Skip to main content

OLED Lighting Technology

  • Chapter
  • First Online:
Solar Lighting

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Considering the growing importance of energy savings and environment friendliness, solid-state lighting (SSL) is emerging as a highly competent and viable alternative to existing lighting technologies. White light organic light emitting devices (WOLEDs) are capturing the imagination of manufacturers, product designers, and end users owing to their potential use in SSL. Differentiating attributes of white OLEDs are brightness, high color rendering index (CRI), high contrast ratio, thin and lightweight, cost-effective and ease to deposit on plastic substrates to fabricate flexible light sources of different shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeiffer M, Forrest SR, Leo K, Thomson ME (2002) Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays. Adv Mater 14:1633–1636

    Article  Google Scholar 

  2. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature (London) 395:151–154

    Article  Google Scholar 

  3. Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) High-efficiency red electrophosphorescence devices. Appl Phys Lett 78:1622–1624

    Article  Google Scholar 

  4. Tanaka D, Sasabe H, Li YJ, Su SJ, Takea T, Kido J (2007) Ultra high efficiency green organic light-emitting devices. Jpn J Appl Phys, Part 2 46:L10–L12

    Article  Google Scholar 

  5. Chopra N, Lee JW, Zheng Y, Eom SH, Xue JG, So F (2008) High efficiency blue phosphorescent organic light-emitting device. Appl Phys Lett 93:143307-1–143307-3

    Article  Google Scholar 

  6. D’Andrade BW, Esler J, Lin C, Adamovich V, Xia S, Weaver MS, Kwon R, Brown JJ (2008) White phosphorescent OLEDs: maximizing the power efficacy lifetime product. International meeting on information display/International display manufacturing conference, vol 8. KINTEX, Ilsan Korea, IMID08, 13–17 Oct 2008, pp 1109–1111

    Google Scholar 

  7. Baldo MA, Forrest SR (2000) Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Phy Rev B 62:10958–10966

    Article  Google Scholar 

  8. Coushi K, Kwon R, Brown JJ, Sasabe H, Adachi C (2004) Triplet exciton confinement and unconfinement by adjacent hole-transport layers. J Appl Phys 95:7798–7802

    Article  Google Scholar 

  9. Tanaka D, Sasabe H, Li YJ, Su SJ, Takeda T, Kido J (2007) Ultra high efficiency green organic light-emitting devices. Jpn J Appl Phys, Express Lett. (Japan) 46:L10–L12

    Article  Google Scholar 

  10. Jeon WS, Park TJ, Kim SY, Pode R, Jang J, Kwon JH (2008) Low roll-off efficiency green phosphorescent organic light-emitting devices with simple double emissive layer structure. Appl Phys Lett 93:063303-1–063303-3

    Google Scholar 

  11. Meyer J, Hamwi S, Bülow T, Johannes HH, Riedl T, Kowalsky W (2007) Highly efficient simplified organic light emitting diodes. Appl Phys Lett 91:113506-1–113506-3

    Article  Google Scholar 

  12. Liu ZW, Helander MG, Wang ZB, Lu ZH (2009) Efficient bilayer phosphorescent organic light-emitting diodes: direct hole injection into triplet dopants. Appl Phys Lett 94:113305-1–113305-3

    Google Scholar 

  13. Huang Q, Cui J, Yan H, Veinot JGC, Marks TJ (2002) Small molecule organic light-emitting diodes can exhibit high performance without conventional hole transport layers. Appl Phys Lett 81:3528–3530

    Article  Google Scholar 

  14. Gao Y, Wang L, Zhang D, Duan L, Dong G, Qiu Y (2003) Bright single-active layer small-molecular organic light-emitting diodes with a polytetrafluoroethylene barrier. Appl Phys Lett 82:155–157

    Article  Google Scholar 

  15. Wang HF, Wang LD, Wu ZX, Zhang DQ, Qiao J, Qui Y, Wang XG (2006) Efficient single-active-layer organic light-emitting diodes with fluoropolymer buffer layers. Appl Phys Lett 88:131113-1–131113-3

    Google Scholar 

  16. Tse SC, Tsung KK, So SK (2007) Single-layer organic light-emitting diodes using naphthyl diamine. Appl Phys Lett 90:213502-1–213502-3

    Article  Google Scholar 

  17. Duggal AR, Heller CM, Shiang JJ, Liu J, Lewis LN (2007) Solution-processed organic light-emitting diodes for lighting. J Disp Technol 3:184–192

    Article  Google Scholar 

  18. Choulis SA, Choong VE, Mathai MK, So F (2005) The effect of interfacial layer on the performance of organic light-emitting diodes. App Phys Lett 87:113503-1–113503-3

    Article  Google Scholar 

  19. Misra A, Kumar P, Kamalasanan MN, Chandra S (2006) White organic LEDs and their recent advancements. Semicond Sci Technol 21:R35–R47

    Article  Google Scholar 

  20. Archenhold G, Future trend in solid state lighting, focus technology LEDs. http://www.lexedis.com/download/mondoarc_06_07_GB.pdf

  21. Sasabe H, Kido J (2011) Multifunctional materials in high-performance OLEDs: challenges for solid-state lighting. Chem Mater 23(3):621–630

    Article  Google Scholar 

  22. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952

    Article  Google Scholar 

  23. Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv Mater 22:572–582

    Article  Google Scholar 

  24. Spindler JP, Hatwar TK (2010) White light tandem OLED. US Patent 7,816,859 B2, 19 Oct 2010

    Google Scholar 

  25. Cok RS (2004) OLED lighting apparatus. US Patent 6,819,036 B2, 16 Nov 2004

    Google Scholar 

  26. Cok RS (2005) OLED lamp. US Patent 6,936,964 B2, 30 Aug 2005

    Google Scholar 

  27. Strip DR (2005) Series/Parallel OLED light source. US Patent 6,870,196 B2, 22 Mar 2005

    Google Scholar 

  28. Foust DF, Duggal AR, Shiang JJ, Nealon WF, Bortscheller JC (2008) OLED area illumination source. US Patent 7,348,738 B2, 25 Mar 2008

    Google Scholar 

  29. Destruel P, Jolinat P, Clergereaux R, Farenc J (1999) Pressure dependence of electrical and optical characteristics of Alq3 based organic electroluminescent diodes. J Appl Phys 85:397–400

    Article  Google Scholar 

  30. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater (Weinheim, Ger.) 16:1585–1595

    Article  Google Scholar 

  31. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  Google Scholar 

  32. Huang J, Blochwitz-Nimoth J, Pfeiffer M, Leo K (2003) Influence of the thickness and doping of the emission layer on the performance of organic light-emitting diodes with PiN structure. J App Phys 93:838–844

    Article  Google Scholar 

  33. He G, Pfeiffer M, Leo K, Hofmann M, Brinstock J, Pudzich R, Salbeck J (2004) High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers. Appl Phys Lett 85:3911–3913

    Article  Google Scholar 

  34. He G, Schneider O, Qin D, Zhou X, Pfeiffer M, Leo K (2004) Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction. J App Phys 95:5773–5777

    Article  Google Scholar 

  35. Kondakova ME, Pawlik TD, Young RH, Giesen DJ, Kondakov DY, Brown CT, Deaton JC, Lenhard JR, Klubek KP (2008) High-efficiency, low-voltage phosphorescent organic light-emitting diode devices with mixed host. J Appl Phys 104:094501-1–094501-17

    Article  Google Scholar 

  36. Partridge R (1983) Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations. Polymer 24:733–738

    Article  Google Scholar 

  37. Burroughes JH, Bradley DDC, Brown AR, Marks RN, MacKay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  Google Scholar 

  38. Friend RH, Burroughes JH, Bradley DD (1993) US Patent 5,247,190, 21 Sept 1993

    Google Scholar 

  39. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Brédas JL, Lögdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397:121–128

    Article  Google Scholar 

  40. Tsuzuki T, Shirasawa N, Suzuki T, Tokito S (2003) Color tunable organic light-emitting diodes using pentafluorophenyl-substituted iridium complexes. Adv Mater 15:1455–1458

    Article  Google Scholar 

  41. Adachi C, Baldo MA, Forrest SR, Thompson ME (2000) High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. App Phys Lett 77:904–906

    Article  Google Scholar 

  42. Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR (2006) Light-emitting devices containing network electrode polymers in electron blocking layer. Nature 440:908–912

    Article  Google Scholar 

  43. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. App Phys Lett 75:4–6

    Article  Google Scholar 

  44. Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J App Phys 90:5048–5051

    Article  Google Scholar 

  45. Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials. App Phys Lett 79:2082–2084

    Article  Google Scholar 

  46. Holmes RJ, Forrest SR, Tung YJ, Kwong RC, Brown JJ, Garon S, Thompson ME (2003) Blue organic electrophosphorescence using exothermic host–guest energy transfer. App Phys Lett 82:2422–2424

    Article  Google Scholar 

  47. Py C, D’Iorio M, Tao Y, Stapledon J, Marshall P (2000) A passive matrix addressed organic electroluminescent display using a stack of insulators as row separators. Synth Met 113:155–159

    Article  Google Scholar 

  48. Pribat D, Plais F (2001) Matrix addressing for organic electroluminescent displays. Thin Solid Films 383:25–30

    Article  Google Scholar 

  49. Lilja KE, Bäcklund TG, Lupo D, Virtanen J, Hämäläinen E, Joutsenoja T (2010) Printed organic diode backplane for matrix addressing an electrophoretic display. Thin Solid Films 518:4385–4389

    Article  Google Scholar 

  50. Lee CJ, Pode RB, Moon DG, Han JI (2004) Realization of an efficient top emission organic light-emitting device with novel electrodes. Thin Solid Films 467:201–208

    Article  Google Scholar 

  51. Pode RB, Lee CJ, Moon DG, Han JI (2004) Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer. Appl Phys Lett 84:4614–4616

    Article  Google Scholar 

  52. Lee CJ, Pode RB, Moon DG, Han JI, Park NH, Baik SH, Ju SS (2004) On the problem of microcavity effects on the top emitting OLED with semitransparent metal cathode. Phys Stat Sol (a) 201:1022–1028

    Article  Google Scholar 

  53. Feng T, Ali TA, Ramakrishnan ES, Campos R, Howard WE (2000) In: Kafafi ZH (ed) Organic light-emitting materials and devices IV, vol 4105. San Diego, USA, Proceedings of SPIE, 31 July–2 Aug 2000, p 30

    Google Scholar 

  54. Riel H, Karg S, Beierlein T, Rieb W, Neyts K (2003) Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study. J Appl Phys 94:5290–5296

    Article  Google Scholar 

  55. Twentieth Finetech Japan 2010, Tokyo 163-0570, Japan, 14–16 Apr 2010. http://www.novaled.com

  56. NOVALED Transparent OLED Lighting Panel (2011). http://www.oled-display.net/novaled-show-transparent-oled-lighting-panels-at-digital-experience-Consumer Electronics Show-2011

  57. Sony Develops Flexible, Transparent OLED Display (2008). http://www.geek.com/articles/gadgets/sony-develops-flexible-transparent-oled-display-2008106

  58. Hou J, Wu J, Xie Z, Wang L (2009) Efficient inverted top-emitting organic light-emitting diodes using ultrathin MoO3/C60 bilayer structure to enhance hole injection. Appl Phys Lett 95:203508-1–203508-3

    Google Scholar 

  59. Thomschke M, Nitsche R, Furno M, Leo K (2009) Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes. Appl Phys Lett 94:083303-1–083303-3

    Article  Google Scholar 

  60. Ryu SY, Noh JH, Hwang BH, Kim CS, Jo SJ, Kim JT, Hwang HS, Baik HK, Jeong HS, Lee CH, Song SY, Choi SH, Park SY (2008) Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode. Appl Phys Lett 92:023306-1–023306-3

    Google Scholar 

  61. Lim JT, Lee JH, Park JK, Park BJ, Yeom GY (2008) Top-emitting organic light-emitting diodes based on semitransparent conducting cathode of Ba/Al/ITO. Surf Coat Technol 202:5646–5649

    Article  Google Scholar 

  62. Lee HK, Park IS, Kwak JH, Yoon DY, Lee CH (2010) Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles. Appl Phys Lett 96:153306-1–153306-3

    Google Scholar 

  63. Lee YJ, Kim JH, Kwon SN, Min CK, Yi Y, Kim JW, Koo B, Hong MP (2008) Interface studies of Aluminum, 8-hydroxyquinolatolithium (Liq) and Alq3 for inverted OLED application. Org Electron 9:407–412

    Article  Google Scholar 

  64. Meyer J, Winkler T, Hamwi S, Schmale S, Kröger M, Görrn P, Johannes HH, Riedl T, Lang E, Becker D, Dobbertin T, Kowalsky W (2007) Highly efficient fully transparent inverted OLEDs. Proc. SPIE 6655:66550L-1–66550L-10

    Google Scholar 

  65. Dobbertin T, Schneider D, Kammoun A, Meyer J, Werner O, Kroger M, Riedl T, Becker E, Schildknecht C, Johannes HH, Kowalsky W (2004) Inverted topside-emitting OLED. Proc. SPIE (SPIE, Bellingham, WA) 5214:150–161

    Google Scholar 

  66. Lee YJ, Kim JH, Jang JN, Yang IH, Kwon SN, Hong MP, Kim DC, Oh KS, Yoo SJ, Lee BJ, Jang WG (2009) Development of inverted OLED with top ITO anode by plasma damage-free sputtering. Thin Solid Films 517:4019–4022

    Article  Google Scholar 

  67. Chen CW, Yang Y, Wu CC (2004) Novel bottom cathode structure for inverted top-emitting OLEDs. Proceedings of the international symposium on super-functionality organic devices, IPAP conference series 6, pp 114–116

    Google Scholar 

  68. Illuminating Engineering Society of North America (IESNA). http://www.iesna.org

  69. Visionox. www.visionox.com/en

  70. American National Standard, Specifications for the Chromaticity of Solid State Lighting Products. http://www.ledart.ru/files/img/C78.377-2008.pdf

  71. Holmes RJ, D’Andrande BW, Ren X, Li J, Thompson ME, Forrest SR (2003) Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl Phys Lett 83:3818–3820

    Article  Google Scholar 

  72. Li F, Cheng G, Zhao Y, Feng F, Liu SY (2003) White-electrophosphorescence devices based on rhenium complexes. Appl Phys Lett 83:4716–4718

    Article  Google Scholar 

  73. Liu J, Zhou Q, Cheng Y, Geng Y, Wang L, Ma D, Jing X, Wang F (2006) White electrolumineseence from a single-polymer system with simultaneous two-color emission, polyfluorene as the blue host and a 2, 1, 3-benzothiadiazole derivative as the orange dopant on the main chain. Adv Funct Mater 16:957–965

    Article  Google Scholar 

  74. Attar HA, Monkman AP, Tavasli M, Bettington S, Bryce MR (2005) White polymeric light-emitting diode based on a fluorine polymer/Ir complex blend system. Appl Phys Lett 86:121101-1–121101-3

    Google Scholar 

  75. Chang CH, Tien KC, Chen CC, Lin MS, Cheng HC, Liu SH, Wu CC, Hung JY, Chiu YC, Chi Y (2010) Efficient phosphorescent white OLEDs with high color rendering capability. Org Electron 11:412–418

    Article  Google Scholar 

  76. Fast2Light Consortium. www.fast2light.org/

  77. Solid State Lighting Technology Scenery (LED, OLED) Displaybank Report 2007

    Google Scholar 

  78. Novaled Press release, 7 June 2006. http://www.novaled.com/news/2006_06_07_pr.html

  79. http://www.konicaminolta.com/about/research/oled/advanced/vol01.html

  80. Visser P (2008) The next: OLEDs the next light source, the olla project. http://spie.org/documents/Newsroom/audio/Visser.pdf

  81. Grabowski SP (2008) Organic LED lighting in European dimensions, EU-concertation meeting FP7 photonic projects, Barcelona, 18–19 Sept 2008. ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/photonics/20080918-presentation-concertation-oled100_en.pdf

  82. Osram Lighting Overview (2010). http://www.osram-os.com/osram_os/EN/Products/Product_Promotions/OLED_Lighting/_pdf/OS_SSL_OLED_Overview.pdf

  83. OLED Displays and Lighting Applications (2010). http://www.novaled.com/downloadcenter/Novaled_Profile_070410.pdf. The OLED Lighting User’s Manual. http://www.novaled.com/downloadcenter/manual_short_preview.pdf

  84. Hack M (2009) Universal display corporation DOE R & D workshop, San Francisco, 4 Feb 2009. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/hack_ssl09.pdf

  85. Lee TW, Noh TY, Choi BK, Kim MS, Shin DW, Kido J (2008) High-efficiency stacked white organic light-emitting diodes. Appl Phys Lett 92:043301-1–043301-3

    Google Scholar 

  86. Q&A with Verbatim’s OLED team, 13 Sept 2010. http://www.oled-info.com/qa-verbatims-oled-team

  87. http://www.osa-direct.com/osad-news/ge-and-konica-minolta-announce-56-lmw-flexible-white-oled-lighting-devices.html

  88. Kanno H, Giebink NC, Sun Y, Forrest SR (2006) Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters. Appl Phys Lett 89:023503-1–023503-3

    Google Scholar 

  89. Kanno H, Hamada Y, Nishimura K, Okumoto K, Saito N, Ishida H, Takahashi H, Shibata K, Mameno K (2006) High efficiency stacked organic light-emitting diodes employing Li2O as a connecting layer. Jpn J Appl Phys 45(12): 9219–9223

    Article  Google Scholar 

  90. Chin BD, Kim JK, Park OO (2007) Controlled light emission from white organic light-emitting devices with a single blue-emitting host and multiple fluorescent dopants. J Phys D: Appl Phys 40:4436–4441

    Article  Google Scholar 

  91. Ko YW, Chung CH, Lee JH, Kim YH, Sohn CY, Kim BC, Hwang CS, Song YH, Lim JT, Ahn YJ, Kang GW, Lee NH, Lee CH (2003) Efficient white organic light emission by single emitting layer. Thin Solid Films 426:246–249

    Article  Google Scholar 

  92. Jang SE, Yook KS, Lee JY (2011) Simplified white phosphorescent organic light-emitting diodes without any charge transport layer. Curr Appl Phys 11:865–868

    Article  Google Scholar 

  93. http://www.oled-display.net/basf-and-osram-set-new-standards-for-energy-saving-oled-lighting

  94. Ide N, Komoda T, Kido J (2006) Organic light-emitting diode (OLED) and its application to lighting devices. Proc. SPIE 6333:63330M

    Article  Google Scholar 

  95. Lee MT, Lin JS, Chu MT, Tseng MR (2008) Low-voltage, high-efficiency blue phosphorescent organic light-emitting devices. Appl Phys Lett 92:173305-1–173305-3

    Google Scholar 

  96. Highly efficient white OLEDs for lighting applications. http://www.novaled.com/news/download/2005_10_27_1130915163spie_english.pdf

  97. www.polymertronics.com

  98. Kaneka to Release Organic LED Panel in March, 17 Feb 2011. http://techon.nikkeibp.co.jp/english/NEWS_EN/20110217/189647/

  99. Jung KH, Bae JY, Park SJ, Yoo SH, Bae BS (2011) High performance organic-inorganic hybrid barrier coating for encapsulation of OLEDs. J Mater Chem 21:1977–1983

    Article  Google Scholar 

  100. Rakuff S, Farquhar DS, Heller CMA, Erlat AG (2011) Hermetic package with getter materials, WO/2011/014307, 3 Feb 2011

    Google Scholar 

  101. Sprengard R, Bonrad K, Däubler TK, Frank T, Hagemann V, Köhler I, Pommerehne J, Ottermann C, Voges F, Vingerling B (2004) OLED devices for signage applications - a review of recent advances and remaining challenges, organic light-emitting materials and devices VIII. In: Kafafi ZH, Lane PA (eds) Proceedings of SPIE, 5519:173–183

    Google Scholar 

  102. Yong Q, Lian D, Yang L, Liduo W, Organic light-emitting devices and their encapsulation method and application of this method. US Patent 7317280 B2, 8 Jan 2008

    Google Scholar 

  103. 19 Oct 2010, http://www.processindustryinformer.com/Process-Industry-News-Events/Huntsman-wins-JEC-Asia-Innovation-Award-2010-for-Electrical-and-Electronics-Engineering-EEE

  104. Galand E (2010) Thin-film encapsulation of organic light emitting devices (OLEDs), 25 June 2010. http://www.swisslaser.net/libraries.files/GALAND_CSEM_EG_June_2010.pdf

  105. Wu Z, Wang L, Chang C, Qiu Y (2005) A hybrid encapsulation of organic light-emitting devices. J Phys D: Appl Phys 38:981–984

    Article  Google Scholar 

  106. Riedl T, Meyer J, Schmidt H, Winkler T, Kowalsky W (2010) Thin film encapsulation of top-emitting OLEDs using atomic layer deposition, OSA/sensors 2010

    Google Scholar 

  107. Han JM, Han JW, Chun JY, Ok CH, Seo DS (2008) Novel encapsulation method for flexible organic light-emitting diodes using poly(dimethylsiloxane). Jpn J Appl Phys 47:8986–8988

    Article  Google Scholar 

  108. Munisamy A (2010) Flexible OLED light source. US Patent 7663312, 16 Feb 2010

    Google Scholar 

  109. Kim GH, Oh JY, Yang YS, Do LM, Suh KS (2004) lamination process encapsulation for longevity of plastic-based organic light-emitting devices. Thin Solid Films 467(1–2):1–3

    Article  Google Scholar 

  110. Li CY, Wei B, Zhang JH (2008) Encapsulation of organic light-emitting devices for the application of display. International conference on electronic packaging technology & high density packaging, ICEPT-HDP 2008, pp 1–4, 28–31 July 2008, Print ISBN: 978-1-4244-2739-0

    Google Scholar 

  111. Han YC, Jang C, Kim KJ, Choi KC, Jung KH, Bae BS (2011) The encapsulation of an organic light-emitting diode using organic–inorganic hybrid materials and MgO. Org Electron 12(4):609–613

    Article  Google Scholar 

  112. Yoshioka Y, Jabbour GE (2006) Desktop inkjet printer as a tool to print conducting polymers. Synth Met 156(11–13):779–783

    Article  Google Scholar 

  113. Mannerbro R, Ranlöf M, Robinson N, Forchheimer R (2008) Inkjet printed electrochemical organic electronics. Synth Met 158(13):556–560

    Article  Google Scholar 

  114. Xing R, Ye T, Ding Y, Ma D, Han Y (2009) Formation of low surface energy separators with undercut structures via a full-solution process and its application in inkjet printed matrix of polymer light-emitting diodes. Org Electron 10(2):313–319

    Article  Google Scholar 

  115. Ding Z, Xing R, Fu Q, Ma D (2011) Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Org Electron 12(4):703–709

    Article  Google Scholar 

  116. Gallo EA, Sadasivan S, Wang X (2004) Ink jet printing method. US Patent 6,692,123 B2. 17 Feb 2004

    Google Scholar 

  117. Chen T, Chu L (2001) Ink jet printing method. US Patent 6,315,405 B1, 13 Nov 2001

    Google Scholar 

  118. Han YC. http://www.morfon.com/oled-inkjet-printer/

  119. http://www.oled-info.com/seiko-epson-plans-launch-37-inkjet-printed-oled-tvs-2012

  120. Maiorano V, Perrone E, Carallo S, Biasco A, Pompa PP, Cingolani R, Croce A, Blyth RIR, Thompson J (2005) White phosphorescent, wet-processed, organic light-emitting diode, on a window-glass substrate. Synth Met 151(2):147–151

    Article  Google Scholar 

  121. Wang L, Wu Z, Zhang X, Wang D, Hou X (2010) Solution-processed white organic light-emitting devices based on small-molecule materials. J Lumin 130:321–325

    Article  Google Scholar 

  122. Wang D, Wu Z, Zhang X, Jiao B, Liang S, Wang D, He R, Hou X (2010) Solution-processed organic films of multiple small-molecules and white light-emitting diodes. Org Electron 11(4):641–648

    Article  Google Scholar 

  123. Kim SO, Zhao Q, Thangaraju K, Kim JJ, Kim YH, Kwon SK (2011) Synthesis and characterization of solution-processable highly branched iridium (III) complex cored dendrimer based on tetraphenylsilane dendron for host-free green phosphorescent organic light emitting diodes. Dyes Pigm 90:139–145

    Article  Google Scholar 

  124. Park BC, Jeon HG, Huh YH, Lee YI, Han WT, Kim IT, Park JW (2011) Solution-processable double-layered ionic p-i-n organic light-emitting diodes. Curr Appl Phys 11:673–676

    Article  Google Scholar 

  125. Park JJ, Lee ST, Park TJ, Jeon WS, Jang J, Kwon JH, Pode R (2009) Stable efficiency roll-off in solution-processed phosphorescent green organic light-emitting diodes. J Korean Phys Soc 55:327–330

    Article  Google Scholar 

  126. Pode R, Lee SJ, Jin SH, Kim S, Kwon JH (2010) Solution processed efficient orange phosphorescent organic light-emitting device with small molecule host. J Phys D: Appl Phys 43:025101-1–025101-5

    Article  Google Scholar 

  127. Kopola P, Tuomikoski M, Suhonen R, Maaninen A (2009) Gravure printed organic light emitting diodes for lighting applications. Thin Solid Films 517:5757–5762

    Article  Google Scholar 

  128. Choi MC, Kim YK, Ha CS (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33:581–630

    Article  Google Scholar 

  129. Lee JW, Mun KK, Yoo YT (2009) A comparative study on roll-to-roll gravure printing on PET and BOPP webs with aqueous ink. Prog Org Coat 64:98–108

    Article  Google Scholar 

  130. White JM, Takako T (2009) Roll-to-roll OLED production system, US Patent 2009/0274830A1, 5 Nov 2009

    Google Scholar 

  131. Brabec C, Hauch J (2007) Roll to roll manufacturing of organic solar modules. US Patent 2007/0295400 A1, 27 Dec 2007

    Google Scholar 

  132. Brabec C, Hauch J (2005) Roll to roll manufacturing of organic solar modules. US Patent 2005/0272263 A1, 8 Dec 2005

    Google Scholar 

  133. Nolan PT, Arias del Cid AM (2008) Variable environment, scale-able, roll to roll system and method for manufacturing thin film electronics on flexible substrates. US Patent 7,410,542 B2, 12 Aug 2008

    Google Scholar 

  134. Illuminating Engineering Society of North America (IESNA). http://www.iesna.org

  135. http://www.cormusa.org/uploads/CORM_2009_-_IESNA_Standards_on_LED_and_SSL_LM79LM80_and_Future_Standards_CORM_2009_Y_Ohno.pdf

  136. http://www.ies.org/PDF/Erratas/RP_16_08addendum.pdf

  137. CIE–International Commission on Illumination. www.cie.co.at

  138. Underwriters Laboratories Inc. (UL). UL.com

  139. http://img.ledsmagazine.com/objects/features/6/9/1/Intertek.pdf

  140. National Electrical Manufacturers Association (NEMA). www.nema.org

  141. http://www.nema.org/stds/ssl1.cfm

  142. http://www.nema.org/stds/lsd44.cfm

  143. http://www.nema.org/stds/lsd45.cfm

  144. http://www.nema.org/stds/ssl6.cfm

  145. Duggal AR, Michael JD (2009) AC powered OLED device. US Patent 7, 576,496 B2, 18 Aug 2009

    Google Scholar 

  146. Philips Lumiblade OLED Light—First Looks, 2009. http://www.oled-info.com/philips-lumiblade-oled-light-first-looks

  147. OSRAM Opto Semiconductors Presents First OLED Light Source, 25 Nov 2009. http://www.osram-os.com/osram_os/EN/Press/Press_Releases/Organic_LED/ORBEOS-OLED-light-source.html

  148. OSRAM Presents the First OLED Luminaire, 8 Nov 2010. http://www.lightingdigest.co.uk/products/1984-osram-presents-the-first-oled-luminaire

  149. White OLED Outlook Brightens with Efficiency Breakthrough, 15 July 2010. http://www.gelighting.com/eu/resources/press_room/OLED_announcement_EU.html

  150. GE and Konica Minolta Announce 56 lm/W Flexible White OLED Lighting Devices, 19 July 2010. http://www.osa-direct.com/osad-news/321.html

  151. Fraunhofer Unveils New OLED Lighting Panels to be Released Q1 2011, 17 Oct 2010. http://www.oled-info.com/fraunhofer-unveils-new-oled-lighting-panels-be-released-q1-2011

  152. Novaled OLED Meets DoE Lighting Specs, 20 Aug 2009. http://www.eetimes.com/electronics-news/4084429/Novaled-OLED-meets-DoE-lighting-specs

  153. Add-Vision Awarded STTR Phase-I Grant by DOE (Degradation studies), 27 Apr 2007. http://www.add-vision.com/news_details.php?news_id=5

  154. Add-Vision Extends Life of Low Cost Flexible OLEDs, 21 May 2007. http://www.printedelectronicsworld.com/articles/add_vision_extends_life_of_low_cost_flexible_oleds_00000563.asp?sessionid=1

  155. Add-Vision Awarded Core Technologies Grant by DOE for $1.56 Million, 17 Oct 2008. http://www.add-vision.com/uploads/16_Press%20Release%20%2311.pdf

  156. Bayer Material Science and Add-Vision Sign License Agreement on Polymeric OLEDs, 15 June 2009. http://www.nanowerk.com/news/newsid=11174.php

  157. http://www.universaldisplay.com/

  158. White OLED Combining High Efficiency with Long Life. http://www.konicaminolta.com/about/research/oled/advanced/vol01.html

  159. Konica Minolta to Build a New Pilot Production Line for OLED Lighting Toward Commercialization, 23 Nov 2009. http://www.ledinside.com/node/10298

  160. Lumiotec OLED Lighting Panel Hands on Review. http://www.oled-info.com/lumiotec-oled-lighting-panel-hands-review

  161. Rohm and Lumiotec Developed a New OLED Lighting Panel, to Start Shipping Soon. http://www.oled-info.com/rohm-and-lumiotec-developed-new-oled-lighting-panel-start-shipping-soon

  162. Lumiotec Co. Ltd., Marketing Group (2010) Organic light-emitting diode panels for lighting. Mitsubishi Heavy Ind Tech Rev 47(1):51–52

    Google Scholar 

  163. Lumiotec Ships OLED Lighting for Commercial Applications, 25 Jan 2011. http://www.plusplasticelectronics.com/lighting/lumiotec-ships-oled-lighting-for-commercial-applications-23312.aspx

  164. www.lumiotec.com

  165. http://www.oled-info.com/manufacturing_equipment/tokki

  166. Canon Acquires Tokki for OLEDs, Solar Cell Start, 19 Dec 2007. http://techon.nikkeibp.co.jp/article/HONSHI/20071219/144405/

  167. http://www.dnp.co.jp/eng/corporate/history.html

  168. http://www.onlyoled.co.uk/flexible-led-oled-posters-dai-nippon-printing

  169. http://www.oled-info.com/tags/companies/sumitomo

  170. Toppan Forms to Test Markets with Printed Electronics. http://www.printelectronicnews.com/2505/toppan-forms-to-test-markets-with-printed-electronics/

  171. http://www.kodak.com

  172. www.mcm.dupont.com

  173. DOE Fund Innovative OLED Lighting Developed by DuPont, 16 Nov 2009. http://www.oled-display.net/doe-fund-innovative-oled-lighting-developed-by-dupont

  174. DuPont OLED Lighting. http://www2.dupont.com/Displays/en_US/products_services/oled/lighting/index.html

  175. http://www.idemitsu.com/company/whatwedo.html

  176. LG Chem Unveils OLED Lighting Panels, to Start Mass Production in 2H 2010. http://www.oled-info.com/lg-chem-unveils-oled-lighting-panels-start-mass-production-2h-2010

  177. http://www.oled-display.net/smd-unveils-production-ready-oled-tvs-and-amoleds-at-sid-2009

  178. http://www.visionox.com/en/product.aspx?PrID=3

  179. Modistech will Commercialize Flexible OLED This Year, 19 Feb 2010. http://www.oled-display.net/modistech-will-commercialize-flexible-oled-this-year?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+OLED-Display-News+%28OLED-PLED+Display+NEWS%29 www.aixtron.com

  180. Kaneka Announces Availability of OLED Lighting Panels in Japan during March 2011 and in Europe during April 2011, 23 Feb 2011. http://www.osa-direct.com/osad-news/kaneka-announces-availability-of-oled-lighting-panels-in-japan-during-March-2011-and-in-europe-during-April-2011.html

  181. www.kaneka.co.jp

  182. http://www.oled-info.com/tags/technical_research/oled_ink_jet_printing

  183. OLED Lighting: An Eight-Year Market Forecast (2010) NanoMarkets, 5 Aug 2010. http://nanomarkets.net/market_reports/report/oled_lighting_an_eight-year_market_forecast_2010/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramchandra Pode .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pode, R., Diouf, B. (2011). OLED Lighting Technology. In: Solar Lighting. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2134-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2134-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2133-6

  • Online ISBN: 978-1-4471-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics