Skip to main content

Dynamic Coverage and Clustering: A Maximum Entropy Approach

  • Chapter
Distributed Decision Making and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 417))

  • 2119 Accesses

Abstract

We present a computational framework we have recently developed for solving a large class of dynamic coverage and clustering problems, ranging from those that arise in the deployment of mobile sensor networks to the identification of ensemble spike trains in computational neuroscience applications. This framework provides for the identification of natural clusters in an underlying dataset, while addressing inherent tradeoffs such as those between cluster resolution and computational cost.More specifically, we define the problem of minimizing an instantaneous coverage metric as a combinatorial optimization problem in a Maximum Entropy Principle framework, which we formulate specifically for the dynamic setting. Locating and tracking dynamic cluster centers is cast as a control design problem that ensures the algorithm achieves progressively better coverage with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K., Curio, G.: The non-invasive berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects. Neuroimage 37(2), 539–550 (2007)

    Article  Google Scholar 

  2. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley, New York (2004)

    Google Scholar 

  3. Chudova, D., Gaffney, S., Mjolsness, E., Smyth, P.: Translation-invariant mixture models for curve clustering. In: Proc. 9th ACM SIGKDD, pp. 79–88 (2003)

    Google Scholar 

  4. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage Control for Mobile Sensing Networks. IEEE Trans. Robotics and Automation 20(2), 243–255 (2004)

    Article  Google Scholar 

  5. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, New York (1995)

    Google Scholar 

  6. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM Review 41(4), 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elia, N., Mitter, S.: Stabilization of Linear Systems with Limited Information. IEEE Trans. Automatic Control 46(9), 1384–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frazzoli, E., Bullo, F.: Decentralized algorithms for vehicle routing in a stochastic time-varying environment. In: Proc. IEEE Conf. Decision and Control (CDC 2004), pp. 3357–3363 (2004)

    Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, gibbs distribution, and the bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Gersho, A., Gray, R.: Vector Quantization and Signal Compression, 1st edn. Kluwer, Boston (1991)

    Google Scholar 

  11. Gray, R., Karnin, E.D.: Multiple local minima in vector quantizers. IEEE Trans. Information Theory IT-28, 256–361 (1982)

    Article  MathSciNet  Google Scholar 

  12. Jaynes, E.T.: Information theory and statistical mechanics. Physical Review 106(4), 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  13. Jaynes, E.T.: Probability Theory—The Logic of Science. Cambridge University Press (2003)

    Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1, 3rd edn., vol. 3, Oxford (1980)

    Google Scholar 

  15. Lloyd, S.: Least-squares quantization in PCM. IEEE Trans. Information Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitter, S.K.: Control with limited information. In: Plenary lecture at International Symposium on Information Theory, Sorrento, Italy (2000)

    Google Scholar 

  17. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, USA (2006)

    Book  Google Scholar 

  18. Omar, C., Vaidya, M., Bretl, T.W., Coleman, T.P.: Using feedback information theory for closed-loop neural control in brain-machine interfaces. In: 17th Ann. Computational Neu-roscience Meeting (CNS), Portland, OR (2008); Invited Session on Methods of Information Theory in Computational Neuroscience

    Google Scholar 

  19. Rose, K.: Deterministic annealing, clustering, and optimization. Ph.D. thesis, California Institute of Technology, Pasadena (1991)

    Google Scholar 

  20. Rose, K.: Constrained Clustering as an Optimization Method. IEEE Trans. Pattern Anal. Machine Intell. 15, 785–794 (1993)

    Article  Google Scholar 

  21. Rose, K.: Deterministic annealing for clustering, compression, classification, regression and related optimization problems. Proc. IEEE 86(11), 2210–2239 (1998)

    Article  Google Scholar 

  22. Salapaka, S.: Combinatorial optimization approach to coarse control quantization. In: Proc. 45th IEEE Conf. Decision and Control (CDC 2005), San Diego, CA, pp. 5234–5239 (2006)

    Google Scholar 

  23. Salapaka, S., Khalak, A.: Locational optimization problems with constraints on resources. In: Proc. 41st Allerton Conference, pp. 1240–1249 (2003)

    Google Scholar 

  24. Sepulchre, R., Jankovic, M., Kokotovic, P.: Constructive Nonlinear Control. Springer, Heidelberg (1997), http://www.montefiore.ulg.ac.be/services/stochastic/pubs/1997/SJK97a

    Book  MATH  Google Scholar 

  25. Shannon, C.E., Weaver, W.: The mathematical theory of communication. Univ. of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  26. Sharma, P., Salapaka, S., Beck, C.: A maximum entropy based scalable algorithm for resource allocation problems. In: Proc. American Control Conference (ACC 2007), pp. 516–521 (2007)

    Google Scholar 

  27. Sharma, P., Salapaka, S., Beck, C.: Entropy based algorithm for combinatorial optimiza¬tion problems with mobile sites and resources. In: Proc. American Control Conference (ACC 2008), pp. 1255–1260 (2008)

    Google Scholar 

  28. Sharma, P., Salapaka, S., Beck, C.: A scalable approach to combinatorial library design for drug discovery. Journal of Chemical Information and Modeling 48(1), 27–41 (2008)

    Article  Google Scholar 

  29. Sharma, P., Salapaka, S., Beck, C.: Entropy-based framework for dynamic coverage and clus-tering problems. IEEE Trans. Automatic Control (accepted; to appear 2011)

    Google Scholar 

  30. Sheu, J.B.: A fuzzy clustering-based approach to automatic freeway incident detection and characterization. Fuzzy Sets Syst. 128(3), 377–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sontag, E.D.: A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21, 462–471 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sontag, E.D.: A ’universal’ construction of Artstein’s theorem on nonlinear stabilization. System and Control Letters 13(2), 117–123 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Therrien, C.W.: Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics, 1st edn., vol. 14. Wiley, New York (1989)

    MATH  Google Scholar 

  34. Xu, Y., Salapaka, S., Beck, C.: Dynamic maximum entropy algorithms for clustering and coverage control. In: Proc. IEEE Conf. Decision and Control (CDC 2010), Atlanta, GA, pp. 1836–1841 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer London

About this chapter

Cite this chapter

Beck, C., Salapaka, S., Sharma, P., Xu, Y. (2012). Dynamic Coverage and Clustering: A Maximum Entropy Approach. In: Johansson, R., Rantzer, A. (eds) Distributed Decision Making and Control. Lecture Notes in Control and Information Sciences, vol 417. Springer, London. https://doi.org/10.1007/978-1-4471-2265-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2265-4_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2264-7

  • Online ISBN: 978-1-4471-2265-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics