Skip to main content

Optimal Heterogeneous Mobile Sensing for Parameter Estimation of Distributed Parameter Systems

  • Chapter
Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems
  • 686 Accesses

Abstract

This chapter shows how results from using some well-known methods of optimum experimental design for linear regression models can be applied to the setting of the mobile sensor trajectory design problem for optimal parameter estimation of DPSs in case we wish to simultaneously optimize the number of sensors and their trajectories and to optimally allocate the experimental effort. The latter is understood here as allowing for different measurement accuracies of individual sensors, which are quantified by weights steering the corresponding measurement variances. This leads to a much more general setting that most frequently produces an uneven allocation of experimental effort between different sensors. This remains in contrast to the existing approaches. The corresponding solutions proposed in this chapter can obviously be implemented on a sensor network with heterogeneous mobile nodes. This chapter demonstrates that these solutions can be determined using convex optimization tools commonly employed in optimum experimental design and show how to apply numerical tools of optimal control to determine the optimal solutions. We also introduce the design of moving sensor optimal trajectories, which does not rely on initial estimates of the parameters but instead is based on knowledge of upper and lower bounds of the parameter values. In most research, the issue of initial estimates has been widely disregarded. Here, instead of using stochastic approximation algorithms for the search, we chose to rely on using the sensitivity coefficients in the average sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amouroux M, Babary JP (1988) Sensor and control location problems. In: Singh MG (ed) Systems & control encyclopedia. Theory, technology, applications, vol 6. Pergamon Press, Oxford, pp 4238–4245

    Google Scholar 

  2. Atkinson AC, Donev AN (1992) Optimum experimental designs. Clarendon Press, Oxford

    MATH  Google Scholar 

  3. Banks HT, Kunisch K (1989) Estimation techniques for distributed parameter systems. Systems & control: foundations & applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  4. Banks HT, Smith RC, Wang Y (1996) Smart material structures: modeling, estimation and control. Research in applied mathematics. Masson, Paris

    MATH  Google Scholar 

  5. Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4(1):1–51

    Article  MathSciNet  Google Scholar 

  6. Cassandras CG, Li W (2005) Sensor networks and cooperative control. Eur J Control 11(4–5):436–463

    Article  MathSciNet  Google Scholar 

  7. Chong C-Y, Kumar SP (2003) Sensor networks: evolution, opportunities, and challenges. Proc IEEE 91(8):1247–1256

    Article  Google Scholar 

  8. Christofides PD (2001) Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes. Systems & control: foundations & applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  9. Culler D, Estrin D, Srivastava M (2004) Overview of sensor networks. IEEE Comput 37(8):41–49

    Google Scholar 

  10. Daescu DN, Navon IM (2004) Adaptive observations in the context of 4D-Var data assimilation. Meteorol Atmos Phys 85:205–226

    Article  Google Scholar 

  11. Demetriou MA (2010) Design of consensus and adaptive-consensus filters for distributed parameter systems. Automatica 46:300–311

    Article  MATH  Google Scholar 

  12. Demetriou MA (2010) Guidance of mobile actuator-plus-sensor networks for improved control and estimation of distributed parameter systems. IEEE Trans Autom Control 55:1570–1584

    Article  MathSciNet  Google Scholar 

  13. Demetriou MA, Hussein II (2009) Estimation of spatially distributed processes using mobile spatially distributed sensor network. SIAM J Control Optim 48:266–291

    Article  MATH  MathSciNet  Google Scholar 

  14. Ermakov SM (ed) (1983) Mathematical theory of experimental design. Nauka, Moscow (in Russian)

    Google Scholar 

  15. Fedorov VV (1989) Optimal design with bounded density: optimization algorithms of the exchange type. J Stat Plan Inference 22:1–13

    Article  MATH  Google Scholar 

  16. Fedorov VV, Hackl P (1997) Model-oriented design of experiments. Lecture notes in statistics. Springer, New York

    Book  MATH  Google Scholar 

  17. Gruver WA, Sachs E (1980) Algorithmic methods in optimal control. Pitman, London

    Google Scholar 

  18. Jain N, Agrawal DP (2005) Current trends in wireless sensor network design. Int J Dist Sensor Netw 1:101–122

    Article  Google Scholar 

  19. Jennings LS, Fisher ME, Teo KL, Goh CJ (2002) MISER 3: optimal control software, version 2.0. Theory and user manual. Department of Mathematics, University of Western Australia, Nedlands

    Google Scholar 

  20. Jeremić A, Nehorai A (1998) Design of chemical sensor arrays for monitoring disposal sites on the ocean floor. IEEE Trans Oceanic Eng 23(4):334–343

    Article  Google Scholar 

  21. Jeremić A, Nehorai A (2000) Landmine detection and localization using chemical sensor array processing. IEEE Trans Signal Process 48(5):1295–1305

    Article  Google Scholar 

  22. Kiefer J, Wolfowitz J (1959) Optimum designs in regression problems. Ann Math Stat 30:271–294

    Article  MATH  MathSciNet  Google Scholar 

  23. Kubrusly CS, Malebranche H (1985) Sensors and controllers location in distributed systems—a survey. Automatica 21(2):117–128

    Article  MATH  MathSciNet  Google Scholar 

  24. Nakano K, Sagara S (1981) Optimal measurement problem for a stochastic distributed parameter system with movable sensors. Int J Syst Sci 12(12):1429–1445

    Article  MATH  MathSciNet  Google Scholar 

  25. Navon IM (1997) Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dyn Atmos Ocean 27:55–79

    Article  Google Scholar 

  26. Nehorai A, Porat B, Paldi E (1995) Detection and localization of vapor-emitting sources. IEEE Trans Signal Process 43(1):243–253

    Article  Google Scholar 

  27. Ögren P, Fiorelli E, Leonard NE (2004) Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans Autom Control 49(8):1292–1302

    Article  Google Scholar 

  28. Omatu S, Seinfeld JH (1989) Distributed parameter systems: theory and applications. Oxford mathematical monographs. Oxford University Press, New York

    MATH  Google Scholar 

  29. Patan M (2004) Optimal observation strategies for parameter estimation of distributed systems. PhD thesis, University of Zielona Góra, Zielona Góra, Poland

    Google Scholar 

  30. Polak E (1997) Optimization. Algorithms and consistent approximations. Applied mathematical sciences. Springer, New York

    MATH  Google Scholar 

  31. Porat B, Nehorai A (1996) Localizing vapor-emitting sources by moving sensors. IEEE Trans Signal Process 44(4):1018–1021

    Article  Google Scholar 

  32. Pukelsheim F (2006) Optimal design of experiments (classics in applied mathematics), vol 50. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  33. Quereshi ZH, Ng TS, Goodwin GC (1980) Optimum experimental design for identification of distributed parameter systems. Int J Control 31(1):21–29

    Article  Google Scholar 

  34. Rafajłowicz E (1986) Optimum choice of moving sensor trajectories for distributed parameter system identification. Int J Control 43(5):1441–1451

    Article  MATH  Google Scholar 

  35. Rafajłowicz E (1996) Algorithms of experimental design with implementations in MATHEMATICA. Akademicka Oficyna Wydawnicza PLJ, Warsaw (in Polish)

    Google Scholar 

  36. Schwartz AL, Polak E, Chen YQ (1997) A MATLAB toolbox for solving optimal control problems. Version 1.0 for Windows, May

    Google Scholar 

  37. Sinopoli B, Sharp C, Schenato L, Schaffert S, Sastry SS (2003) Distributed control applications within sensor networks. Proc IEEE 91(8):1235–1246

    Article  Google Scholar 

  38. Sun N-Z (1994) Inverse problems in groundwater modeling. Theory and applications of transport in porous media. Kluwer Academic, Dordrecht

    Google Scholar 

  39. Uciński D (2000) Optimal sensor location for parameter estimation of distributed processes. International Journal of Control 73(13)

    Google Scholar 

  40. Uciński D (2005) Optimal measurement methods for distributed-parameter system identification. CRC Press, Boca Raton

    MATH  Google Scholar 

  41. Uciński D (1999) Measurement optimization for parameter estimation in distributed systems. Technical University Press, Zielona Góra

    Google Scholar 

  42. Uciński D, Chen YQ (2005) Time-optimal path planning of moving sensors for parameter estimation of distributed systems. In: Proc 44th IEEE conference on decision and control, and the European control conference 2005, Seville, Spain, 2005. Published on CD-ROM

    Google Scholar 

  43. Uciński D, Korbicz J (2001) Optimal sensor allocation for parameter estimation in distributed systems. J Inverse Ill-Posed Probl 9(3):301–317

    MATH  MathSciNet  Google Scholar 

  44. van de Wal M, de Jager B (2001) A review of methods for input/output selection. Automatica 37:487–510

    Article  MATH  Google Scholar 

  45. von Stryk O (1999) User’s guide for DIRCOL, a direct collocation method for the numerical solution of optimal control problems. Version 2.1. Fachgebiet Simulation und Systemoptimierung, Technische Universität Darmstadt, November

    Google Scholar 

  46. Walter É, Pronzato L (1997) Identification of parametric models from experimental data. Communications and control engineering. Springer, Berlin

    Google Scholar 

  47. Zhao F, Guibas LJ (2004) Wireless sensor networks: an information processing approach. Kaufmann, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Tricaud .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tricaud, C., Chen, Y. (2012). Optimal Heterogeneous Mobile Sensing for Parameter Estimation of Distributed Parameter Systems. In: Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems. Springer, London. https://doi.org/10.1007/978-1-4471-2262-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2262-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2261-6

  • Online ISBN: 978-1-4471-2262-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics