Skip to main content

The importance of optimal design for parallel structures

  • Conference paper
Parallel Kinematic Machines

Part of the book series: Advanced Manufacturing ((ADVMANUF))

Abstract

In the last recent years parallel structures have found applications outside the field of Flight simulator: machine-tool, virtual reality, fine positioning devices, etc.. For each of these applications the performances requirements are quite different. It is therefore very important to design parallel structure in accordance with the considered application, especially as for this type of mechanism the performances vary heavily according to the mechanical architecture and its dimension. We will present some design problems in order to show that optimal design for parallel structure is an open and difficult problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cauchy A. Deuxième mèmoire sur les polygones et les polyèdres. Journal de l’ècole Polytechnique, pages 87–98, May 1813.

    Google Scholar 

  2. Borel E. Mèmoire sur les dèplacements à trajectoire sphèriques. Mèmoire prèsentès par divers savants, 33 (1): 1–128, 1908.

    Google Scholar 

  3. Bricard R. Mèmoire sur la thèorie de l’octaèdre articulè. Journal de Mathèmatiques pures et appliquèes, Liouville, tome 3: 113–148, 1897.

    Google Scholar 

  4. Gough V.E. Contribution to discussion of papers on research in automobile stability, control and tyre performance, 1956-1957. Proc. Auto Div. Inst. Mech. Eng.

    Google Scholar 

  5. Pollard W.L.V. Position controlling apparatus, June, 16, 1942. United States Patent n° 2, 286, 571.

    Google Scholar 

  6. Gosselin C. Determination of the workspace of 6-dof parallel manipulators. ASME J. of Mechanical Design, 112 (3): 331–336, September 1990.

    Article  Google Scholar 

  7. Merlet J-P. Geometrical determination of the workspace of a constrained parallel manipulator. In ARK, pages 326-329, Ferrare, September, 7-9, 1992.

    Google Scholar 

  8. Gosselin C. Stiffiness mapping for parallel manipulators. IEEE Trans, on Robotics and Automation, 6 (3): 377–382, June 1990.

    Article  Google Scholar 

  9. Merlet J-P. Efficient computation of the extremum of the articular velocities of a parallel manipulator in a translation workspace. In IEEE Int. Conf. on Robotics and Automation, pages 1976-1981, Louvain, May, 18-20, 1998.

    Google Scholar 

  10. Merlet J-P. Efficient estimation of the extremal articular forces of a parallel manipulator in a translation workspace. In IEEE Int. Conf. on Robotics and Automation, pages 1982-1987, Louvain, May, 18-20, 1998.

    Google Scholar 

  11. Stoughton R. and Arai T. A modified Stewart platform manipulator with improved dexterity. IEEE Trans, on Robotics and Automation, 9 (2): 166–173, April 1993.

    Article  Google Scholar 

  12. Bhattacharya S., Hatwal H., and Ghosh A. On the optimum design of a Stewart platform type parallel manipulators. Robotica, 13(2): 133-140, March–April, 1995.

    Article  Google Scholar 

  13. Bryfogle M.D., Nguyen C.C., Zhou Z-l., and Antrazi S.S. A methodology for geometry design of closed kinematic chain mechanisms. In IEEE Int. Conf. on Robotics and Automation, pages 2974-2979, Albuquerque, April, 21-28, 1997.

    Google Scholar 

  14. Gosselin C. and Angeles J. The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. J. of Mechanisms, Transmissions and Automation in Design, lll(2): 202–207, 1989.

    Article  Google Scholar 

  15. Gosselin C.M and Lavoie E. On the kinematic design of spherical three- degree-of-freedom parallel manipulators. Int. J. of Robotics Research, 12 (4): 394–402, August 1993.

    Article  Google Scholar 

  16. Han C-S, Tesar D., and Traver A. The optimum design of a 6 dof fully parallel micromanipulator for enhanced robot accuracy. In ASME Design Automation Conf., pages 357-363, Montreal, September, 17-20, 1989.

    Google Scholar 

  17. Ji Z. Analysis of design parameters in platform manipulators. ASME J. of Mechanical Design, 118: 526–531, December 1996.

    Article  Google Scholar 

  18. Ma O. and Angeles J. Optimum architecture design of platform manipulator. In ICAR, pages 1131-1135, Pise, June, 19-22, 1991.

    Google Scholar 

  19. Masory O. and Wang J. Workspace evaluation of Stewart platforms. In 22nd Biennial Mechanisms Conf., pages 337-346, Scottsdale, September, 13-16, 1992.

    Google Scholar 

  20. Pittens K.H. and Podhorodeski R.P. A family of Stewart platforms with optimal dexterity. J. of Robotic Systems, 10 (4): 463–479, June 1993.

    Article  MATH  Google Scholar 

  21. Stamper R.C., Tsai C-W., and Walsh G.C. Optimization of a three dof translation platform for well-conditionned workspace. In IEEE Int. Conf. on Robotics and Automation, pages 3250-3255, Albuquerque, April, 21-28, 1997.

    Google Scholar 

  22. Zanganeh K.E. and Angeles J. Kinematic isotropy and the optimum design of parallel manipulators. Int. J. of Robotics Research, 16 (2): 185–197, April 1997.

    Article  Google Scholar 

  23. Bernelli-Zazzera F. and Gallieni D. Analysis and design of an hexapod mechanism for autonomous payload pointing. In 46th IAF Congress, Oslo, October, 2-6, 1995.

    Google Scholar 

  24. Claudinon B. and Lievre J. Test facility for rendez-vous and docking. In 36th Congress of the IAF, pages 1-6, Stockholm, October, 7-12, 1985.

    Google Scholar 

  25. Corrigan T.R.J. and Dubowsky S. Emulating micro-gravity in laboratory studies of space robotics. In ASME Design Automation Conf., pages 109-116, Minneapolis, September, 11-14, 1994.

    Google Scholar 

  26. Merlet J-P. Democrat: A DEsign Methodology for the Conception of robots with parallel Architecture. Robotica, 15: 367–373, 1997.

    Article  Google Scholar 

  27. Comin F. Six degree-of-freedom scanning supports and manipulators based on parallel robots. Rev. Sci. Instram., 66 (2): 1665–1667, February 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Merlet, JP. (1999). The importance of optimal design for parallel structures. In: Boër, C.R., Molinari-Tosatti, L., Smith, K.S. (eds) Parallel Kinematic Machines. Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-4471-0885-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0885-6_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1228-0

  • Online ISBN: 978-1-4471-0885-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics