Skip to main content

Gene Therapy for Primary and Metastatic Cancer to the Liver

  • Chapter
Liver Metastases

Abstract

The term ‘gene therapy’ applies to all approaches involving the introduction of genetic material into a patient’s cells to produce a therapeutic protein or inhibit gene function. This therapy is possible because viruses, bacteria, plants and mammals all share the same interchangeable genetic code. Gene therapy is currently being employed in an attempt to cure or ameliorate the growth of various malignancies.1,2 The potential experimental gene therapies used for treating cancer may (1) transfer ‘suicide genes’ whose protein products converts a non-toxic precursor to a toxic molecule that kills the cancer cells (2) inhibit or regulate oncogenes (3) transfer tumour suppressor genes, such as p53 (4) promote or reinforce an immunological response to the tumour (5) inhibit proteins necessary for promoting metastases (6) inhibit tumour angiogenesis or (7) transfer drug resistance genes for bonemarrow protection from high-dose chemotherapy. This area of potential therapy is in its infancy and most approaches have yet to pass even the most preliminary clinical tests demonstrating their overall safety and efficacy. Common issues that are applied to the gene therapy of all diseases involves gene transfer, gene regulation, vector efficiency and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roth JA, Cristiano RJ. Gene therapy for cancer: What have we done and where we going? [Review] J Natl Cancer Inst 1997; 89:21–39.

    Article  PubMed  CAS  Google Scholar 

  2. Blaese RM. Gene therapy for cancer. Sci Am 1997; 276:111–115.

    Article  PubMed  CAS  Google Scholar 

  3. Colombo M. Hepatocellular carcinoma. J Hepatol 1992; 15:225–236.

    Article  PubMed  CAS  Google Scholar 

  4. Scheele J, Stangl R, Attendorf HA. Hepatic metastases from colorectal carcinoma: Impact of surgical resection on the natural history. Br J Surg 1990; 77:1241.

    Article  PubMed  CAS  Google Scholar 

  5. Smith AE. Viral vectors in gene therapy. Annu Rev Microbial 1995; 49:807–838.

    Article  CAS  Google Scholar 

  6. Bao J-J, Zhang W-W, Kuo MT. Adenoviral delivery of recombinant DNA into transgenic mice bearing hepatocellular carcinomas. Human Gene Ther 1996; 7:355–365.

    Article  CAS  Google Scholar 

  7. Arbuthnot PB, Bralet MP, Le Jossic C, Dedieu JF, Perricaudet M, Brechot C, Ferry N. In vitro and in vivo hepatoma cellspecific expression of a gene transferred with an adenoviral vector. Human Gene Ther 1996; 7:1503–1514.

    Article  CAS  Google Scholar 

  8. Blaese M, Blankenstein T, Brenner M, Cohen-Haguenauer O, Gansbacher B, Russell S, Sorrentino B, Velu T. Vectors in cancer therapy: How will they deliver? Cancer Gene Ther 1995; 2:291–297.

    PubMed  CAS  Google Scholar 

  9. Jones N, Shank T. Isolation of adenovirus type III host strain deletion mutants defective in transformation of rat embryo. Cell 1979; 17:683–689.

    Article  PubMed  CAS  Google Scholar 

  10. Ilan Y, Droguett G, Chowdhury NR, Li Y, Sengupta K, Thummala NR, Davidson A, Chowdhury JR, Horwitz MS. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci USA 1997; 94:2587–2592.

    Article  PubMed  CAS  Google Scholar 

  11. Kay MA, Holterman A-X, Meuse L, Gown A, Ochs HD, Linsley PS, Wilson CB. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA41g administration. Nature Genetics 1995; 11:191.

    Article  PubMed  CAS  Google Scholar 

  12. Taylor I, Bennett R, Sherriff S. The blood supply of colorectal liver metastases. Br J Cancer 1979; 39:749–756.

    Google Scholar 

  13. Schaffner F, Popper H. Capillarization of hepatic sinusoids in man. Gastroenterology 1963; 44:239–242.

    PubMed  CAS  Google Scholar 

  14. Wills KN, Huang WM, Harris MP, Machemer T, Maneval DC, Gregory RJ. Gene therapy for hepatocellular carcinoma: chemosensitivity conferred by adenovirus-mediated transfer of the HSV -1 thymidine kinase gene. Cancer Gene Ther 1995; 2:191–197.

    PubMed  CAS  Google Scholar 

  15. Kanai F, Lan K-H, Shiratori Y et al. In vivo gene therapy for a-fetoprotein-producing hepatocellular carcinoma by adenovirus- mediated transfer of cytosine deaminase gene. Cancer Res 1997; 57:461–465.

    PubMed  CAS  Google Scholar 

  16. Kay MA, Li Q, Liu TJ, Leland F, Toman C, Finegold M, Woo SL. Hepatic gene therapy: persistent expression of human alpha I-antitrypsin in mice after direct gene delivery in vivo. Human Gene Ther 1992; 3:641–647.

    Article  CAS  Google Scholar 

  17. Hafenrichter DG, Wu X, Rettinger SD, Kennedy SC, Flye MW, Ponder KP. Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction ofhepatocytes. Blood 1994; 10:3394–3404.

    Google Scholar 

  18. Okuyama T, Huber RM, Bowling WM, Pearline R, Kennedy SC, Flye MW, Ponder KP. Liver-directed gene therapy: A retroviral vector with a complete L TR and the ApoE enhancer-aI-antitrypsin promoter dramatically increases expression of human aI-antitrypsin in vivo. Human Gene Ther 1996; 7:637–645.

    Article  CAS  Google Scholar 

  19. Wilson JM, Chowdhury NR, Grossman M, Wajsman R, Epstein A, Mulligan RC, Chowdhury JR. Temporary amelioration of hyperlipidemia in low density lipoprotein-deficient rabbits transplanted with genetically modified hepatocytes. Proc Natl Acad Sci USA 1990; 87:8437.

    Article  PubMed  CAS  Google Scholar 

  20. Grossman M, Radar DJ, Muller DWN, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolemia. Nature Medicine 1995; 1:1148–1154.

    Article  PubMed  CAS  Google Scholar 

  21. Miller DG, Adam MA, Miller AD. Gene transfer by retroviral vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10:4239–4242.

    PubMed  CAS  Google Scholar 

  22. Rettinger SD, Kennedy SC, Wu X, Saylors RL, Hafenrichter DG, Flye MW, Ponder KP. Liver directed gene therapy: Quantitative evaluation of promoter elements using in vivo retroviral transduction. Proc Natl Acad Sci USA 1994; 91:1460–1464.

    Article  PubMed  CAS  Google Scholar 

  23. Bowling WM, Kennedy S, Cai SR, Duncan JR, Gao C, Flye MW, Ponder KP. Portal branch occlusion safely facilitates in vivo retroviral vector transduction of rat liver. Human Gene Ther 1996; 7:2113–2121.

    Article  CAS  Google Scholar 

  24. Bosch A, McCray PB Jr., Chang SM, Ulich TR, Simonet WS, Jolly DJ, Davidson BL. Proliferation induced by keratinocyte growth factor enhances in vivo retroviral-mediated gene transfer to mouse hepatocytes. J Clin Invest 1996; 98:2683–2687.

    Article  PubMed  CAS  Google Scholar 

  25. Hurford RK, Dranoff G, Mulligan RC, Tepper Rl. Gene therapy of metastatic cancer by in vivo retroviral gene targeting. Nature Genetics 1995; 10:430.

    Article  PubMed  CAS  Google Scholar 

  26. Nabel GL, Chang AE, Nabel EG et al. Immunotherapy for cancer by direct gene transfer into tumors. Human Gene Ther 1994; 5:57–77.

    Article  CAS  Google Scholar 

  27. Kaneko S, Hallenbeck P, Kotani T, Nakabayashi H, McGarrity G, Tamaoki T, Anderson WF, Chiang YL. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res 1995; 55:5283–5287.

    PubMed  CAS  Google Scholar 

  28. Richards CA, Austin EA, Huber BE. Transcriptional regulatory sequences of carcinoembryonic antigen: Identification and use with cytosine deminase for tumor-specific gene therapy. Human Gene Ther 1995; 6:881–893.

    Article  CAS  Google Scholar 

  29. Weichselbaum RR, Hallahan DE, Beckett MA, Mauceri HJ, Lee H, Sukhatme BP, Kufe AW. Gene therapy targeted by radiation preferentially radio sensitizes tumor cells. Cancer Res 1994; 54:4266–4269.

    PubMed  CAS  Google Scholar 

  30. Koeberl DW, Alexander IE, Halbert CL, Russell DW, Miller AD. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 1997; 94:1426–1431.

    Article  PubMed  CAS  Google Scholar 

  31. Huber BE, Richards CA, Krenitsky TA. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: An innovative approach for cancer therapy. Proc Natl Acad Sci USA 1991; 88:8039–8043.

    Article  PubMed  CAS  Google Scholar 

  32. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN. The ‘Bystander Effect’: Tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53:5274–5283.

    PubMed  CAS  Google Scholar 

  33. Borrelli E, Heyman R, Hsi M, Evans RM. Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci USA 1988; 85:7572–7576.

    Article  PubMed  CAS  Google Scholar 

  34. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann J-L, Klatzmann D. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA 1993; 90:7024–7028.

    Article  PubMed  CAS  Google Scholar 

  35. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F. An adenovirus mutant that replicates selectively in p53- deficient human tumor cells. Science 1996; 274:373–376.

    Article  PubMed  CAS  Google Scholar 

  36. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Medicine 1997; 3:639–645.

    Article  PubMed  CAS  Google Scholar 

  37. Anderson MW, Reynolds SH, You M, Maronpot RM. Role of proto-oncogene activation in carcinogenesis. Environ Health Perspect 1992; 98:13–24.

    CAS  Google Scholar 

  38. Lin Y, Brunt EM, Bowling WM, Hafenrichter DG, Kennedy SC, Flye MW, Ponder KP. Ras-transduced dimethylnitrosamine- treated hepatocytes develop into cancers of mixed phenotype in vivo. Cancer Res 1995; 55:5242–5250.

    PubMed  CAS  Google Scholar 

  39. Mukhopadhyay T, Tainsky M, Cavender AC, Roth JA. Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Res 1991; 51:1744–1748.

    PubMed  CAS  Google Scholar 

  40. Zhang Y, Mukhopadhyay T, Donehower LA, Georges RN, Roth JA. Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype. Hum Gene Ther 1993; 4:451–460.

    Google Scholar 

  41. Georges RN, Mukhopadhyay T, Zhang Y, Yen N, Roth JA. Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 1993; 53:1743–1746.

    PubMed  CAS  Google Scholar 

  42. Danerin KM, Volpert OV, Tainsky MA et al. Control of angiogenesis in fibroblasts by p53 regulation of of thrombospondin-1 Science 1994; 265:1582–1584.

    Article  Google Scholar 

  43. Bookstein R, Demers W, Gregory R, Maneval D, Park J, Wills K. p53 gene therapy in vivo of hepatocellular and liver metastatic colorectal cancer. Sem Oncol 1996; 23:66–77.

    CAS  Google Scholar 

  44. Greenblatt MS, Bennett WP, Hollstein Met al. Mutations in the p53 tumor suppressor gene. Clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54:4855–4878.

    PubMed  CAS  Google Scholar 

  45. Kikuchi-Yanoshita R, Konishi M, Ito S et al. Genetic changes of both p53 alleles associated with the conversion from colorectal adeno,ma to early carcinoma in familial adenomatous polyposis and nonfamilial adenomatous polyposis patients. Cancer Res 1992; 52:3965–3971.

    PubMed  CAS  Google Scholar 

  46. Yang Z-Y, Perkins ND, Ohno T, Nabel EG, Nabel GJ. The p21 cyclin-dependent kinase inhibitor suppresses tumorigenicity in vivo. Nature Medicine 1995; 1:1052–1056.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenberg SA, Anderson WF, Blaese M et al. The development of gene therapy for the treatment of cancer. Ann Surg 1993; 218:455.

    Article  PubMed  CAS  Google Scholar 

  48. Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 1989; 57:503–512.

    Article  PubMed  CAS  Google Scholar 

  49. Dranoff G, Jaffe E, Lazenby A, Golumbek T, Labitsky HI, Brose K, Jackson B, Hamada H, Pardol D, Mulligan RC. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte macrophage colony stimulating factor stimulates potent specific and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90:3539–3543.

    Article  PubMed  CAS  Google Scholar 

  50. Forni G, Fujiwara H, Martina F, Hamaoka T, Jemma C, Caretto P, Giovarelli M. Helper strategy and tumor immunology: expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer Metastasis Rev 1988; 7:289–309.

    Article  PubMed  CAS  Google Scholar 

  51. Vieweg J, Gilboa E. Considerations for the use of cytokinesecreting tumor cell preparations for cancer treatment. Cancer Invest 1995; 13:193–201.

    Article  PubMed  CAS  Google Scholar 

  52. Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA4 and B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71:1065–1068.

    Article  PubMed  CAS  Google Scholar 

  53. June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today 1994; 15:321–331.

    Article  PubMed  CAS  Google Scholar 

  54. Lukacs KV, Lowrie DB, Stokes RW, Colston MJ. Tumor cells transfected with bacterial heat shock gene lose tumor genicity and induce protection against tumors.J Exp Med 1993; 178:343–348.

    Article  PubMed  CAS  Google Scholar 

  55. Rock KL, Fleischacker C, Gambell S. Peptide priming of cytolytic T cell immunity in vivo using f32-microglobulin as an adjuvant.J Immunol 1993; 150:1244–1252.

    PubMed  CAS  Google Scholar 

  56. Cole DJ, Weil DP, Shilyansky J, Custer M, Kauskami Y, Rosenberg SA. Characterization of the functional specificity of a cloned T cell receptor heterodimer recognizing the MART -1 melanoma antigen. Cancer Res 1995; 55:748–752.

    PubMed  CAS  Google Scholar 

  57. Huang YW, Baluna R, Vitetta ES. Adhesion molecules as targets for cancer therapy. Histology Histopathol 1997; 12:467–477.

    CAS  Google Scholar 

  58. Lee KS,Rha SY,Kim SJ,Kim JH,Roh JK,Kim BS,Chung HC Sequential activation and production of matrix metalloproteinase- 2 during breast cancer progression. Clin Exp Metastasis 1996; 14:512–519.

    Article  CAS  Google Scholar 

  59. Wang Y, Becker D. Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nature Medicine 1997; 3:887.

    Article  PubMed  CAS  Google Scholar 

  60. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88(2)277–285.

    Google Scholar 

  61. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [see comments]. Cell 1994; 79(2):315–328.

    Article  PubMed  Google Scholar 

  62. Xu GW, Sun ZT, Forrester K, Wang XW, Coursen J, Harris CC. Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral- mediated transfer of the wild-type p53 gene. Hepatology 1996; 24:1264–1268.

    Article  PubMed  CAS  Google Scholar 

  63. Kuriyama S, Nakatani T, Masui K, Sakamoto T, Tominaga K, Yoshikawa M, Fukui H, Ikenaka K, Tsujii T. Bystander effect caused by suicide gene expression indicates the feasibility of gene therapy for hepatocellular carcinoma. Hepatology 1995; 22:1838–1846.

    PubMed  CAS  Google Scholar 

  64. Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fiuorocytosine to 5-fiuorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: Significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91:8302–8306.

    Article  CAS  Google Scholar 

  65. Macri P, Gordon JW. Delayed morbidity and mortality of albumin/SV 40 T -antigen transgenic mice after insertion of an a-fetoprotein/herpes virus thymidine kinase transgene and treatment with ganciclovir. Human Gene Ther 1994; 5:175–182.

    Article  CAS  Google Scholar 

  66. Gene therapy is advancing toward use as cancer treatment. Oncology News Int 1997; 6:2,27.

    Google Scholar 

  67. Huber BE, Austin EA, Good SS, Knick VC, Tibbels S, Richards CA. In vivo antitumor activity of 5- fiuorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 1993; 53:4619–4626.

    PubMed  CAS  Google Scholar 

  68. Huang H, Chen SH, Kosai K, Finegold MJ, Woo SLC. Gene therapy for hepatocellular carcinoma: long-term remission of primary and metastatic tumors in mice by interleukin-2 gene therapy in vivo. Gene Ther 1996; 3:980–987.

    CAS  Google Scholar 

  69. Caruso M, Pham-Nguyen K, Kwong YL, Xu B, Kosai KI, Finegold M, Woo SL, Chen SH. Adenovirus-mediated interleukin -12 gene therapy for metastatic colon carcinoma. Proc Natl Acad Sci USA 1996; 93:11302–11306.

    Article  CAS  Google Scholar 

  70. Rosenberg SA, Blaese RM, Brenner MK et al. Human gene marker/therapy clinical protocols. Human Gene Ther 1996; 7:2287–2313.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this chapter

Cite this chapter

Flye, M.W., Ponder, K.P. (1998). Gene Therapy for Primary and Metastatic Cancer to the Liver. In: Garden, O.J., Geraghty, J.G., Nagorney, D.M., Audisio, R.A., Stoldt, H.S. (eds) Liver Metastases. Springer, London. https://doi.org/10.1007/978-1-4471-1506-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1506-9_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1508-3

  • Online ISBN: 978-1-4471-1506-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics