can take over some of the supervisory functions of therapists, provide entertaining exercise therapy, and allow remote supervision of exercise training performed in the home. Over the last 10 years, many research groups have been developing robotic devices for exercise therapy, as well as other methods such as electrical stimulation of muscles. Robotic devices tend to be expensive, and recent studies have raised some doubt as to whether assistance to movements is even necessary, as motor gains evidently depend largely on the efforts made by the participant. This chapter reviews the evidence for spontaneous recovery, the means and mechanisms of conventional exercise therapy, the role of robotics and the advent of affordable passive devices, and voluntarily triggered functional electrical stimulation. It is argued that in the near future, in-home exercise therapy on instrumented passive devices, remotely supervised over the Internet, will become an affordable and important modality of physical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209.

    Article  PubMed  Google Scholar 

  2. van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke. 1999;30(11):2369–75.

    Article  PubMed  Google Scholar 

  3. Farry A, Baxter D. The incidence and prevalence of spinal cord injury in Canada. Overview and estimates based on current evidence. Vancouver: Rick Hansen Institute; 2010.

    Google Scholar 

  4. Wolf SL, Winstein CJ, Miller JP, Blanton S, Clark PC, Nichols-Larsen D. Looking in the rear view mirror when conversing with back seat drivers: the EXCITE trial revisited. Neurorehabil Neural Repair. 2007;21:379–87.

    Article  PubMed  Google Scholar 

  5. Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A. A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke. 2006;37(4):1045–9.

    Article  PubMed  Google Scholar 

  6. Volpe BT, Huerta PT, Zipse JL, et al. Robotic devices as therapeutic and diagnostic tools for stroke recovery. Arch Neurol. 2009;66(9):1086–90.

    Article  PubMed  Google Scholar 

  7. Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:327–60.

    Article  PubMed  CAS  Google Scholar 

  8. Stein RB, Prochazka A. Impaired motor function: functional electrical stimulation. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of ­stereotactic and functional neurosurgery. Berlin: Springer; 2009. p. 3047–60.

    Chapter  Google Scholar 

  9. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87.

    Article  PubMed  CAS  Google Scholar 

  10. Gritsenko V, Chhibber S, Prochazka A. Automated FES-assisted exercise therapy for hemiplegic hand function. Soc Neurosci Abst. 2001;27:210–20.

    Google Scholar 

  11. Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC. Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans Neural Syst Rehabil Eng. 2002;10(2):102–8.

    Article  PubMed  Google Scholar 

  12. Kowalczewski J, Gritsenko V, Ashworth N, Ellaway P, Prochazka A. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Arch Phys Med Rehabil. 2007;88(7):833–9.

    Article  PubMed  Google Scholar 

  13. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.

    Article  PubMed  Google Scholar 

  14. Curt A, Van Hedel HJ, Klaus D, Dietz V. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma. 2008;25(6):677–85.

    Article  PubMed  Google Scholar 

  15. Kwakkel G, Veerbeek JM, van Wegen EE, Nijland R, Harmeling-van der Wel BC, Dippel DW. Predictive value of the NIHSS for ADL outcome after ischemic hemispheric stroke: does timing of early assessment matter? J Neurol Sci. 2010;294(1–2):57–61.

    Article  PubMed  Google Scholar 

  16. Riley JD, Le V, Der-Yeghiaian L, et al. Anatomy of stroke injury predicts gains from therapy. Stroke. 2011;42(2):421–6.

    Article  PubMed  Google Scholar 

  17. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.

    PubMed  CAS  Google Scholar 

  18. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–8.

    Article  PubMed  CAS  Google Scholar 

  19. Foley N, Teasell R, Jutai J, Bhogal S, Kruger E. Evidence-based review of stroke rehabilitation. 10. Upper extremity interventions. Toronto: Canadian Stroke Network; 2010.

    Google Scholar 

  20. Fawcett JW, Curt A, Steeves JD, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45(3):190–205.

    Article  PubMed  CAS  Google Scholar 

  21. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224(4):591–605.

    Article  PubMed  CAS  Google Scholar 

  22. McKinley PA, Jenkins WM, Smith JL, Merzenich MM. Age-dependent capacity for somatosensory cortex reorganization in chronic spinal cats. Brain Res. 1987;428(1):136–9.

    PubMed  CAS  Google Scholar 

  23. Nudo RJ. Remodeling of cortical motor representations after stroke: implications for recovery from brain damage [news]. Mol Psychiatry. 1997;2(3):188–91.

    Article  PubMed  CAS  Google Scholar 

  24. Nudo RJ. Plasticity. NeuroRx. 2006;3(4):420–7.

    Article  PubMed  Google Scholar 

  25. Barreca S. Management of the post stroke hemiplegic arm and hand: treatment recommendations of the 2001 consensus panel. Heart and Stroke Foundation of Ontario; 2001.

    Google Scholar 

  26. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(8):852–7.

    Article  PubMed  CAS  Google Scholar 

  27. Michaelsen SM, Dannenbaum R, Levin MF. Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke. 2006;37(1):186–92.

    Article  PubMed  Google Scholar 

  28. Michaelsen SM, Luta A, Roby-Brami A, Levin MF. Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke. 2001;32(8):1875–83.

    Article  PubMed  CAS  Google Scholar 

  29. Taub E, Crago JE, Burgio LD, et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994;61(2):281–93.

    Article  PubMed  CAS  Google Scholar 

  30. Johnston MV, Sherer M, Whyte J. Applying evidence standards to rehabilitation research. Am J Phys Med Rehabil. 2006;85(4):292–309.

    Article  PubMed  Google Scholar 

  31. Wolf SL, Winstein CJ, Miller JP, et al. Effect of ­constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.

    Article  PubMed  CAS  Google Scholar 

  32. Dobkin BH. Confounders in rehabilitation trials of task-oriented training: lessons from the designs of the EXCITE and SCILT multicenter trials. Neurorehabil Neural Repair. 2007;21(1):3–13.

    Article  PubMed  Google Scholar 

  33. van der Lee JH, Snels IA, Beckerman H, Lankhorst GJ, Wagenaar RC, Bouter LM. Exercise therapy for arm function in stroke patients: a systematic review of randomized controlled trials. Clin Rehabil. 2001;15(1):20–31.

    Article  PubMed  Google Scholar 

  34. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18(8):833–62.

    Article  PubMed  Google Scholar 

  35. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.

    Article  PubMed  Google Scholar 

  36. Dickstein R, Hocherman S, Pillar T, Shaham R. Stroke rehabilitation. Three exercise therapy approaches. Phys Ther. 1986;66(8):1233–8.

    PubMed  CAS  Google Scholar 

  37. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–32.

    Article  PubMed  CAS  Google Scholar 

  38. Taub E. Movement in nonhuman primates deprived of somatosensory feedback [Review]. Exerc Sport Sci Rev. 1976;4:335–74.

    Article  PubMed  CAS  Google Scholar 

  39. Taub E, Miller NE, Novack TA, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74(4):347–54.

    PubMed  CAS  Google Scholar 

  40. Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques [see comments]. Science. 1991;252(5014):1857–60.

    Article  PubMed  CAS  Google Scholar 

  41. Richards LG, Stewart KC, Woodbury ML, Senesac C, Cauraugh JH. Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia. 2008;46(1):3–11.

    Article  PubMed  Google Scholar 

  42. Foley N, Teasell R, Jutai J, Bhogal SK, Kruger E. Evidence-based review of stroke rehabilitation. Module 10: Upper extremity interventions. 2009; accessed 13 oct 2011 http://www.ebrsr.com/reviews_details.php?Upper-extremity-interventions-31.

  43. Page SJ, Sisto SA, Levine P, Johnston MV, Hughes M. Modified constraint induced therapy: a randomized feasibility and efficacy study. J Rehabil Res Dev. 2001;38(5):583–90.

    PubMed  CAS  Google Scholar 

  44. Page SJ, Levine P. Modified constraint-induced therapy in patients with chronic stroke exhibiting minimal movement ability in the affected arm. Phys Ther. 2007;87(7):872–8.

    Article  PubMed  Google Scholar 

  45. Page SJ, Levine P. Modified constraint-induced therapy extension: using remote technologies to improve function. Arch Phys Med Rehabil. 2007;88(7):922–7.

    Article  PubMed  Google Scholar 

  46. Wu CY, Lin KC, Chen HC, Chen IH, Hong WH. Effects of modified constraint-induced movement therapy on movement kinematics and daily function in patients with stroke: a kinematic study of motor control mechanisms. Neurorehabil Neural Repair. 2007;21(5):460–6.

    Article  PubMed  Google Scholar 

  47. Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31(10):2390–5.

    Article  PubMed  CAS  Google Scholar 

  48. Luft AR, McCombe-Waller S, Whitall J, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292(15):1853–61.

    Article  PubMed  CAS  Google Scholar 

  49. Cauraugh JH, Kim SB, Duley A. Coupled bilateral movements and active neuromuscular stimulation: intralimb transfer evidence during bimanual aiming. Neurosci Lett. 2005;382(1–2):39–44.

    Article  PubMed  CAS  Google Scholar 

  50. Whitall J, Waller SM, Sorkin JD, et al. Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial. Neurorehabil Neural Repair. 2011;25(2):118–29.

    Article  PubMed  Google Scholar 

  51. Summers JJ, Kagerer FA, Garry MI, Hiraga CY, Loftus A, Cauraugh JH. Bilateral and unilateral movement training on upper limb function in chronic stroke patients: a TMS study. J Neurol Sci. 2007;252(1):76–82.

    Article  PubMed  Google Scholar 

  52. Cauraugh JH, Coombes SA, Lodha N, Naik SK, Summers JJ. Upper extremity improvements in chronic stroke: coupled bilateral load training. Restor Neurol Neurosci. 2009;27(1):17–25.

    PubMed  Google Scholar 

  53. Lin KC, Chang YF, Wu CY, Chen YA. Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabil Neural Repair. 2009;23(5):441–8.

    Article  PubMed  Google Scholar 

  54. Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):58–65.

    Article  PubMed  Google Scholar 

  55. Salter RB. History of rest and motion and the scientific basis for early continuous passive motion. Hand Clin. 1996;12(1):1–11.

    PubMed  CAS  Google Scholar 

  56. Dirette D, Hinojosa J. Effects of continuous passive motion on the edematous hands of two persons with flaccid hemiplegia. Am J Occup Ther. 1994;48(5):403–9.

    Article  PubMed  CAS  Google Scholar 

  57. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54(4):443–6.

    Article  PubMed  CAS  Google Scholar 

  58. Hogan N, Krebs HI, Rohrer B, et al. Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J Rehabil Res Dev. 2006;43(5):605–18.

    Article  PubMed  Google Scholar 

  59. Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  PubMed  CAS  Google Scholar 

  60. Cramer SC. Brain repair after stroke. N Engl J Med. 2010;362(19):1827–9.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson MJ, Feng X, Johnson LM, Winters JM. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. J Neuroeng Rehabil. 2007;4:6.

    Article  PubMed  Google Scholar 

  62. Ruparel R, Johnson MJ, Strachota E, McGuire J, Tchekanov G. Evaluation of the TheraDrive system for robot/computer assisted motivating rehabilitation after stroke. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:811–4.

    PubMed  Google Scholar 

  63. Popescu VG, Burdea GC, Bouzit M, Hentz VR. A virtual-reality-based telerehabilitation system with force feedback. IEEE Trans Inf Technol Biomed. 2000;4(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  64. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.

    Article  PubMed  CAS  Google Scholar 

  65. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):356–66.

    Article  PubMed  Google Scholar 

  66. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(Pt 2):425–37.

    Article  PubMed  Google Scholar 

  67. Frick EM, Alberts JL. Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Phys Ther. 2006;86(10):1378–86.

    Article  PubMed  Google Scholar 

  68. Kutner NG, Zhang R, Butler AJ, Wolf SL, Alberts JL. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Phys Ther. 2010;90(4):493–504.

    Article  PubMed  Google Scholar 

  69. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev. 2006;43(5):619–30.

    Article  PubMed  Google Scholar 

  70. Allen D. You’re never too old for a Wii. Nurs Older People. 2007;19(8):8.

    Google Scholar 

  71. Cowley AD, Minnaar G. New generation computer games: watch out for Wii shoulder. BMJ. 2008;336(7636):110.

    Article  PubMed  Google Scholar 

  72. Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther. 2008;88(10):1196–207.

    Article  PubMed  Google Scholar 

  73. Graves LE, Ridgers ND, Stratton G. The contribution of upper limb and total body movement to adolescents’ energy expenditure whilst playing Nintendo Wii. Eur J Appl Physiol. 2008;104(4):617–23.

    Article  PubMed  Google Scholar 

  74. Robinson RJ, Barron DA, Grainger AJ, Venkatesh R. Wii knee. Emerg Radiol. 2008;15(4):255–7.

    Article  PubMed  Google Scholar 

  75. Saposnik G, Teasell R, Mamdani M, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010;41(7):1477–84.

    Article  PubMed  Google Scholar 

  76. Lucca LF. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J Rehabil Med. 2009;41(12):1003–100.

    Article  PubMed  Google Scholar 

  77. Sanchez R, Reinkensmeyer D, Shah P, et al. Monitoring functional arm movement for home-based therapy after stroke. Conf Proc IEEE Eng Med Biol Soc. 2004;7:4787–90.

    PubMed  CAS  Google Scholar 

  78. Sanchez RJ, Liu J, Rao S, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89.

    Article  PubMed  Google Scholar 

  79. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    Article  PubMed  Google Scholar 

  80. Prange GB, Jannink MJ, Stienen AH, van der Kooij H, Ijzerman MJ, Hermens HJ. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabil Neural Repair. 2009;23(5):478–85.

    Article  PubMed  CAS  Google Scholar 

  81. Lum PS, Taub E, Schwandt D, Postman M, Hardin P, Uswatte G. Automated Constraint-Induced Therapy Extension (AutoCITE) for movement deficits after stroke. J Rehabil Res Dev. 2004;41(3A):249–58.

    Article  PubMed  Google Scholar 

  82. Taub E, Lum PS, Hardin P, Mark VW, Uswatte G. AutoCITE: automated delivery of CI therapy with reduced effort by therapists. Stroke. 2005;36(6):1301–4.

    Article  PubMed  Google Scholar 

  83. Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain. 2008;131(Pt 5):1381–90.

    PubMed  Google Scholar 

  84. Barker RN, Brauer SG, Carson RG. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device a randomized clinical trial. Stroke. 2008. doi:10.1161/STROKEAHA.107.498485.

  85. Baker LL, Yeh C, Wilson D, Waters RL. Electrical stimulation of wrist and fingers for hemiplegic patients. Phys Ther. 1979;59(12):1495–9.

    PubMed  CAS  Google Scholar 

  86. Waters R, Bowman B, Baker L, Benton L, Meadows P. Treatment of hemiplegic upper extremity using electrical stimulation and biofeedback training. In: Popovic D, editor. Advances in external control of human extremities, vol. 7. Belgrade: Yugoslav Committee for Electronics and Automation; 1981. p. 251–66.

    Google Scholar 

  87. Taylor PN, Burridge JH, Hagan SA, Chapple P, Swain ID. Improvement in hand function and sensation in chronic stroke patients following electrical stimulation exercises. A retrospective clinical audit. Paper presented at: 1st annual conference of the international FES Society, Cleveland; 1996.

    Google Scholar 

  88. Vodovnik L, Bajd T, Kralj A, Gracanin F, Strojnik P. Functional electrical stimulation for control of locomotor systems. CRC Crit Rev Bioeng. 1981;6(2):63–131.

    CAS  Google Scholar 

  89. Taylor P, Burridge J, Dunkerley A, et al. Clinical audit of 5 years provision of the Odstock dropped foot stimulator. Artif Organs. 1999;23(5):440–2.

    Article  PubMed  CAS  Google Scholar 

  90. Stein RB, Chong S, Everaert DG, et al. A multicenter trial of a footdrop stimulator controlled by a tilt sensor. Neurorehabil Neural Repair. 2006;20(3):371–9.

    Article  PubMed  Google Scholar 

  91. GvO H. EMG-controlled functional electrical stimulation of the paretic hand. Scand J Rehabil Med. 1979;11:189–93.

    Google Scholar 

  92. Heckmann J, Mokrusch T, Kroeckel A, Warnke S, von Stockert T, Neundoerfer B. Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Eur J Phys Med Rehabil. 1997;7:138–41.

    Google Scholar 

  93. Francisco G, Chae J, Chawla H, et al. Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil. 1998;79(5):570–5.

    Article  PubMed  CAS  Google Scholar 

  94. Cauraugh JH, Kim S. Two coupled motor recovery protocols are better than one: electromyogram-­triggered neuromuscular stimulation and bilateral movements. Stroke. 2002;33(6):1589–94.

    Article  PubMed  Google Scholar 

  95. Chae J. Neuromuscular electrical stimulation for motor relearning in hemiparesis. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S93–109.

    Article  PubMed  Google Scholar 

  96. de Kroon JR, Ijzerman MJ, Chae J, Lankhorst GJ, Zilvold G. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. J Rehabil Med. 2005;37(2):65–74.

    Article  PubMed  Google Scholar 

  97. Gritsenko V, Prochazka A. A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function. Arch Phys Med Rehabil. 2004;85(6):881–5.

    Article  PubMed  Google Scholar 

  98. Popovic D, Popovic M, Sinkjaer T, Stefanovic A, Schwirtlich L. Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study. Can J Physiol Pharmacol. 2004;82(8–9):749–56.

    Article  PubMed  CAS  Google Scholar 

  99. Popovic M, Thrasher T, Zivanovic V, Takaki J, Hajek V. Neuroprosthesis for retraining reaching and grasping functions in severe hemiplegic patients. Neuro­modulation. 2005;8:58–72.

    Article  PubMed  Google Scholar 

  100. Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neural Repair. 2007;21(3):207–15.

    Article  PubMed  Google Scholar 

  101. Weingarden HP, Zeilig G, Heruti R, et al. Hybrid functional electrical stimulation orthosis system for the upper limb: effects on spasticity in chronic stable hemiplegia. Am J Phys Med Rehabil. 1998;77(4):276–81.

    Article  PubMed  CAS  Google Scholar 

  102. Nathan RH. US Patent #5,330,516. Device for generating hand function. US Patent Office. 1994:15 claims, 16 drawing sheets.

    Google Scholar 

  103. Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil. 1997;78(6):608–14.

    Article  PubMed  CAS  Google Scholar 

  104. Prochazka A, Inventor. Garment having controller that is activated by mechanical impact. WIPO Patent Application WO/1999/019019; 1997.

    Google Scholar 

  105. Popovic D, Stojanovic A, Pjanovic A, et al. Clinical evaluation of the bionic glove. Arch Phys Med Rehabil. 1999;80(3):299–304.

    Article  PubMed  CAS  Google Scholar 

  106. Kowalczewski J, Chong SL, Galea M, Prochazka A. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair. Jun 2011, 25(5):412–422.

    Google Scholar 

  107. Prochazka A. Neuroprosthetics. In: Edelle C, Field-Fote P PhD, editors. Spinal cord injury rehabilitation. Philadephia: FA Davis Company; 2009. p. 87–99.

    Google Scholar 

  108. Andrews K, Stewart J. Stroke recovery: he can but does he? Rheumatol Rehabil. 1979;18(1):43–8.

    Article  PubMed  CAS  Google Scholar 

  109. Kowalczewski J, Prochazka A. Technology improves upper extremity rehabilitation. In: Green A, Chapman E, Kalaska JF, Lepore F, editors. Enhancing performance for action and perception. Progress in brain research, vol. 190. New York: Elsevier; 2011:In Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Prochazka, A. (2012). Passive Devices for Upper Limb Training. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics