Skip to main content

Stability of Reset Control Systems

  • Chapter
Reset Control Systems

Part of the book series: Advances in Industrial Control ((AIC))

  • 964 Accesses

Abstract

This chapter presents results on the stability of reset control systems with finite-dimensional base systems. The stability problem is addressed from different, complementary points of view: (i) internal or Lyapunov stability, (ii) external or input–output stability with passivity analysis, and (iii) stability by the describing function method. Internal stability techniques are subdivided into techniques giving rise to stability conditions that do not depend directly on the reset instants (reset-times independent) or, alternatively, are reset-times dependent. The first case is obtained directly using continuous time Lyapunov functions (that gives rise to the so-called H β condition), while the second case (reset-times dependent) requires a discretization at the after-reset values and a subsequent discrete-time Lyapunov analysis. Then, the input–output stability is studied, and a number or results are presented in connection with passivity and dissipativity properties of reset feedback loops. Finally, the standard describing function tool is used for approximately predicting the appearance or absence of oscillations and as a good practical tool to evaluate the phase lead obtained by reset compensation. The material is based on several published works (Baños et al. in European Control Conference, Kos, Greece, 2007; Baños et al. in Proc. IEEE International Symposium on Industrial Electronics, Spain, 2007; Baños et al. in 3rd IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza, Spain, 2009; Baños et al. in Nonlinear Anal. Hybrid Syst., 2010, doi:10.1016/j.nahs.2010.07.004; Baños et al. in IEEE Trans. Autom. Control 56(1):217–223, 2011; Carrasco et al. in 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, Florida, USA, 2008; Carrasco et al. in Syst. Control Lett. 59(1):18–24, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aangenent, W.H.T.M., Witvoet, G., Heemels, W.P.M.H., van de Molengraft, M.J.G., Steinbuch, M.: An LMI-based gain performance analysis for reset control systems. In: Proceedings of the American Control Conference (2008)

    Google Scholar 

  2. Bainov, D.D., Simeonov, P.S.: Systems with Impulse Effect: Stability, Theory and Applications. Ellis Horwood, Chichester (1989)

    MATH  Google Scholar 

  3. Baños, A., Carrasco, J., Barreiro, A.: Reset times-dependent stability of reset control system. In: European Control Conference, Kos, Greece (2007)

    Google Scholar 

  4. Baños, A., Carrasco, A., Barreiro, A.: Reset times dependent stability of reset systems with unstable base system. In: Proc. IEEE International Symposium on Industrial Electronics, Spain (2007)

    Google Scholar 

  5. Baños, A., Dormido, S., Barreiro, A.: Stability analysis of reset control systems with reset band. In: 3rd IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza, Spain (2009)

    Google Scholar 

  6. Baños, A., Dormido, S., Barreiro, A.: Limit cycles analysis in reset systems with reset band. Nonlinear Anal. Hybrid Syst. (2010). doi:10.1016/j.nahs.2010.07.004

    Google Scholar 

  7. Baños, A.: Carrasco, J., Barreiro, A.: Reset times-dependent stability of reset control systems. IEEE Trans. Autom. Control 56(1), 217–223 (2011)

    Article  Google Scholar 

  8. Bemporad, A., Bianchini, G., Brogi, F.: Passivity analysis and passification of discrete-time hybrid systems. IEEE Trans. Autom. Control 53(4), 1004–1009 (2008)

    Article  MathSciNet  Google Scholar 

  9. Beker, O.: Analysis of reset control systems. Ph.D. Thesis, University of Massachusetts, Amherst (2001)

    Google Scholar 

  10. Beker, O., Hollot, C.V., Chait, Y., Han, H.: Fundamental properties of reset control systems. Automatica 40, 905–915 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: On linear passive complementary systems. Eur. J. Control 8(3), 220–237 (2002)

    Article  Google Scholar 

  12. Carrasco, J., Baños, A., van der Schaft, A.: A passivity approach to reset control of nonlinear systems. In: 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, Florida, USA (2008)

    Google Scholar 

  13. Carrasco, J., Baños, A., van der Schaft, A.: A passivity-based approach to reset control systems stability. Syst. Control Lett. 59(1), 18–24 (2010)

    Article  MATH  Google Scholar 

  14. Bergen, A.R., Franks, R.L.: Justification of the describing function method. SIAM J. Control 9, 568–589 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernández, A., Barreiro, A., Baños, A., Carrasco, J.: Reset control for passive bilateral teleoperation. IEEE Trans. Ind. Electron. (2010). doi:10.1109/TIE.2010.2077610

    Google Scholar 

  16. Guo, Y., Wang, Y., Xie, L., Zheng, J.: Stability analysis and design of reset systems: theory and an application. Automatica 45(2), 492–497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haddad, W.M., Chellaboina, V., Nersesov, S.G.: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  18. Horowitz, I.M., Rosenbaum, P.: Nonlinear design for cost of feedback reduction in systems with large parameter uncertainty. Int. J. Control 24(6), 977–1001 (1975)

    Article  Google Scholar 

  19. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  20. Krishman, K.R., Horowitz, I.M.: Synthesis of a nonlinear feedback system with significant plant-ignorance for prescribed system tolerances. Int. J. Control 19(4), 689–706 (1974)

    Article  Google Scholar 

  21. Lozano, R., Brogliato, B., Egeland, O., Maschke, B.: Dissipative Systems Analysis and Control. Springer, London (2000)

    MATH  Google Scholar 

  22. Mees, A., Bergen, A.: Describing functions revisited. IEEE Trans. Autom. Control 20(4), 473–478 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michel, A., Hu, B.: Towards a stability theory of general hybrid dynamical systems. Automatica 35, 371–384 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nešić, D., Zaccarian, L., Teel, A.R.: Stability properties of reset systems. Automatica 44(8), 2019–2026 (2008)

    Article  MathSciNet  Google Scholar 

  25. Pogromski, A., Jirstrand, M., Spangeus, P.: On stability and passivity of a class of hybrid systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, USA (1998)

    Google Scholar 

  26. Rockafellar, R.T., Wets, J.-B.: Variational Analysis. Series of Comprehensive Studies in Mathematics, vol. 317. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  27. Rugh, W.J.: Linear System Theory, 2nd edn. Prentice Hall, New York (1996)

    MATH  Google Scholar 

  28. Sanders, S.R.: On limit cycles and the describing function method in periodically switched circuits. IEEE Trans. Circuits Syst. I 20(4), 473–478 (1975)

    Google Scholar 

  29. Van der Schaft, A.: -Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  30. Vidal, A., Baños, A.: QFT-based design of PI + CI compensators: application in process control. In: IEEE Mediterranean Conference on Control and Automation, pp. 806–811 (2008)

    Chapter  Google Scholar 

  31. Vidal, A., Baños, A.: Reset compensation for temperature control: experimental application on heat exchangers. Chem. Eng. J. 159(1–3), 170–181 (2010)

    Article  Google Scholar 

  32. Vidyasagar, M.: Nonlinear Systems Stability. Prentice-Hall, London (1993)

    Google Scholar 

  33. Willems, J.C.: Dissipative dynamical systems—Part I: General theory. Arch. Ration. Mech. Anal. 45, 321–351 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wright, R.A., Kravaris, C.: On-line identification and nonlinear control of an industrial pH process. J. Process Control 11, 361–374 (2001)

    Article  Google Scholar 

  35. Zefran, M., Bullo, F., Stein, M.: A notion of passivity for hybrid systems. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Baños .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Baños, A., Barreiro, A. (2012). Stability of Reset Control Systems. In: Reset Control Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2250-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2250-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2216-6

  • Online ISBN: 978-1-4471-2250-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics