Skip to main content

Optimal Mobile Remote Sensing Policy for Downscaling and Assimilation Problems

  • Chapter
Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems
  • 691 Accesses

Abstract

In this chapter, the problem of downscaling soil moisture data is addressed. Based on an existing methodology to downscale, we introduce the problem of optimal remote sensor trajectory so as to maximize the coverage of the areas where the downscaling is inaccurate. The problem is formulated as an optimal control one, which allows us to use optimal control solvers. A numerical method to solve the problem is introduced and successfully applied to a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker DG (1982) Synoptic-scale and mesoscale contributions to objective operational maximum–minimum temperature forecast errors. Mon Weather Rev 110(3):163–169

    Article  Google Scholar 

  2. Benestad R, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific, Singapore

    MATH  Google Scholar 

  3. Bennet AF (1992) Inverse methods in physical oceanography. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Bennet AF (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Bennet AF, Chua BS, Leslie LM (1996) Generalized inversion of a global numerical weather prediction model. Meteorol Atmos Phys 60(1–3):165–178

    Article  Google Scholar 

  6. Christensen JH, Räisänen J, Iversen T, Bjørge D, Christensen OB, Rummukainen M (2001) A synthesis of regional climate change simulations—a Scandinavian perspective. Geophys Res Lett 28:1003–1006

    Article  Google Scholar 

  7. Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421(6925):805–806

    Article  Google Scholar 

  8. Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998) Very high-resolution regional climate simulations over Scandinavia-present climate. J Climate 11:3204–3229

    Article  Google Scholar 

  9. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  10. Evensen G (2006) Data assimilation: the ensemble Kalman filter. Springer, New York

    Google Scholar 

  11. Eyre JR (1997) Variational assimilation of remotely-sensed observations of the atmosphere. J Meteorol Soc Jpn 75(1B):331–338

    MathSciNet  Google Scholar 

  12. Heemink AW, Verlaan M, Segers AJ (2000) Variance reduced ensemble Kalman filtering

    Google Scholar 

  13. Huang XY, Yang X (1996) Variational data assimilation with the Lorenz model. Springer, Berlin

    Google Scholar 

  14. Kaheil YH, Gill MK, McKee M, Bastidas LA, Rosero E (2008) Downscaling and assimilation of surface soil moisture using ground truth measurements. IEEE Trans Geosci Remote Sens 46(5):1375–1384

    Article  Google Scholar 

  15. Kim JW, Chang JT, Baker NL, Wilks DS, Gates WL (1984) The statistical problem of climate inversion: determination of the relationship between local and large-scale climate. Mon Weather Rev 112(10):2069–2077

    Article  Google Scholar 

  16. Klein WH (1948) Winter precipitation as related to the 700-millibar circulation. Bull Am Meteorol Soc 29(9):439–453

    Google Scholar 

  17. Lorenc AC (1986) Analysis methods for numerical weather prediction. Q J R Meteorol Soc 112(474):1177–1194

    Article  Google Scholar 

  18. Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic Press, San Diego

    Google Scholar 

  19. Polak E (1997) Optimization. Algorithms and consistent approximations. Applied mathematical sciences. Springer, New York

    MATH  Google Scholar 

  20. Reichle RH, Walker JP, Koster RD, Houser PR (2002) Extended versus ensemble Kalman filtering for land data assimilation. J Hydrometeorol 3:728–740

    Article  Google Scholar 

  21. Reichle RH (2008) Data assimilation methods in the earth sciences. Adv Water Resour 31(11):1411–1418 Hydrologic Remote Sensing

    Article  Google Scholar 

  22. Schwartz AL, Polak E, Chen YQ (1997) A MATLAB toolbox for solving optimal control problems. Version 1.0 for Windows, May

    Google Scholar 

  23. Seuffert G, Wilker H, Viterbo P, Drusch M, Mahfouf J-F (2004) The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis. J Hydrometeorol 5:516–531

    Article  Google Scholar 

  24. Tarantola A (1987) Inverse problem theory. Methods for data fitting and model parameter estimation. Amsterdam, Elsevier

    MATH  Google Scholar 

  25. Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159–170

    Google Scholar 

  26. Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square root filters. Mon Weather Rev 131:1485–1490

    Article  Google Scholar 

  27. von Storch H, Hewitson B, Mearns L (2000) Review of empirical downscaling techniques. Technical report, Regional Climate Development Under Global Warming

    Google Scholar 

  28. von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Climate 6:1161–1171

    Article  Google Scholar 

  29. Wilby RL, Hassan H, Hanaki K (1998) Statistical downscaling of hydrometeorological variables using general circulation model output. J Hydrol 205(1–2):1–19

    Article  Google Scholar 

  30. Wilks DS (2006) Statistical methods in the atmospheric sciences: an introduction. Amsterdam, Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Tricaud .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tricaud, C., Chen, Y. (2012). Optimal Mobile Remote Sensing Policy for Downscaling and Assimilation Problems. In: Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems. Springer, London. https://doi.org/10.1007/978-1-4471-2262-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2262-3_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2261-6

  • Online ISBN: 978-1-4471-2262-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics