Skip to main content

Wavelength Conversion Technology

  • Conference paper
Photonic Networks

Abstract

Several field trials on wavelength division multiplexed (WDM) networks are now in progress featuring wavelength switching and routing. For full network flexibility it is very attractive to be able to translate the channel wavelengths in an easy way and preferably without opto-electronic conversion. Therefore wavelength conversion techniques are currently subject to a considerable interest. Here, we will review the optical wavelength conversion technologies with emphasis on recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Wauters, P. Demester, “Wavelength requirements and survivability in WDM cross connected networks”, in Proc. of ECOC’94, vol. 2, pp. 589–592, Firenze, Italy, Sept. 1994.

    Google Scholar 

  2. M.J. O’Mahony, “The potential of multiwavelength transmission”, in Proc. of ECOC ’94, vol. 2, pp. 907–913, Firenze, Italy, Sept. 1994.

    Google Scholar 

  3. K. Sato et al, “Network performance and integrity enhancement with optical path layer Technologies”, IEEE Journ. on Select. Areas in Communications, vol. 12, pp. 159–170, Jan. 1994.

    Article  Google Scholar 

  4. K. Sato, “Transport network evolution with optical paths”, in Proc. of ECOC ’94, vol. 2, pp. 919–926, Firenze, Italy, Sept. 1994.

    Google Scholar 

  5. A.A.M. Saleh, “Transparent optical networks for the next generation information infrastructure”, in Techn. Dig. of OFC95, p. 241, San Diego, California, Feb. 1995.

    Google Scholar 

  6. N. Wauters, P. Demester, “Wavelength routing algorithms for transparent optical networks”, in Proc. of ECOC ’95, vol. 2, pp. 855–858, Brussels, Belgium, Sept. 1995.

    Google Scholar 

  7. S. Subramaniam, M. Azizoglu, K. Somani, “Effect of wavelength converter density on the blocking perfomance of all-optical networks”, in Proc. of LEOS Annual Meeting 95, vol. 1, pp. 210–211, San Francisco, California, Oct.-Nov. 1995.

    Article  Google Scholar 

  8. R.A. Barry, P.A. Humblet, “Models of blocking probability in all–optical networks with and without wavelength changers”, in Proc. of IEEE INFOCOM’95, vol. 1, pp. 402–412, Boston, Massachusetts, April 1995.

    Google Scholar 

  9. M. Kovacevic, A. Acampora, “On wavelength translation in all-optical networks”, in Proc. of IEEE INFOCOM’95, vol. 1, pp. 413–422, Boston, Massachusetts, April 1995.

    Google Scholar 

  10. F. Derr et al, “Key issues of an optical FDM transport network”, in Techn. Dig. of OFC95, pp. 271–272, San Diego, California, Feb. 1995.

    Google Scholar 

  11. W.D. Zhong, et al. “Wavelength interchange devices as basic building blocks for multiwavelength cross–connects”, in Proc. of Photonics in Switching, pp. 110–111, Sendai, Japan, April 1996.

    Google Scholar 

  12. E. Karasan, E. Ayanoglu, “Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks”, in Digest of IEEE/LEOS 1996 Summer Topical Meetings, pp. 43–44, Keystone, Colorado, August 1996.

    Google Scholar 

  13. C. Qiao, Y. Mei, “Wavelength reservation under distributed control”, in Digest of IEEE/ LEOS 1996 Summer Topical Meetings, pp. 45–46, Keystone, Colorado, August 1996.

    Google Scholar 

  14. B. Mikkelsen et al, “Interferometric wavelength converters for internal routing and wavelength slot interchange”, in Proc. of Photonics in Switching, pp. 30–31, Sendai, Japan, April 1996.

    Google Scholar 

  15. P. A. Perrier et al, “Rackmounted optical add/drop multiplexers in a self-healing multiwavelength ring network demonstrator”, in Proc. of Photonics in Switching, pp. 166–167, Sendai, Japan, April 1996.

    Google Scholar 

  16. A. Jourdan et al, “Experimental assessment of a 4x4 four-wavelength all-optical cross-connect at a 10-Gbit/s line rate”, in Techn. Dig. of OFC95, pp. 277–278, San Diego, California, Feb. 1995.

    Google Scholar 

  17. A. Jourdan et al, “Experimental demonstration at 10 Gbit/s of a cascade of two fully reconfigurable optical crossconnects interconnected by dispersion compensated G652 fiber spans”, in Proc. of Photonics in Switching, pp. 16–17, Sendai, Japan, April 1996.

    Google Scholar 

  18. M. Chbat et al, “The OPEN (Optical Pan–European Network) ACTS Project: Early Achievements and Perspectives”, in Proc. of ECOC’96, Oslo, Norway, Sept. 1996.

    Google Scholar 

  19. K. Wiinstel et al, “Multidimensional optical switching with advanced key components”, in Proc. of ECOC’93, vol. 2, pp. 89–92, Montreux, Switzerland, Sept. 1993.

    Google Scholar 

  20. S.L. Danielsen et al., “Improved performance of a WDM photonic packet switch with tuneable wavelength converters under bursty traffic conditions”, In Proc. of IOOC’95, vol. 2, pp. 80–81, Hong Kong, June 1995.

    Google Scholar 

  21. C. Guillemot et al., “A two stage transparent packet switch architecture based on wavelength conversion”, in Proc. of ECOC ’95, vol. 2, pp. 765–768, Brussels, Belgium, Sept. 1995.

    Google Scholar 

  22. D. Chiaroni et al., “Rack-mounted 2.5 Gbit/s ATM photonic switch demonstrator”, in Proc. of ECOC’93, vol. 3, pp. 77–80, Montreux, Switzerland, Sept. 1993.

    Google Scholar 

  23. D. Chiaroni et al. “New regeneration functionalities of all-optical wavelength converters for packet-switching applications”, in Proc. of Photonics in Switching, paper PMA5, pp. 10–11, Sendai, Japan, April 1996.

    Google Scholar 

  24. “Broadcast–and–select photonic ATM switch with differential receiver” in in Proc. of Photonics in Switching, paper PThC2, pp. 16, Sendai, Japan,

    Google Scholar 

  25. Technical specifications for CIENA Multi wave 1600, CIENA, Savage, MD, April 1996.

    Google Scholar 

  26. B. Mikkelsen et al., “Wavelength conversion of high speed data signals”, Electron. Lett., vol. 19, No. 19, pp. 1716–1718, Sept. 1993.

    Article  Google Scholar 

  27. E. Lach et al. “5 Gbit/s wavelength conversion with simultaneous regeneration of extinction ratio using Y-lasers”, In Proc. of ECOC’93, vol. 2, pp. 137–140, Montreux, Switzerland, Sept. 1993.

    Google Scholar 

  28. R.J.S. Pedersen et al., “Simple wavelength conversion for bit rate independent operation up to 10 Gbit/s”, in Techn. Dig. of OFC’94, paper ThQ3, San Jose, California, Feb. 1994.

    Google Scholar 

  29. P. Ottolenghi et al., “All-optical wavelength conversion with extinction ratio enhancement using tuneable DBR laser”, In Proc. Of ECOC ’93, vol. 2, pp. 141–144, Montreux, Switzerland, Sept. 1993.

    Google Scholar 

  30. G. Gurib, A. Jourdan, “High extinction–ratio conservation up to 7.5 Gbit/s in cascaded all–optical wavelength converters”, in Techn. Dig. of OFC’95, paper Tu03, San Diego, California, Feb. 1995.

    Google Scholar 

  31. H. Yasaka et al., “Repeated Wavelength Conversion of 10 Gbit/s Signal Using Wavelength Tunable Semiconductor Lasers”, IEEE Photon. Technol. Lett., vol. 7, pp. 161–163, Feb. 1995.

    Article  Google Scholar 

  32. H. Sanjoh et al., “Wavelength Chirping in Wavelength Conversion of 10 Gbit/s Signal with Semiconductor Laser Converter”, IEEE Photon. Technol. Lett., vol. 8, pp. 296–298, Feb. 1996.

    Article  Google Scholar 

  33. K. Inoue et al., “Wavelength conversion using a light injected DFB–LD and a Mach-Zehnder filter with a ring resonator”, IEEE Photon. Technol. Lett., vol. 7, pp. 998–1000, Sept 1995.

    Article  Google Scholar 

  34. J. Jacquet et al., “2.5 Gbit/s optical triggering with signal reshaping using bistable laser with proton bombarded saturable absorber”, in Proc. of ECOC’93, vol. 2, pp. 293–296, Montreux, Switzerland, Sept. 1993.

    Google Scholar 

  35. K. Nonaka, “Digital Signal Regeneration with Side-Injection-Light-Controlled Bistable Laser Diode as a Wavelength Converter”, IEEE Photon. Technol. Lett., vol. 7, pp. 29–31, Jan. 1995.

    Article  Google Scholar 

  36. K. Inoue, M. Yoshino, “Bistability and Waveform Reshaping in a DFB-LD with Side-Mode Light Injection”, IEEE Photon. Technol. Lett., vol. 7, pp. 164–166, Feb. 1995.

    Article  Google Scholar 

  37. K. Inoue et al., “Influence of stimulated Brillouin scattering on optimum length in fiber four-wave mixing wavelength conversion”, IEEE Photon. Technol. Lett., vol. 7, pp. 327–329, March 1995.

    Article  Google Scholar 

  38. G. Grosskopf et al., “Frequency conversion with semiconductor laser amplifiers for co–herent optical frequency division switching”, Proc. of IOOC ’89, paper 19C4–4, Kobe, July 1989.

    Google Scholar 

  39. M.C. Tatham, “20 nm optical wavelength conversion using nondegenerate four-wave mixing”, IEEE Photonics Technol. Lett., vol. 5, pp. 1303–1306, Nov. 1993.

    Article  Google Scholar 

  40. R. Ludwig and G. Raybon, “BER measurements of frequency converted signals using four-wave mixing in a semiconductor laser amplifier at 1,2.5, 5 and 10 Gbit/s”, Electron. Lett., vol. 30, pp. 338–339, Jan. 1994.

    Article  Google Scholar 

  41. H.G. Weber, et al. “Four-wave mixing for photonic switching”, in Proc. of Photonics in Switching, pp. 160–161, Sendai, Japan, April 1996.

    Google Scholar 

  42. R. Schnabel et al., “Polarisation insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier”, IEEE Photon. Technol. Lett., vol. 6, pp. 56–58, Jan. 1994.

    Article  Google Scholar 

  43. F. Martelli, “Semiconductor optical amplifiers for very efficient frequency conversion by four-wave mixing”, in Proc. of IQEC 96, paper ThN2, Sydney, Australia, July 1996.

    Google Scholar 

  44. R. M. Jopson and R.E. Tench, “Polarisation-independent phase conjugation of lightwave signals”, Electron. Lett., vol. 29, pp. 2216–2217, Dec. 1993.

    Article  Google Scholar 

  45. C.Q. Xu et al., “Efficient broadband wavelength converter for WDM optical communication systems”, in Techn. Dig. of OFC’94, pp. 250–251, San Jose, California, Feb. 1994. see also WWW: http://ww.oki.co.jp/OKI/RDG/English/kikaku/okayama/eWC.html.

  46. S.J.B. Yoo et al., “Transparent wavelength conversion by difference frequency generation in AlGaAs waveguides”, in Techn. Dig. of OFC96, paper WG7, San Jose, California, Feb. 1996.

    Google Scholar 

  47. T. Durhuus et al., “High speed all-optical gating using two-section semiconductor optical amplifier structure”, Proc. of CLEO’92, paper CThS4, Anaheim, California, May. 1992.

    Google Scholar 

  48. B. Glance et al., “Broadband optical wavelength shifter”, in Techn. Dig. of CLEO’92, Anaheim, May. 1992, post deadline paper CPD27.

    Google Scholar 

  49. K. Stubkjaer et al., “Optical wavelength converters”, in Proc. of ECOC’94, vol. 2, pp. 635–642, Firenze, Italy, Sept. 1994.

    Google Scholar 

  50. S.L. Danielsen et al., “Bit error rate assessment of a 40 Gbit/s all-optical polarization independent wavelength converter”, in Techn. Dig. of OFC96, post deadline paper PD12, San Jose, California, Feb. 1996.

    Google Scholar 

  51. P. Dousierre et al., “1.55 µm polarisation independent semiconductor optical amplifier with 25 dB fiber to fiber gain”, IEEE Phot. Techn. Lett., vol. 6, No. 2, pp. 170–172, 1994.

    Article  Google Scholar 

  52. T. Durhuus et al., “All optical wavelength conversion by semiconductor optical amplifiers”, Jour, of Lightwave Techn. vol. 14, Special issue, June 1996.

    Google Scholar 

  53. D. D. Marcenac et al., “Bandwidth enhancement of wavelength conversion via cross gain modulation by semiconductor optical amplifier cascade”, Electron. Lett, vol. 31, pp. 1442–1443, 1995.

    Article  Google Scholar 

  54. J. M. Wiesenfeld and B. Glance, “Cascadability and fanout of semiconductor optical amplifier wavelength shifter”, IEEE Photon. Technol. Lett., vol. 4, pp. 1168–1171, Oct. 1992.

    Article  Google Scholar 

  55. T. Durhuus et al., “All optical wavelength conversion by SOA’s in a Mach Zehnder configuration”, IEEE Photon. Technol. Lett., vol. 6, pp. 53–55, Jan. 1994.

    Article  Google Scholar 

  56. M. Schilling et al., “Monolithic Mach–Zehnder interferometer based optical wavelength converter operated at 2.5 Gbit/s with extinction ratio improvement and low penalty”, in Proc. of ECOC’94, vol. 2, pp. 647–650, Firenze, Italy, Sept. 1994.

    Google Scholar 

  57. N. Vodjdani et al., “All optical wavelength conversion with SOA’s monolithically integrated in a passive Mach-Zehnder interferometer”, in Proc. of ECOC’94, vol. 4, pp. 95–98, Firenze, Italy, Sept. 1994.

    Google Scholar 

  58. B. Mikkelsen et al., “10 Gbit/s wavelength converter realised by monolithic integration of semiconductor optical amplifiers and Michelson interferometer”, in Proc. of ECOC’94, vol. 4, pp. 67–70, Firenze, Italy, Sept. 1994.

    Google Scholar 

  59. M. Schilling et al, “Wavelength conversion based on integrated all-active three-port Mach-Zehnder interferometer”, Electron. Lett, vol. 30, pp. 2128–2130, Dec. 1994.

    Article  Google Scholar 

  60. N. Vodjdani et al, “Integrated optics all optical wavelength converter”, in Proc. of ECIO’95, Delft, The Netherlands, April 1995.

    Google Scholar 

  61. F. Ratovelomanana et al, “An all-optical wavelength-converter with semiconductor optical amplifiers monolithically integrated in a asymmetric passive Mach-Zehnder interferometer”, IEEE Photon. Technol. Lett, vol. 7, pp. 992–994, Sept. 1995.

    Article  Google Scholar 

  62. X. Pan et al, “Dynamic operation of a three-port, integrated Mach-Zehnder wavelength converter”, IEEE Photon. Technol. Lett, vol. 7, pp. 995–997, Sept. 1995.

    Article  Google Scholar 

  63. E. Jahn et al, “Monolithically integrated nonlinear Sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer”, Electron. Lett., vol. 32, pp. 782–783, 1996.

    Article  Google Scholar 

  64. D.A.O. Davies, A.D. Ellis, G. Sherlock, “Regenerative 20 Gbit/s wavelength conversion”, Electron. Lett, vol. 31, pp., June. 1995.

    Google Scholar 

  65. K.A. Rauschenbach et al, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror”, IEEE Photon. Technol. Lett, vol. 6, pp. 1130–1132, Sept. 1994.

    Article  Google Scholar 

  66. C. Joergensen et al, “Wavelength Conversion by Optimised Monolithic Integrated Mach-Zehnder Interferometer”, IEEE Photon. Technol. Lett, vol. 8, pp. 521–524, April 1996.

    Article  Google Scholar 

  67. T. Durhuus et al, “Monolithic integrated Mach-Zehnder wavelength converter: Conversion and transmission experiments at 5 Gbit/s”, in Techn. Dig. of OFC ’95, paper Tu06, San Diego, Feb. 1995.

    Google Scholar 

  68. W. Idler et al, “Signal quality and BER performance improvement by wavelength conversion with an integrated three-port Mach-Zehnder interferometer”, Electron. Lett, vol. 31, pp. 454–455, March 1995.

    Article  Google Scholar 

  69. X. Pan, “Intensity noise characteristics of a Mach–Zehnder wavelength converter”, IEEE Photon. Technol. Lett, vol. 7, pp. 1276–1278, Nov. 1995.

    Article  Google Scholar 

  70. B. Mikkelsen et al, “All–optical noise reduction capability of interferometric wavelength converters”, Electron. Lett, vol. 32, pp. 566–567, Mar. 1996.

    Article  Google Scholar 

  71. B. Mikkelsen et al, “Transmission through 10 all–optical interferometric wavelength converter spans”, in Techn. Dig. of OFC’96, post deadline paper PD13, San Jose, California, Feb. 1996.

    Google Scholar 

  72. M. Schilling et al, “10 Gbit/s monolithic MQW—based wavelength converter in Michelson interferometer configuration”, in Techn. Dig. of OFC96, pp. 122–124, San Jose, California, Feb. 1996.

    Google Scholar 

  73. F. Ratovelomanana et al, “Monolithic integration of a Michelson all-optical wavelength converter”, in Techn. Dig. of OFC96, pp. 124–125, San Jose, California, Feb. 1996.

    Google Scholar 

  74. C. Joergensen et al, “Up to 20 Gbit/s bit-rate transparent integrated interferometric wavelength converter”, in Proc. of ECOC 496, Oslo, Norway, Sept. 1996.

    Google Scholar 

  75. B. Mikkelsen et al, “Wavelength conversion devices”, in Techn. Dig. of OFC’96, paper WG1, pp. 121–122, San Jose, California, Feb. 1996.

    Google Scholar 

  76. NTT press release at WWW://www.info.hqs.cae.ntt.jp/NR/1995/121ldeve.html.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Stubkjaer, K.E. et al. (1997). Wavelength Conversion Technology. In: Prati, G. (eds) Photonic Networks. Springer, London. https://doi.org/10.1007/978-1-4471-0979-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0979-2_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1248-8

  • Online ISBN: 978-1-4471-0979-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics