Skip to main content

Optical Properties of Nanoscale Transition Metal Oxides

  • Chapter
  • First Online:
Functional Metal Oxide Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

Abstract

Transition metal oxides are celebrated for their novel properties. Just as physical and chemical tuning are at the heart of our ability to design, understand, and control advanced materials in their bulk form, size–shape tuning is of emerging importance in the field of functional oxide nanomaterials. This is because finite length scale effects (1) expand the usable structure–property phase space and (2) can drive emergent phenomena. And in the same way that optical spectroscopy reveals the dynamics of bulk materials, it is beginning to do so in nanoscale compounds, particularly in combination with first principles calculations and various confinement models. This review takes the case study approach, highlighting recent findings in selected transition metal oxides where various types of length scale effects are important. Systems of interest include (1) the Mott–Hubbard compound VO2, (2) La0.5Sr1.5MnO4 in high magnetic field, (3) pristine and chemically substituted vanadium oxide nanoscrolls, (4) quantum size effects in ZnO and TiO2, (5) polar oxide thin films and nanoparticles based upon BiFeO3, and (6) H2 binding in metal-organic frameworks. In these examples, efforts were made to bring simple chemical systems together with appropriate models of insulator-to-metal transitions, confinement, local strain, charge and bonding, excitons, and the role of defects for high level physical understanding of nanoscale texture, strain, and confinement. The overarching goals are to provide perspective for this emerging field and to outline prospects for optical spectroscopy to advance the fundamental understanding of functional oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In addition to controlling carrier concentration, oxygen vacancies are also related to domain wall pinning, leakage currents, degradation, resistances switching behavior in thin film samples.

  2. 2.

    The general results are clear, with some features sensitive to the growth conditions (and the defect states associated with the surface).

  3. 3.

    The theory of energy gap determination in solids is, of course, well established. The absorption coefficient, α(E), consists of contributions from both the direct and the indirect band gap transitions, the expression for which can be found in any standard optics text [157].

  4. 4.

    Work on hydrogen storage is, of course, directed toward meeting Department of Energy hydrogen storage system targets.

References

  1. Rao, C.N.R., Raveau, B.: Transition Metal Oxides. VCH, New York (1995)

    Google Scholar 

  2. Hwu, S.-J.: Structurally confined transition-metal oxide layers, chains and oligomers in molecular and extended magnetic solids. Chem. Mater. 10(10), 2846–2859 (1998)

    Article  CAS  Google Scholar 

  3. Tokura, Y. (ed.): Colossal Magnetoresistive Oxides. Gordon and Breach, New York (2000)

    Google Scholar 

  4. Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds.): New Trends in Intercalation Compounds for Energy Storage, NATO Science Series II: Mathematics, Physics, and Chemistry, vol. 61. Kluwer, New York (2002)

    Google Scholar 

  5. Grüner, G.: The dynamics of charge density waves. Rev. Mod. Phys. 60, 1129–1181 (1988)

    Article  Google Scholar 

  6. Greenblatt, M.: Monophosphate tungsten bronzes: a new family of low-dimensional, charge-density-wave oxides. Acc. Chem. Res. 29, 219–228 (1996)

    Article  CAS  Google Scholar 

  7. Kahn, O.: Molecular Magnetism. VCH, New York (1993)

    Google Scholar 

  8. Canadell, E.: Dimensionality and Fermi surface of low-dimensional metals. Chem. Mater. 10, 2770–2786 (1998)

    Article  CAS  Google Scholar 

  9. Dagotto, E.: Nanoscale Phase Separation and Colossal Magneto-Resistance. Springer Series on Solid State Sciences. Springer, Berlin (2003)

    Google Scholar 

  10. Cuk, T., Lu, H.H., Zhou, X.J., Shen, Z.-X., Devereaux, T.P., Nagosa, N.: A review of electron-phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies. Phys. Status Solidi B 242, 11–29 (2005)

    Article  CAS  Google Scholar 

  11. Pimenov, A., Rudolf, R., Mayr, F., Loidl, A., Mukhin, A.A., Balbashov, A.M.: Coupling of phonons and electromagnons in GdMnO3. Phys. Rev. B 74, 100403(R) (2006)

    Google Scholar 

  12. Sushkov, A.B., Valdés-Aguilar, R., Park, S., Cheong, S.-W., Drew, H.D.: Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys. Rev. Lett. 98, 027202 (2007)

    Article  CAS  Google Scholar 

  13. White, R.M., Yen, W.M.: On the discovery of magnon sidebands in insulating antiferromagnets. Low Temp. Phys. 31, 777–779 (2005)

    Article  CAS  Google Scholar 

  14. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, London (1954)

    Google Scholar 

  15. Goodenough, J.: Magnetism and the Chemical Bond. Wiley, New York (1963)

    Google Scholar 

  16. Egami, T., Billinge, S.J.L.: Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Pergamon Materials Series, vol. 7. Pergamon, Elsevier, Oxford (2003)

    Google Scholar 

  17. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008)

    Article  CAS  Google Scholar 

  18. Dressel, M., Drichko, N.: Optical properties of two-dimensional organic conductors: signatures of charge ordering and correlation effects. Chem. Rev. 104, 5689–5716 (2004)

    Article  CAS  Google Scholar 

  19. Zhou, H.D., Lumata, L.L., Kuhns, P.L., Reyes, A.P., Choi, E.S., Dalal, N.S., Lu, J., Jo, Y.J., Balicas, L., Brooks, J.S., Wiebe, C.R.: Ba3NbFe3Si2O14: A new multiferroic with a 2D triangular Fe3+ motif. Chem. Mater. 21(1), 156–159 (2009)

    Article  CAS  Google Scholar 

  20. Sasmal, K., Lev, B., Lorenz, B., Guloy, A.M., Chen, F., Xue, Y.-Y., Chu, C.-W.: Superconducting Fe-based compounds (A1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K. Phys. Rev. Lett. 101, 107007 (2008)

    Article  CAS  Google Scholar 

  21. Orenstein, J., Millis, A.J.: Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    Article  CAS  Google Scholar 

  22. Yoo, C.S., Maddox, B., Klepeis, J.-H.P., Iota, V., Evans, W., McMahan, A., Hu, M.Y., Chow, P., Somayazulu, M., Husermann, D., Scalettar, R.T., Pickett, W.E.: First-order isostructural Mott transition in highly compressed MnO. Phys. Rev. Lett. 94, 115502 (2005)

    Article  CAS  Google Scholar 

  23. Basov, D.N., Timusk, T.: Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721 (2005)

    Article  CAS  Google Scholar 

  24. Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., Cheong, S.-W.: Electronic polarization reversal and memory in a multiferroic materials induced by magnetic fields. Nature 429, 392–395 (2004)

    Article  CAS  Google Scholar 

  25. Brooks, J.S.: Magnetic field dependent and induced ground states in organic conductors. Rep. Prog. Phys. 71, 126501 (2008)

    Article  Google Scholar 

  26. Snow, C.S., Karpus, J.F., Cooper, S.L., Kidd, T.E., Chiang, T.-C.: Quantum melting of the charge density wave state in 1T-TiSe2. Phys. Rev. Lett. 91, 136402 (2003)

    Article  CAS  Google Scholar 

  27. Goddard, P.A., Singleton, J., Sengupta, P., McDonald, R.D., Lancaster, T., Blundell, S.J., Pratt, F.L., Cox, S., Harrison, N., Mason, J.L., Southerland, H.I., Schlueter, J.A.: Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets. New J. Phys. 10, 083025 (2008)

    Article  CAS  Google Scholar 

  28. dela Cruz, C.R., Lorenz, B., Sun, Y.Y., Wang, Y., Park, S., Cheong, S.-W., Gospodinov, M.M., Chu, C.W.: Pressure-induced enhancement of ferroelectricity in multiferroic RMn2O5 (R=Tb,Dy,Ho). Phys. Rev. B 76, 174106 (2007)

    Article  CAS  Google Scholar 

  29. Graf, D., Choi, E.S., Brooks, J.S., Almeida, M.: Pressure-induced quantum limit in a Q1D system in high magnetic fields. J. Low Temp. Phys. 142, 179–184 (2006)

    Article  CAS  Google Scholar 

  30. Uji, S., Terashima, T., Nishimura, M., Takahide, Y., Konoike, T., Enomoto, K., Cui, H., Kobayashi, H., Kobayashi, A., Tanaka, H., Tokumoto, M., Choi, E.-S., Tokumoto, T., Graf, D., Brooks, J.S.: Vortex dynamics and the Fulde-Ferrell-Larkin-Ovchinnikov state in a magnetic-field-induced organic superconductor. Phys. Rev. Lett. 97, 157001 (2006)

    Article  CAS  Google Scholar 

  31. Gupta, R., Kim, M., Barath, H., Cooper, S.L., Cao, G.: Field- and pressure-induced phases in Sr4Ru3O10: A spectroscopic investigation. Phys. Rev. Lett. 96, 067004 (2006)

    Article  CAS  Google Scholar 

  32. Kim, K.H., Harrison, N., Jaime, M., Boebinger, G.S., Mydosh, J.A.: Magnetic field-induced quantum critical point and competing order parameters in URu2Si2. Phys. Rev. Lett. 91(25), 256401 (2003)

    Article  CAS  Google Scholar 

  33. Zapf, V.S., Zocco, D., Hansen, B.D., Jaime, M., Harrison, N., Batista, C.D., Kenzelmann, M., Niedermayer, C., Lacerda, A., Paduan-Filho, A.: Bose-Einstein condensation of S = 1 nickel spin degrees of freedom in NiCl2-4SC(NH2)2. Phys. Rev. Lett. 96, 077204 (2006)

    Article  CAS  Google Scholar 

  34. dela Cruz, C.R., Lorenz, B., Sun, Y.Y., Chu, C.W., Park, S., Cheong, S.-W.: Magnetoelastic effects and the magnetic phase diagram of multiferroic DyMn2O5. Phys. Rev. B 74, 180402 (2006)

    Article  CAS  Google Scholar 

  35. Sologubenko, A.V., Berggold, K., Lorenz, T., Rosch, A., Shimshoni, E., Phillips, M.D., Turnbull, M.M.: Magnetothermal transport in the spin-1/2 chains of copper pyrazine dinitrate. Phys. Rev. Lett. 98, 107201 (2007)

    Article  CAS  Google Scholar 

  36. Kunes, J., Lukoyanov, A.V., Anisimov, V.I., Scalettar, R.T., Pickett, W.E.: Collapse of magnetic moment drives the Mott transition in MnO. Nat. Mater. 7, 198–202 (2008)

    Article  CAS  Google Scholar 

  37. Itkis, M.E., Brill, J.W.: Electromodulated infrared transmission in blue bronze. Phys. Rev. Lett. 72, 2049 (1994)

    Article  CAS  Google Scholar 

  38. Ahn, C.H., Triscone, J.-M., Mannhart, J.: Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003)

    Article  CAS  Google Scholar 

  39. Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics. Academic, London (1971)

    Google Scholar 

  40. Cooper, V.R., Grinberg, I., Martin, N.R., Rappe, A.M.: Local structure of PZT. In: Cohen, R.E. (ed.) Fundamental Physics of Ferroelectrics, pp. 26–35. AIP, Melville, NY (2002)

    Google Scholar 

  41. Egami, T.: Local structure and dynamics of ferroelectric solids. In: Dalal, N.S., Bussmann-Holder, A. (eds.) Structure and Bonding, Vol. 124, Ferro-and Antiferroelectricity. Springer, Berlin (2007)

    Google Scholar 

  42. Ederer, C., Fennie, C.J.: Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO3 versus BiFeO3. J. Phys. Condens. Matter 20, 434219 (2008)

    Article  CAS  Google Scholar 

  43. Fennie, C.J.: Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008)

    Article  CAS  Google Scholar 

  44. Holman, K.T., Pivovar, A.M., Ward, M.D.: Engineering crystal symmetry and polar order in molecular host frameworks. Science 294, 1907–1911 (2001)

    Article  CAS  Google Scholar 

  45. Ferrer, J.R., Lahti, P.M., George, C., Oliete, P., Julier, M., Palacio, F.: Role of hydrogen bonds in benzimidazole-based organic magnetic materials: crystal scaffolding or exchange linkers. Chem. Mater. 13, 2447–2454 (2001)

    Article  CAS  Google Scholar 

  46. Murata, H., Aboaku, S., Lahti, P.M.: Molecular recognition in a heteromolecular radical pair system with complementary multipoint hydrogen-bonding. Chem. Comm. 29, 3441–3443 (2008)

    Article  CAS  Google Scholar 

  47. Hayward, M.A., Cussen, E.J., Claridge, J.B., Bieringer, M., Rosseinsky, M.J., Kiely, C.J., Blundell, S.J., Marshall, I.M., Pratt, F.L.: The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science 295, 1882–1884 (2002)

    Article  CAS  Google Scholar 

  48. Ward, M.D.: Directing assembly of molecular crystals. MRS Bull. 30, 705–712 (2005)

    Article  CAS  Google Scholar 

  49. Orendacova, A., Kajnakova, M., Cernak, J., Park, J.-H., Cizmar, E., Orendac, M., Vlcek, A., Kravchyna, O.V., Anders, A.G., Feher, A., Meisel, M.W.: Hydrogen bond mediated magnetism in [CuII(en)2(H2O)][CuII(en)2Ni2CuI2(CN)10]·2H2O. Chem. Phys. 309, 115–125 (2005)

    Article  CAS  Google Scholar 

  50. Baddeley, C., Yan, Z., King, G., Woodward, P.M., Badjic, J.D.: Structure-function studies of modular aromatics that form molecular organogels. J. Org. Chem. 72(19), 7270–7278 (2007)

    Article  CAS  Google Scholar 

  51. Manson, J.L., Conner, M.M., Schlueter, J.A., McConnell, A.C., Southerland, H.I., Malfant, I., Lancaster, T., Blundell, S.J., Brooks, M.L., Pratt, F.L., Singleton, J., McDonald, R.D., Lee, C., Whangbo, M.-H.: Experimental and theoretical characterization of the magnetic properties of CuF2(H2O)2 (pyz) (pyz = pyrazine): A two-dimensional quantum magnet arising from supersuperexchange interactions through hydrogen bonded paths. Chem. Mater. 20(24), 7408–7416 (2008)

    Article  CAS  Google Scholar 

  52. Murata, H., Miyazaki, Y., Inaba, A., Paduan-Filho, A., Bindilatti, V., Fernandes Oliveira Jr., N., Delen, Z., Lahti, P.M.: 2-(4,5,6,7-Tetrafluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, A hydrogen-bonded organic quasi-1D ferromagnet. J. Am. Chem. Soc. 130, 186–194 (2008)

    Article  CAS  Google Scholar 

  53. Manriquez, J.M., Yee, G.T., McLean, R.S., Epstein, A.J., Miller, J.S.: A room temperature molecular/organic-based magnet. Science 252, 1415–1417 (1991)

    Article  CAS  Google Scholar 

  54. Kaul, B.B., Durfee, W.S., Yee, G.T.: Dialkyldicyanofumarate diesters: tunable building blocks for molecular-based ferromagnets. J. Am. Chem. Soc. 121, 6862–6866 (1999)

    Article  CAS  Google Scholar 

  55. Berlinguette, C.P., Baughn, D., Canada-Vilalta, C., Galán-Mascarós, J.R., Dunbar, K.R.: A trigonal-bipyramidal cyanide cluster with single molecular behavior: synthesis, structure, magnetic properties of [MnII(tmpen)2]3[MnIII(CN)6]2. Angew. Chem. Int. Ed. 42, 1523–1526 (2003)

    Article  CAS  Google Scholar 

  56. Miller, J.S., Epstein, A.J.: Designer magnets. Chem. Eng. News 73(40), 30 (1995)

    Article  CAS  Google Scholar 

  57. Hill, S., Anderson, N., Wilson, A., Takahashi, S., Petukhov, K., Chakov, N.E., Murugesu, M., del North, J.M., Barco, E., Kent, A.D., Dalal, N.S., Christou, G.: A comparison between high-symmetry Mn12 single-molecule magnets in different ligand/solvent environments. Polyhedron 24, 2284–2292 (2005)

    Article  CAS  Google Scholar 

  58. Miller, J.S.: Organometallic and organic based magnets: New chemistry and new materials for the new millennium. Inorg. Chem. 39, 4392–4408 (2000)

    Article  CAS  Google Scholar 

  59. Pokhodnya, K.I., Epstein, A.J., Miller, J.S.: Thin film V(TCNE)x magnets. Adv. Mater. 12, 410–413 (2000)

    Article  CAS  Google Scholar 

  60. Pejaković, D.A., Manson, J.L., Miller, J.S., Epstein, A.J.: Photoinduced magnetism, dynamics, cluster glass behavior of a molecule-based magnet. Phys. Rev. Lett. 85, 1994–1997 (2000)

    Article  Google Scholar 

  61. Gîrtu, M.A., Wynn, C.M., Zhang, J., Miller, J.S., Epstein, A.J.: Magnetic properties and critical behavior of Fe(tetracyanoethylene)2 · x(CH2Cl2): a high-Tc molecule-based magnet. Phys. Rev. B 61, 492–500 (2000)

    Article  Google Scholar 

  62. Sato, O., Iyoda, T., Fujishima, A.: Photoinduced magnetization of a cobalt-iron cyanide. Science 272, 704–705 (1996)

    Article  CAS  Google Scholar 

  63. Miller, J.S.: Three-dimensional network-structured cyanide-based magnets. MRS Bull. 25, 60–64 (2000)

    Article  CAS  Google Scholar 

  64. Ohta, H., Nomura, K., Hiramatsu, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H.: Frontier of transparent oxide semiconductors. Solid State Electron. 47, 2261–2267 (2003)

    Article  CAS  Google Scholar 

  65. Kaye, S.S., Long, J.R.: Hydrogen storage in the dehydrated pressian blue analogues Mn3[Co(CN)6]2(M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005)

    Article  CAS  Google Scholar 

  66. Culp, J.T., Park, J.H., Frye, F., Huh, Y.D., Meisel, M.W., Talham, D.R.: Magnetism of metal cyanide networks assembled at interfaces. Coord. Chem. Rev. 249, 2642–2648 (2005)

    Article  CAS  Google Scholar 

  67. Berlinguette, C.P., Dragulescu-Andrasi, A., Sieber, A., Galán-Mascarós, J.R., Güdel, H., Achim, C., Dunbar, K.R.: A charge-transfer-induced spin transition in the discrete cyanide-bridged complex [Co(tmphen)2]3[Fe(CN)6]2. J. Am. Chem. Soc. 126, 6222–6223 (2004)

    Article  CAS  Google Scholar 

  68. Holmes, S.M., Girolami, G.S.: Sol-gel synthesis of KVII[CrIII(CN)6] · 2H2O: a crystalline molecule-based magnet with a magnetic ordering temperature above 100°C. J. Am. Chem. Soc. 121, 5593–5594 (1999)

    Article  CAS  Google Scholar 

  69. Escax, V., Bleuzen, A., Itie, J.P., Munsch, P., Varret, F., Verdaguer, M.: Nature of the long-range structural changes induced by the molecular photoexcitation and by the relaxation in the Prussian blue analogs Rb1.8Co4[Fe(CN)6]3.3 · 13H2O:a synchrotron diffraction study. J. Phys. Chem. B. 107, 4763–4767 (2003)

    Article  CAS  Google Scholar 

  70. Li, D., Clérac, R., Roubeau, O., Harté, E., Mathoniére, C., Le Bris, R., Holmes, S.M.: Magnetic and optical bistability driven by thermally and photo-induced intramolecular electron transfer in a molecular cobalt-iron Prussian blue analogue. J. Am. Chem. Soc. 130, 242–259 (2007)

    Google Scholar 

  71. Berlinguette, C.P., Draguleschu-Andrasi, A., Sieber, A., Güdel, H.-U., Achim, C., Dunbar, K.R.: A charge-transfer-induced spin transition in a discrete complex: the role of extrinsic factors in stabilizing three electronic isomeric forms of a cyanide-bridged Co/Fe cluster. J. Am. Chem. Soc. 127, 6766–6779 (2005)

    Article  CAS  Google Scholar 

  72. Rao, C.N.R., Nath, M.: Inorganic nanotubes. Dalton Trans. 1, 1–24 (2003)

    Article  CAS  Google Scholar 

  73. Bonnell, D.A.: Materials in nanotechnology: new structures, new properties, new complexity. J. Vac. Sci. Technol. A 21, S194–S206 (2003)

    Article  CAS  Google Scholar 

  74. Tenne, R., Rao, C.N.R.: Inorganic nanotubes. Philos. Trans. R. Soc. A 362, 2099–2125 (2004)

    Article  CAS  Google Scholar 

  75. Halford, B.: Inorganic menagerie. Chem. Eng. News 83, 30–33 (2005)

    Google Scholar 

  76. Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006)

    Article  CAS  Google Scholar 

  77. Long, J.W., Rolison, D.R.: Architectural design, interior decoration, three-dimensional plumbing en route to multifunctional nanoarchitectures. Acc. Chem. Res. 40, 854–862 (2007)

    Article  CAS  Google Scholar 

  78. Nobile, C., Kudera, S., Fiore, A., Carbone, L., Chilla, G., Kipp, T., Heitmann, D., Cingolani, R., Manna, L., Krahne, R.: Confinement effects on the optical phonons in spherical, rod-, tetrapod-shaped nanocrystals detected by Raman spectroscopy. Phys. Stat. Sol. (a) 204, 483 (2007)

    Article  CAS  Google Scholar 

  79. Moses, M.J., Fettinger, J.C., Wichhorn, B.W.: Interpenetrating As20 fullerene and Ni12 iscosahedra in the onion-skin [As@Ni12@As20]. Science 300, 778–780 (2003)

    Article  CAS  Google Scholar 

  80. Wu, Y., Messer, B., Yang, P.: Superconducting MgB2 nanowires. Adv. Mater. 13, 1487–1489 (2001)

    Article  CAS  Google Scholar 

  81. Wang, Z.L., Kong, X.Y., Ding, Y., Gao, P., Hughes, W.L., Yang, R., Zhang, Y.: Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14, 943–956 (2004)

    Article  CAS  Google Scholar 

  82. Liu, C., Rondinone, A.J., Zhang, Z.J.: Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. J. Am. Chem. Soc. 123, 4344–4345 (2001)

    Article  CAS  Google Scholar 

  83. Kovtyukhova, N.I., Mallouk, T.E., Mayer, T.S.: Templated surface sol-gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Adv. Mater. 15, 780–785 (2003)

    Article  CAS  Google Scholar 

  84. Tian, M., Wang, J., Han, T., Kumar, N., Kobayashi, Y., Liu, Y., Mallouk, T.E., Chan, M.W.H.: Superconductivity in granular Bi nanowires fabricated by electrochemical deposition at ambient pressure. Nano Lett. 6, 2773–2780 (2006)

    Article  CAS  Google Scholar 

  85. Rusakova, I., Ould-Ely, T., Hofmann, C., Prieto-Centurión, D., Levin, C.S., Halas, N.J., Lüttge, A., Whitmire, K.H.: Nanoparticle shape conservation in the conversion of MnO nanocrosses into Mn3O4. Chem. Mater. 19, 1369–1375 (2007)

    Article  CAS  Google Scholar 

  86. Ould-Ely, T., Prieto-Centurion, D., Kumar, A., Guo, W., Knowles, W.V., Asokan, S., Wong, M.S., Rusakova, I., Lüttge, A., Whitmire, K.H.: Manganese(II) oxide nanohexapods: Insight into controlling the form of nanocrystals. Chem. Mater. 18, 1821–1829 (2006)

    Article  CAS  Google Scholar 

  87. Tian, M.L., Wang, J.G., Kurtz, J.S., Liu, Y., Chan, M.H.W., Mayer, T.S., Mallouk, T.E.: Dissipation in quasi-one-dimensional superconducting single crystal Sn nanowires. Phys. Rev. B 71, 104521 (2005)

    Article  CAS  Google Scholar 

  88. O’Dwyer, C., Navas, D., Lavayen, V., Benavente, E., Santa Ana, M.A., Gonzales, G., Newcomb, S.B., Sotomayor Torres, C.M.: Nanourchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 18, 3016–3022 (2006)

    Article  CAS  Google Scholar 

  89. Danier, M.-C., Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum size related properties, applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  90. Mai, L.W., Lao, C.S., Hu, B., Qi, Y.Y., Chen, W., Gu, E.D., Wang, Z.L.: Structure and electrical transport for single-crystal NH4 V3 O8 nanobelts. J. Phys. Chem. B 110, 18138–18141 (2006)

    Article  CAS  Google Scholar 

  91. Szlufarska, I., Nakano, A., Vashishta, P.: A crossover in the mechanical response of nanocrystalline ceramics. Science 309, 911–914 (2005)

    Article  CAS  Google Scholar 

  92. Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2003)

    Article  CAS  Google Scholar 

  93. Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    Article  CAS  Google Scholar 

  94. Margulis, L., Salitra, G., Tenne, R.: Nested fullerene-like structures. Nature 365, 113–114 (1993)

    Article  CAS  Google Scholar 

  95. Parilla, P.A., Dillon, A.C., Jones, K.M., Riker, G., Schulz, D.L., Ginley, D.S., Heben, M.J.: The first true inorganic fullerenes? Nature 397, 114 (1999)

    Article  CAS  Google Scholar 

  96. Yao, B.D., Chan, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.T., Wang, N.: Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett. 82, 281–283 (2003)

    Article  CAS  Google Scholar 

  97. Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Demsar, J., Stadelmann, P., Lévy, F., Mihailovic, D.: Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479–481 (2001)

    Article  CAS  Google Scholar 

  98. Mickelson, W., Aloni, S., Han, W.-Q., Cumings, J., Zettl, A.: Packing C60 in boron nitride nanotubes. Science 300, 467–469 (2003)

    Article  CAS  Google Scholar 

  99. Levy, P., Leyva, A.G., Troiani, H.E., Sánchez, R.D.: Nanotubes of rare earth manganese oxide. Appl. Phys. Lett. 83, 5247–5249 (2003)

    Article  CAS  Google Scholar 

  100. Cabria, I., Mintmire, J.W.: Stability and electronic structure of phosphorus nanotubes. Europhys. Lett. 65, 82–88 (2004)

    Article  CAS  Google Scholar 

  101. Seifert, G., Enyashin, A.N.: Structure, stability, electronic properties of TiO2 nanostructures. Phys. Stat. Sol. 242, 1361–1370 (2005)

    Article  CAS  Google Scholar 

  102. Enyanshin, A.N., Seifert, G., Ivanovskii, A.L.: Calculation of the electronic and thermal properties of C/BN nanotubular heterostructures. Inorg. Mater. 41, 595–603 (2005)

    Article  CAS  Google Scholar 

  103. Saha-Dasgupta, T., Valenti, R., Capraro, F., Gros, C.: Na2V3O7, a frustrated nanotubular system with spin-1/2 diamond rings. Phys. Rev. Lett. 95, 107201 (2005)

    Article  CAS  Google Scholar 

  104. Cao, J., Choi, J., Musfeldt, J.L., Lutta, S., Whittingham, M.S.: Effect of sheet distance on the optical properties of vanadate nanotubes. Chem. Mater. 16, 731–736 (2004)

    Article  CAS  Google Scholar 

  105. Cao, J., Choi, J., Musfeldt, J.L., Lutta, S., Whittingham, M.S.: Vibrational response of vanadium oxide nanotubes: Exploring sheet distance effects and variable temperature properties. In: Sahu, S.N., Choudhury, R.K., Jena, P. (eds.) Nano-Scale Materials: From Science to Technology. Nova Science, New York (2006)

    Google Scholar 

  106. Baruah, T., Zope, R.R., Richardson, S.L., Pederson, M.R.: Electronic structure and rebonding in the onionlike As@Ni12@As20. Phys. Rev. B 68, 241404 (2003)

    Article  CAS  Google Scholar 

  107. Chen, S.H., Wang, Z.L., Ballato, J., Foulger, S.H., Carroll, D.L.: Monopod, bipod, tripod and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 6186–16187 (2003)

    Google Scholar 

  108. Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625–1631 (2003)

    Article  CAS  Google Scholar 

  109. Dames, C., Poudel, B., Wang, W.Z., Huang, J.Y., Ren, Z.F., Sun, Y., Oh, J.I., Opeil, C., Naughton, M.J., Chen, G.: Low-dimensional phonon specific heat of titanium dioxide nanotubes. Appl. Phys. Lett. 87, 031901 (2005)

    Article  CAS  Google Scholar 

  110. Muhr, J.-J., Krumeich, K., Schonholzer, U.P., Bieri, F., Neiderberger, M., Gauckler, L.J., Nesper, R.: Vanadium oxide nanotubes: a new flexible vanadate nanophase. Adv. Mater. 12, 231–234 (2000)

    Article  CAS  Google Scholar 

  111. Worle, M., Krumeich, F., Bieri, F., Muhr, H.-J., Nesper, R.: Flexible V7O16 layers as the common structural element of vanadium oxide nanotubes and a new crystalline vanadate. Z. Anorg. Allg. Chem. 628, 2778–2784 (2002)

    Article  Google Scholar 

  112. Friedman, J.R., Sarachik, M.P., Tejada, J., Ziolo, R.: Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)

    Article  CAS  Google Scholar 

  113. Tasiopoulos, A.J., Vinslava, A., Wernsdorfer, W., Abboud, K.A., Christou, G.: Giant single-molecule magnets: A Mn84 torus and its supramolecular nanotubes. Angew. Chem. Int. Ed. 43, 2117–2121 (2004)

    Article  CAS  Google Scholar 

  114. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  115. Bethune, D.S.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  CAS  Google Scholar 

  116. Geim, A.K., Novoselov, K.S.: The rise of grapheme. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  117. Hone, J., Batlogg, B., Benes, Z., Johnson, A.T., Fischer, J.E.: Quantized phonon spectrum of single-wall carbon nanotubes. Science 289, 1730–1733 (2000)

    Article  CAS  Google Scholar 

  118. Sun, C.Q., Pan, L.K., Li, C.M., Li, S.: Size-induced acoustic hardening and optic softening of phonons in InP, CeO2, SnO2, CdS, Ag, Si nanostructures. Phys. Rev. B 72, 134301 (2005)

    Article  CAS  Google Scholar 

  119. Bersani, D., Lottici, P.P., Ding, X.-Z.: Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl. Phys. Lett. 72, 73–75 (1998)

    Article  CAS  Google Scholar 

  120. Luttrell, R.D., Brown, S., Cao, J., Musfeldt, J.L., Rostenveig, R., Tenne, R.: Understanding the dynamics of bulk vs. nanoscale WS2: Local strain and charging effects. Phys. Rev. B 73, 035410 (2006)

    Article  CAS  Google Scholar 

  121. Brown, S., Musfeldt, J.L., Mihut, I., Betts, J.B., Migliori, A., Zak, A., Tenne, R.: Bulk vs. nanoscale WS2: Finite size effects and solid state lubrication. Nano Lett. 7, 2365–2369 (2007)

    Article  CAS  Google Scholar 

  122. Smith, M.B., Page, K., Siegrist, T., Redmond, P.L., Walter, E.C., Seshadri, R., Brus, L.E., Steigerwald, M.L.: Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 130, 6955–6963 (2008)

    Article  CAS  Google Scholar 

  123. Qazilbash, M.M., Brehm, M., Chae, B.-G., Ho, P.-C., Andreev, G.O., Kim, B.-J., Yun, S.J., Balatsky, A.V., Maple, M.B., Keilmann, F., Kim, H.-T., Basov, D.N.: Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007)

    Article  CAS  Google Scholar 

  124. Filippetti, A., Hill, N.A.: Magnetic stress as a driving force of structural distortions: the case of CrN. Phys. Rev. Lett. 85, 5166–5169 (2000)

    Article  CAS  Google Scholar 

  125. Sun, Z., Chuang, Y.-D., Fedorov, A.V., Douglas, J.F., Reznik, D., Weber, F., Aliouane, N., Argyriou, D.N., Zheng, H., Mitchell, J.F., Kimura, T., Tokura, Y., Revcolevschi, A., Dessau, D.S.: Quasiparticle-like peaks, kinks, electron-phonon coupling at the (π,0) regions in the CMR oxide La2−2xSr1+2xMn2O7. Phys. Rev. Lett. 97, 056401 (2006)

    Article  CAS  Google Scholar 

  126. Mazin, I.I., Johannes, M.D.: A critical assessment of the superconducting pairing symmetry in NaxCoO2 · yH2O. Nat. Phys. 1, 91–93 (2005)

    Article  CAS  Google Scholar 

  127. Monteverde, M., Nunez-Regueiro, M., Rodado, N., Regan, K.A., Hayward, M.A., He, T., Lourerir, S.M., Cava, R.J.: Pressure dependence of the superconducting transition temperature of magnesium diboride. Science 292, 75–77 (2001)

    Article  CAS  Google Scholar 

  128. Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P.: Optical response of high dielectric constant perovskite-related oxide. Science 293, 673–676 (2001)

    Article  CAS  Google Scholar 

  129. Lake, B., Tennant, D.A., Frost, C.D., Nagler, S.E.: Quantum criticality and universal scaling of a quantum antiferromagnets. Nat. Mater. 4, 329–334 (2005)

    Article  CAS  Google Scholar 

  130. Feynman, R.P.: There’s plenty of room at the bottom. http://www.zyvex.com/nanotech/feynman.html (1959).

  131. Aviram, A.: Molecules for memory, logic, amplification. J. Am. Chem. Soc. 110, 5687–5692 (1988)

    Article  CAS  Google Scholar 

  132. Wang, Y.Z., Gebler, D.D., Blatchford, J.W., Jessen, S.W., Wang, H.L., Epstein, A.J.: AC light emitting device based on conjugated polymers. Appl. Phys. Lett. 68, 894–896 (1996)

    Article  CAS  Google Scholar 

  133. Lui, C., Pan, H., Fox, M.A., Bard, A.J.: High-density nanosecond charge trapping in thin films of the photoconductor ZnODEP. Science 261, 897–899 (1993)

    Article  Google Scholar 

  134. Balasubramanian, K., Burghard, M., Kern, K., Scolari, M., Mews, M.: Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett. 5, 507–510 (2005)

    Article  CAS  Google Scholar 

  135. Leuenberger, M.N., Loss, D.: Quantum computing in molecular magnets. Nature 410, 789–793 (2001)

    Article  CAS  Google Scholar 

  136. Kagan, C.R., Mitzi, D.B., Dimitrakopoulos, C.D.: Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)

    Article  CAS  Google Scholar 

  137. Sales, B.C., Mandrus, D., Williams, R.K.: Filled skutterudites antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996)

    Article  CAS  Google Scholar 

  138. Rueckes, T., Kim, K., Joselvich, E., Tseng, G.Y., Cheung, C.L., Lieber, C.M.: Carbon nanotube-based non-volatile random access memory for molecular computing. Science 289, 94–97 (2000)

    Article  CAS  Google Scholar 

  139. Krusin-Elbaum, L., Newns, D.M., Zeng, H., Derycke, V., Sun, J.Z., Sandstrom, R.: Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672–676 (2004)

    Article  CAS  Google Scholar 

  140. Rothschild, A., Cohen, S.R., Tenne, R.: WS2 nanotubes as tips in scanning probe microscopy. Appl. Phys. Lett. 75, 4025–4027 (1999)

    Article  CAS  Google Scholar 

  141. Maeda, K., Eguchi, M., Youngblood, W.J., Mallouk, T.E.: Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation. Chem. Mater. 20, 6770–6778 (2008)

    Article  CAS  Google Scholar 

  142. Rapoport, L., Fleischer, N., Tenne, R.: Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv. Mater. 15, 651–655 (2003)

    Article  CAS  Google Scholar 

  143. Nemanic, V., Zumer, M., Zajec, B., Pahor, J., Remskar, M., Mrzel, A., Panjan, P., Mihailovic, D.: Field-emission properties of molybdenum disulfide nanotubes. Appl. Phys. Lett. 82, 4573–4575 (2003)

    Article  CAS  Google Scholar 

  144. Hill, S., Edwards, R.S., Aliaga-Alcalde, N., Christou, G.: Quantum coherence in an exchange-coupled dimer of single molecule magnets. Science 302, 1015–1018 (2003)

    Article  CAS  Google Scholar 

  145. Wang, J., Stucky, G.D.: Mesostructured composite materials for multibit-per-site optical data storage. Adv. Funct. Mater. 14, 409–415 (2004)

    Article  CAS  Google Scholar 

  146. Li, S., Yu, Z., Yen, S.-F., Tang, W.C., Burke, P.J.: Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 4, 753–756 (2004)

    Article  CAS  Google Scholar 

  147. Jacoby, M.: Single-nanotube photodetector. Chem. Eng. News 81(27), 5 (2003)

    Article  Google Scholar 

  148. Moore, J.G., Lochner, E.J., Ramsey, C., Dalal, N.S., Stiegman, A.E.: Transparent, superparamagnetic KCo[Fe(CN)6]-silica nanocomposites with tunable photomagnetism. Angew. Chem. Int. Ed. 42, 2741–2743 (2003)

    Article  CAS  Google Scholar 

  149. Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum Hall effect in grapheme. Science 315, 1379 (2007)

    Article  CAS  Google Scholar 

  150. Zŭtić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  CAS  Google Scholar 

  151. Cage, B., Russek, S.E., Shoemaker, R., Barker, A.J., Stoldt, C., Ramachandaran, V., Dalal, N.S.: The utility of the single-molecule magnet Fe8 as a magnetic resonance imaging contrast agent over a broad range of concentration. Polyhedron 26(12), 2413–2419 (2007)

    Article  CAS  Google Scholar 

  152. Cao, G., Durairaj, V., Chikara, S., DeLong, L.E., Schlottmann, P.: Observation of strong spin valve effect in bulk Ca3(Ru1-xCrx)2O7. Phys. Rev. Lett. 100, 016604 (2008). 159902

    Article  CAS  Google Scholar 

  153. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High thermoelectric performance of nanostructured bismuth antimoney telluride bulk alloys. Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  154. Bibes, M., Barthélémy, A.: Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)

    Article  CAS  Google Scholar 

  155. Chapline, M.G., Wang, S.X.: Room-temperature spin filtering in a CoFe2O4/MgAl2O4/Fe3O4 magnetic tunnel barrier. Phys. Rev. B 74, 014418 (2006)

    Article  CAS  Google Scholar 

  156. Wooten, F.: Optical Properties of Solids. Academic, New York (1972)

    Google Scholar 

  157. Pankove, J.I.: Optical Processes in Semiconductors. Dover, New York (1971)

    Google Scholar 

  158. Love, S.P., Worl, L.A., Donohoe, R.J., Huckett, S.C., Swanson, B.I.: Origin of the fine structure in the vibrational spectrum of [Pt(C2H8N2)2] [Pt(C2H8N2)2] (ClO4)4: vibrational localization in a quasi-1D system. Phys. Rev. B 46, 813–816 (1992)

    Article  CAS  Google Scholar 

  159. Jones, B.R., Varughese, P.A., Pigos, J.M., Landee, C.P., Turnbull, M.M., Olejniczak, I., Carr, G.L.: Lattice dynamics of the 1D S = 1/2 Heisenberg antiferromagnet CuPzN. Chem. Mater. 13, 2127–2134 (2001)

    Article  CAS  Google Scholar 

  160. Brown, S., Cao, J., Musfeldt, J.L., Conner, M.M., McConnell, A.C., Southerland, H.I., Manson, J.L., Schlueter, J.A., Phillips, M.D., Turnbull, M.M., Landee, C.P.: Hydrogen bonding and multiphonon structure in copper pyrazine coordination polymers. Inorg. Chem. 46, 8577–8583 (2007)

    Article  CAS  Google Scholar 

  161. Sun, Q.-C., Xu, X.S., Vergara, L.I., Rosentsveig, R., Musfeldt, J.L.: Dynamical charge and structural strain in inorganic fullerne-like MoS2 nanoparticles. Phys. Rev. B 79, 205205 (2009)

    Article  CAS  Google Scholar 

  162. MnO, Q.C. Sun, X.S. Xu, S.N. Baker, A.D. Christianson, and J.L. Musfeldt, Chem. Mater. 23, 2956 (2011)

    Google Scholar 

  163. Magneto-elastic coupling in bulk and nanoscale MnO, Q.C. Sun, S.N. Baker, A.D. Christianson, and J.L. Musfeldt, Phys. Rev. B 84, 014301 (2011)

    Google Scholar 

  164. Xu, X.S., Brinzari, T.V., McGill, S., Zhou, H.D., Weibe, C.R., Musfeldt, J.L.: Absence of spin liquid behavior: Magneto-optical study of Nd3Ga5SiO14. Phys. Rev. Lett. 103, 267402 (2009)

    Article  CAS  Google Scholar 

  165. Forró, L., Mihály, L.: Electronic properties of doped fullerenes. Rep. Prog. Phys. 64, 649–699 (2001)

    Article  Google Scholar 

  166. Kortus, J., Pederson, M.R.: Magnetic and vibrational properties of the uniaxial Fe13O8 cluster. Phys. Rev. B 62, 5755–5759 (2000)

    Article  CAS  Google Scholar 

  167. Zhu, Z.-T., Musfeldt, J.L., Kamarás, K., Adams, G.B., Page, J.B., Kashevarova, L.S., Rakhmanina, A.V., Davydov, V.A.: Far-infrared vibrational properties of linear C60 polymers: A comparison between neutral and charged materials. Phys. Rev. B 67, 045409 (2003)

    Article  CAS  Google Scholar 

  168. Fateley, W.G., Dollish, F.R., McDevitt, N.T., Bentley, F.F.: Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method. Wiley, New York (1972)

    Google Scholar 

  169. Barath, H., Kim, M., Cooper, S.L., Abbamonte, P., Fradkin, E., Mahns, I., Rübhausen, M., Aliouane, N., Argyriou, D.N.: Domain fluctuations near the field-induced incommensurate-commensurate phase transition of TbMnO3. Phys. Rev. B 78, 134407 (2008)

    Article  CAS  Google Scholar 

  170. Gasparov, L.V., Brown, K.G., Wint, A.C., Tanner, D.B., Berger, H., Margaritondo, G., Gaal, R., Forro, L.: Phonon anomaly at the charge ordering transition in 1T-TaS2. Phys. Rev. B 66, 094301 (2002)

    Article  CAS  Google Scholar 

  171. Musfeldt, J.L., Brown, S., Mazuumdar, S., Clay, R.T., Mas-Torent, M., Rovira, C., Dias, J.C., Henriques, R.T., Almeida, M.: Infrared investigation of the charge ordering pattern in the organic spin ladder candidate (DTTTF)2Cu(mnt)2. Solid State Sci. 10, 1740–1744 (2008)

    Article  CAS  Google Scholar 

  172. Choi, J., Musfeldt, J.L., He, J., Jin, R., Thompson, J.R., Mandrus, D., Lin, X.N., Bondarenko, V.A., Brill, J.W.: Probing localization effects in Li0.9Mo6O17: An optical properties investigation. Phys. Rev. B 69, 085120 (2004)

    Article  CAS  Google Scholar 

  173. Barath, H., Kim, M., Karpus, J.F., Cooper, S.L., Abbamonte, P., Fradkin, E., Morosan, E., Cava, R.J.: Quantum and classical mode softening near the charge density wave-superconductor transition of CuxTiSe2. Phys. Rev. Lett. 100, 106402 (2008)

    Article  CAS  Google Scholar 

  174. Choi, J., Musfeldt, J.L., Whangbo, M.H., Galy, J., Millet, P.: Optical investigation of Na2V3O7 nanotubes. Chem. Mater. 14, 924–930 (2002)

    Article  CAS  Google Scholar 

  175. Ernst, G., Broholm, C., Kowach, G.R., Ramirez, A.P.: Phonon density of states and negative thermal expansion in ZrW2O8. Nature 396, 147–149 (1998)

    Article  CAS  Google Scholar 

  176. Frey, G.L., Elani, S., Homyonfer, M., Feldman, Y., Tenne, R.: Optical absorption spectra of inorganic fullerene-like MS2 (M = Mo, W). Phys. Rev. B 57, 6666–6671 (1998)

    Article  CAS  Google Scholar 

  177. Bommeli, F., Degiogi, L., Wachter, R., Legez, Ö., Janossy, A., Oszlanyi, G., Chauvet, O., Forro, L.: Metallic conductivity and metal-insulator transition in (AC60)n (A = K, Rb, Cs) linear polymer fullerides. Phys. Rev. B 51, 14794–14797 (1995)

    Article  CAS  Google Scholar 

  178. Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermodynamic figure of merit. Phys. Rev. B 47, 12727–12731 (1993)

    Article  CAS  Google Scholar 

  179. Hasegawa, T., Akutagawa, T., Nakamura, T., Mochida, T., Kondo, R., Kagoshima, S., Iwasa, Y.: Neutral-ionic phase transition of (BEDT-TTF)(ClMeTCNQ) under pressure. Phys. Rev. B 64, 085106 (2001)

    Article  CAS  Google Scholar 

  180. Schrama, J.M., Rzepniewski, E., Edwards, R.S., Singleton, J., Ardavan, A., Kurmoo, M., Day, P.: Millimeter-wave magneto-optical determination of the anisotropy of the superconducting order parameter in the molecular superconductor κ-(BEDTTTF)2Cu(NCS)2. Phys. Rev. Lett. 83, 3041–3044 (1999)

    Article  CAS  Google Scholar 

  181. Nuttall, C.J., Hayashi, Y., Yamazaki, K., Mitani, T., Iwasa, Y.: Dipole dynamics in the endohedral metallofullerene La@C82. Adv. Mater. 14, 293–296 (2002)

    Article  CAS  Google Scholar 

  182. Islam, M.F., Milkie, D.E., Kane, C.L., Yodh, A.G., Kikkawa, J.M.: Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 037404 (2004)

    Article  CAS  Google Scholar 

  183. Tsvetkov, A.A., Mena, F.P., van Loosdrecht, P.H.M., van der Marel, D., Ren, Y., Nugroho, A.A., Menovsky, A.A., Elfimov, I.S., Sawatzky, G.A.: Structural, electronic, and magneto-optical properties of YVO3. Phys. Rev. B 69, 075110 (2004)

    Article  CAS  Google Scholar 

  184. Turner, G.M., Beard, M.C., Schmuttenmaer, C.A.: Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J. Phys. Chem. B 106, 11716 (2002)

    Article  CAS  Google Scholar 

  185. Basov, D.N., Homes, C.C., Singley, E.J., Strongin, M., Timusk, T., Blumberg, F., van der Marel, D.: Unconventional energetics of the pseudogap state and superconducting state in the high Tc cuprates. Phys. Rev. B 63, 134514 (2001)

    Article  CAS  Google Scholar 

  186. Degiorgi, L.: The electrodynamic response of heavy-electron compounds. Rev. Mod. Phys. 71, 687–734 (1999)

    Article  CAS  Google Scholar 

  187. Dora, B., Vanyolos, A., Maki, K., Virosztek, A.: Gapped optical excitations from gapless phases: imperfect nesting in unconventional density waves. Phys. Rev. B 71, 245101 (2005)

    Article  CAS  Google Scholar 

  188. Jones, B.R., Olejniczak, I., Dong, J., Pigos, J.M., Zhu, Z., Garlach, A.D., Musfeldt, J.L., Schlueter, J.A., Koo, H.-J., Whangbo, M.-H., Nixon, P.G., Winter, R.W., Gard, G.L.: Optical properties of β″-(ET)2SF5RSO3 (R = CH2CF2, CHFCF2, CHF): changing electronic properties via chemical tuning of the counterion. Chem. Mater. 12, 2490–2495 (2000)

    Article  CAS  Google Scholar 

  189. Bockrath, M., Cobden, D.H., Lu, J., Rinzler, A.G., Smalley, R.E., Balents, L., McEuen, P.L.: Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999)

    Article  CAS  Google Scholar 

  190. Rauf, H., Pichler, T., Knupfer, M., Fink, J., Kataura, H.: Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 096805 (2004)

    Article  CAS  Google Scholar 

  191. Ishii, H., Kataura, H., Shiozawa, H., Yoshioka, H., Otsubo, H., Takayama, Y., Miyahara, T., Suzuki, S., Achiba, Y., Nakatake, M., Narimura, T., Higashiguchi, M., Shimada, K., Namatame, H., Taniguchi, M.: Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003)

    Article  CAS  Google Scholar 

  192. Zhu, Z.-T., Musfeldt, J.L., Teweldemedhin, Z.S., Greenblatt, M.: Anisotropic ab-plane optical response of the charge-density-wave superconductor P4W14O50. Phys. Rev. B 65, 214519 (2002)

    Article  CAS  Google Scholar 

  193. Shin, S., Suga, S., Taniguchi, M., Fujisawa, M., Kanzaki, H., Fujimori, A., Daimon, H., Ueda, Y., Kosuge, K., Kachi, S.: Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3. Phys. Rev. B 41, 4993–5009 (1990)

    Article  CAS  Google Scholar 

  194. Benckiser, E., Rückamp, R., Müller, T., Taetz, T., Moller, A., Nugroho, A., Palstra, T.T.M., Uhrig, G.S., Grüninge, M.: Collective orbital excitations in orbitally ordered YVO3 and HoVO3. New J. Phys. 10, 053027 (2008)

    Article  CAS  Google Scholar 

  195. Dawlaty, J.M., Shivaraman, S., Strait, J., George, P., Chandrashekhar, M., Raman, F., Spencer, M.G., Veksler, D., Chen, Y.: Measurement of the optical absorption of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008)

    Article  CAS  Google Scholar 

  196. Xu, X.S., Angst, M., Brinzari, T.V., Hermann, R.P., Musfeldt, J.L., Christianson, A.D., Mandrus, D., Sales, B.C., McGill, S., Kim, J.-W., Islam, Z.: Charge order, dynamics, magnetostructural transition in multiferroic LuFe2O4. Phys. Rev. Lett. 101, 227602 (2008)

    Article  CAS  Google Scholar 

  197. Xu, X.S., Sun, Q.-C.,Rosentsveig, R., Musfeldt, J.L.: Musfeldt, Evaluation of Born and local effective charges in unoriented materials from vibrational spectra, Phys. Rev. B 80, 014303 (2009)

    Google Scholar 

  198. Hart, G.L.W., Pickett, W.E., Kurmaev, E.Z., Hartmann, D., Neumann, M., Moewes, A., Ederer, D.L., Endoh, R., Taniguchi, K., Nagata, S.: Electronic structure of Cu1-xNixRh2S4 and CuRh2Se4: band structure calculations, x-ray photoemission, and fluorescence measurements. Phys. Rev. B 61, 4230–4237 (2000)

    Article  CAS  Google Scholar 

  199. Reddy, B.V., Khanna, S.N., Jena, P.: Structure and magnetic ordering in Cr8 and Cr13 clusters. Phys. Rev. B 60, 15597–15600 (1999)

    Article  CAS  Google Scholar 

  200. Islam, Z., Detlefs, C., Song, C., Goldman, A.I., Antropoc, C., Harmon, B.N., Bud’ko, S.L., Wiener, T., Canfield, P.C., Wermeille, D., Finkelstein, K.D.: Effects of band filling on magnetic structures: the case of RNi2Ge2. Phys. Rev. Lett. 83, 2817–2820 (1999)

    Article  CAS  Google Scholar 

  201. Pederson, M.R., Khanna, S.N.: Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules. Phys. Rev. B 60, 9566–9572 (1999)

    Article  CAS  Google Scholar 

  202. Zeng, Z., Guenzburger, D., Ellis, D.E.: Electronic structure, spin couplings, hyperfine properties of nanoscale molecular magnets. Phys. Rev. B 59, 6927–6937 (1999)

    Article  CAS  Google Scholar 

  203. Haule, K., Oudovenko, V., Savrasov, S.Y., Kotliar, G.: The α → γ transition in Ce: A theoretical view from optical spectroscopy. Phys. Rev. Lett. 94, 036401 (2005)

    Article  CAS  Google Scholar 

  204. Boukhvalov, D.W., Lichtenstein, A.I., Dobrovitski, V.V., Katsnelson, M.I., Harmon, B.N., Mazurenko, V.V., Anisimov, V.I.: Electronic structure and exchange interactions in V15 magnetic molecules: LDA + U results. Phys. Rev. B 70, 054417 (2004)

    Article  CAS  Google Scholar 

  205. Xiang, H.J., Whangbo, M.-H.: Charge order and the origin of giant magnetocapacitance in LuFe2O4. Phys. Rev. Lett. 98, 246403 (2007)

    Article  CAS  Google Scholar 

  206. Stoltzfus, M.W., Woodward, P.M., Seshadri, R., Klepeis, J.-H., Bursten, B.: Structure and bonding in SnWO4, PbWO4, and BiVO4: Lone pairs vs. inert pairs. Inorg. Chem. 46(10), 3839–3850 (2007)

    Article  CAS  Google Scholar 

  207. Marianetti, C.A., Kotliar, G., Ceder, G.: A first-order Mott transition in LixCO2. Nat. Mater. 3, 627–631 (2004)

    Article  CAS  Google Scholar 

  208. Barbour, A., Luttrell, R.D., Choi, J., Musfeldt, J.L., Zipse, D., Dalal, N.S., Boukhvalov, D.S., Dobrovitski, V.V., Katsnelson, M.I., Lichtenstein, A.I., Harmon, B.N., Kögerler, P.: Understanding the gap in polyoxovanadate molecule-based magnets. Phys. Rev. B 74, 014411 (2006)

    Article  CAS  Google Scholar 

  209. Oudovenko, V.X., Palsson, G., Savrasoc, S.Y., Haule, J., Kotliar, G.: Calculations of optical properties in strongly correlated materials. Phys. Rev. B 70, 125112 (2005)

    Article  CAS  Google Scholar 

  210. Hoinkis, M., Sing, M., Schafer, J., Klemm, M., Horn, S., Benthien, H., Jeckelmann, E., Saha-Dasgupta, T., Pisani, L., Valenti, R., Claessen, R.: Electronic structure of the S = 1/2 quantum magnet TiOCl. Phys. Rev. B 72, 125127 (2005)

    Article  CAS  Google Scholar 

  211. Kasinathan, D., Kunes, J., Koepernik, K., Diaconu, C.V., Martin, R.L., Prodan, I.D., Scuseria, G.E., Spaldin, N., Petit, L., Schulthess, T.C., Pickett, W.E.: Mott transition of MnO under pressure: A comparison of correlated band theories. Phys. Rev. B 74, 195110 (2006)

    Article  CAS  Google Scholar 

  212. Wesolowski, R., Haraldsen, J.T., Cao, J., Musfeldt, J.L., Olejniczak, I., Wang, Y.J., Schlueter, J.A.: Understanding the totally symmetric intramolecular vibrations in type κ-phase organic superconductors. Phys. Rev. B 71, 214514 (2005)

    Article  CAS  Google Scholar 

  213. Egami, T.: Electron-phonon coupling in high-Tc superconductors. In: Müller, K.A., Bussmann-Holder, A. (eds.) Superconductivity in Complex Systems Structure and Bonding, vol. 114, pp. 267–286. Springer, Berlin (2005)

    Google Scholar 

  214. Long, V.C., Musfeldt, J.L., Kamrás, K., Adams, G.B., Page, J.B., Iwasa, Y., Mayo, W.E.: Far-infrared vibrational properties of high-pressure high-temperature C60 polymers and the C60 dimer. Phys. Rev. B 61, 13191–13201 (2000)

    Article  CAS  Google Scholar 

  215. Cronin, S.B., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Dresselhaus, M.S., Tinkham, M.: Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 93, 167401 (2004)

    Article  CAS  Google Scholar 

  216. FitzGerald, S.A., Sievers, A.J.: Far-infrared properties of C60 and C70 compacts. J. Chem. Phys. 101, 7283–7289 (1994)

    Article  CAS  Google Scholar 

  217. Taylbayev, D., Mihály, L., Zhou, J.: Antiferromagnetic resonance in LaMnO3 at low temperature. Phys. Rev. Lett. 93, 017202 (2004)

    Article  CAS  Google Scholar 

  218. Cao, J., Haraldsen, J.T., Brown, S., Musfeldt, J.L., Thompson, J.R., Zvyagin, S., Krzytek, J., Whangbo, M.-H., Nagler, S.E., Torardi, C.C.: Understanding low-energy magnetic excitations and hydrogen bonding in VOHPO4 · H2O. Phys. Rev. B 72, 214421 (2005)

    Article  CAS  Google Scholar 

  219. Valdés-Aguilar, R., Sushkov, A.B., Zhang, C.L., Choi, Y., Cheong, J.S.-W., Drew, H.D.: Colossal magnon-phonon coupling in multiferroic Eu0.75T0.25MnO3. Phys. Rev. B 76, 060404(R) (2007)

    Article  CAS  Google Scholar 

  220. Room, T., Hüvonen, D., Nagel, U., Wang, Y.-J., Kremer, R.K.: Low-energy excitations and dynamic Dzaloshinskii-Moriya interaction in α -NaV2O5 by far-infrared spectroscopy. Phys. Rev. B 69, 144410 (2004)

    Article  CAS  Google Scholar 

  221. Room, T., Nagel, U., Lippmaa, E., Kageyama, H., Onizuka, K., Ueda, Y.: Far-infrared study of the two-dimensional dimer spin system SrCu(BO3)2. Phys. Rev. B 61, 14342 (2004)

    Article  Google Scholar 

  222. Room, T., Hüvonen, D., Nagel, U., Hwang, J., Timusk, T., Kageyama, H.: Far-infrared spectroscopy of spin excitations and Dzyaloshinskii-Moriya interactions in a Shastry-Sutherland compound SrCu(BO3)2. Phys. Rev. B 70, 144417 (2004)

    Article  CAS  Google Scholar 

  223. Sushkov, A.B., Musfeldt, J.L., Wang, Y.J., Achey, R.M., Dalal, N.S.: Spin-vibrational coupling in the far-infrared spectrum of Mn12-acetate. Phys. Rev. B 66, 144430 (2002)

    Article  CAS  Google Scholar 

  224. Pederson, M.R., Bernstein, N., Kortus, J.: Fourth-order magnetic anisotropy and tunnel splittings in Mn12 from spin-orbit-vibron interactions. Phys. Rev. Lett. 89, 097202 (2002)

    Article  CAS  Google Scholar 

  225. Sushkov, A.B., Tchernyshyov, O., Ratcliff II, W., Cheong, S.W., Drew, H.D.: Probing spin correlations with phonons in the strongly frustrated magnet ZnCr2 O4. Phys. Rev. Lett. 94, 137202 (2005)

    Article  CAS  Google Scholar 

  226. Basov, D.N., Averitt, R.D., van der Marel, D., Dressel, M., Haule, K.: Electrodynamics of correlated electron materials. Rev. Mod. Phys.

    Google Scholar 

  227. Yoffe, A.D.: Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–266 (1993)

    Article  CAS  Google Scholar 

  228. Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38, 9797–9805 (1988)

    Article  Google Scholar 

  229. Brus, L.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  CAS  Google Scholar 

  230. Nosaka, Y.: Finite depth spherical well model for excited states of ultrasmall semiconductor particles: an application. J. Phys. Chem. 95, 5054–5058 (1991)

    Article  CAS  Google Scholar 

  231. Franceschetti, A., Zunger, A.: Direct pseudopotential calculation of exciton Coulomb and exchange energies in semiconductor quantum dots. Phys. Rev. Lett. 78, 915–918 (1997)

    Article  CAS  Google Scholar 

  232. Uozumi, T., Kayanuma, Y.: Excited states of an electron-hole pair in spherical quantum dots and their optical properties. Phys. Rev. B 65, 165318 (2002)

    Article  CAS  Google Scholar 

  233. Senger, R.T., Bajaj, K.K.: Optical properties of confined polaronic excitons in spherical ionic quantum dots. Phys. Rev. B 68, 045313 (2003)

    Article  CAS  Google Scholar 

  234. Kim, S.-W., Fujita, S., Fujita, S.: Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition. Appl. Phys. Lett. 81, 5026–5038 (2002)

    Google Scholar 

  235. Satoh, N., Nakashima, T., Kamikura, K., Tamamoto, K.: Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat. Nanotechnol. 3, 106–111 (2008)

    Article  CAS  Google Scholar 

  236. Dong, W., Zhu, C.: Optical properties of surface-modified CdO nanoparticles. Opt. Mater. 22, 227–233 (2003)

    Article  CAS  Google Scholar 

  237. Dong, W., Zhu, C.: Optical properties of surface-modified Bi2O3 nanoparticles. J. Phys. Chem Sol. 64, 265–271 (2003)

    Article  CAS  Google Scholar 

  238. Landau, L.D., Lifshitz, E.M.: Statistical Physics Part 1, Vol. 5, Course of Theoretical Physics, 3rd edn. Pergamon, London (1994)

    Google Scholar 

  239. Batra, I.P., Wurfel, P., Silverman, B.D.: Phase transition, stability, depolarization Field in ferroelectric thin films. Phys. Rev. B 8, 3257 (1973)

    Article  CAS  Google Scholar 

  240. Batra, I.P., Wurfel, P., Silverman, B.D.: New type of first-order phase transition in ferroelectric thin films. Phys. Rev. Lett. 30, 384 (1973)

    Article  CAS  Google Scholar 

  241. Tashiro, H., Graybeal, J.M., Tanner, D.B., Nicol, E.J., Carbotte, J.P., Carr, G.L.: Unusual thickness dependence of the superconducting transition of α-MoGe thin films. Phys. Rev. B 78, 014509 (2008)

    Article  CAS  Google Scholar 

  242. Ishikawa, K., Yoshikawa, J., Okada, N.: Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 37, 5852 (1988)

    Article  CAS  Google Scholar 

  243. Uchino, K., Sadanaga, E., Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)

    Article  CAS  Google Scholar 

  244. Zhong, W.L., Jiang, B., Zhang, P.L., Ma, J.M., Cheng, H.M., Yang, Z.H., Li, L.X.: Phase transition in PbTiO3 ultrafine particles of different sizes. J. Phys. Condens. Matter 5, 2619–2624 (1993)

    Article  CAS  Google Scholar 

  245. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385–420 (1904)

    Article  Google Scholar 

  246. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. 205, 237–288 (1906)

    Article  Google Scholar 

  247. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen. Ann. Phys. (Leipzig) 24, 636–679 (1935)

    CAS  Google Scholar 

  248. Carr, G.L., Perkowitz, S., Tanner, D.B.: Far-infrared properties of inhomogeneous media. In: Button, K. (ed.) Infrared and Millimeter Waves, 13th edn. Academic, New York (1985)

    Google Scholar 

  249. Kim, Y.H., Tanner, D.B.: Far-infrared absorption by aluminum small particles. Phys. Rev. B 39, 3585 (1989)

    Article  CAS  Google Scholar 

  250. Carr, G.L., Henry, R.L., Russell, N.E., Garland, J.C., Tanner, D.B.: Anomalous far-infrared absorption in random small-particle composites. Phys. Rev. B 24, 777 (1981)

    Article  CAS  Google Scholar 

  251. Carr, G.L., Garland, J.C., Tanner, D.B.: Anomalous infrared absorption in granular superconductors. Phys. Rev. Lett. 50, 1607 (1983)

    Article  CAS  Google Scholar 

  252. Akima, N., Iwasa, Y., Brown, S., Barbour, A.M., Cao, J., Musfeldt, J.L., Matsui, J., Toyota, N., Shiraishi, M., Shimoda, H., Zhou, O.: Strong anisotropy in the far infrared absorption spectra of stretch-aligned single-walled carbon nanotubes. Adv. Mater. 18, 1166–1169 (2006)

    Article  CAS  Google Scholar 

  253. Cummings, K.D., Garland, J.C., Tanner, D.B.: Optical properties of a small-particle composite. Phys. Rev. B 30, 4170 (1984)

    Article  CAS  Google Scholar 

  254. Carr, G.L.: Unpublished results.

    Google Scholar 

  255. Qazilbash, M.M., Brehm, M., Andreev, G.O., Frenzel, A., Ho, P.-C., Chae, B.-G., Kim, B.J., Yun, S.J., Kim, H.-T., Valatsky, A.V., Shpyrko, O.G., Maple, M.B., Keilmann, F., Basov, D.N.: Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide. Phys. Rev. B 79, 075107 (2009)

    Article  CAS  Google Scholar 

  256. Mie, G.: Beitr¨age zur optik trüber medien speziell kolloidaler goldlosungen (contributions to the optics of diffuse media, especially colloidal metal solutions). Ann. Phys. 25, 377–445 (1908)

    Article  CAS  Google Scholar 

  257. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  258. Nome, R.A., Guffey, M.J., Scherer, N.F., Gray, S.K.: Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers. J. Phys. Chem. A 113(16), 4408–4415 (2009)

    Article  CAS  Google Scholar 

  259. Niklasson, G.A.: Modeling the optical properties of nanoparticles. SPIE Newsroom (2006). doi:10.1117/2.1200603.0182

  260. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)

    Google Scholar 

  261. Stroud, D.: Percolation effects and sum rules in the optical properties of composities. Phys. Rev. B 19, 1783 (1979)

    Article  CAS  Google Scholar 

  262. Kelley, E.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  263. Sosa, I.O., Noguez, C., Barrera, R.G.: Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107, 6269–6275 (2003)

    Article  CAS  Google Scholar 

  264. Zhang, Q., Ge, J., Pham, T., Goebl, J., Hu, Y., Lu, Z., Yin, Y.: Reconstruction of silver nanoplates by uv irradiation: tailored optical properties and enhanced stability. Angew. Chem. Int. Ed. 121, 3568–3571 (2009)

    Google Scholar 

  265. Lassiter, J.B., Knight, M.W., Mirin, N.A., Halas, N.J.: Reshaping the plasmonic properties of an individual nanoparticle. Nano Lett. 9, 4326–4332 (2009)

    Article  CAS  Google Scholar 

  266. Bardhan, R., Chen, W., Perez-Torres, C., Bartels, M., Huschka, R.M., Zhao, L., Morosan, E., Pautler, R., Joshi, A., Halas, N.J.: Nanoshells engineered for targeted, simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Func. Mater. 19(24), 3901–3909 (2009)

    Article  CAS  Google Scholar 

  267. Schonfeld, B., Huang, J.J., Moss, S.C.: Anisotropic mean-square displacements (MSD) in single-crystals of 2H and 3R-MoS2. Acta Cryst. B 39, 404–407 (1983)

    Article  Google Scholar 

  268. Verble, J.L., Wieting, T.J.: Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 362 (1970)

    Article  CAS  Google Scholar 

  269. Mott, N.F.: Metal-Insulator Transitions. Taylor & Francis, London (1990)

    Google Scholar 

  270. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  CAS  Google Scholar 

  271. Qazilbash, M.M., Schafgans, A.A., Burch, J.S., Yun, S.J., Chae, B.G., Kim, B.J., Kim, H.T., Basov, D.N.: Electrodynamics of the vanadium oxides VO2 and V2O3. Phys. Rev. B 77, 115121 (2008)

    Article  CAS  Google Scholar 

  272. Brinkman, W.F., Rice, T.M.: Application of Gutzwiller’s variational method to the metal-insulator transition. Phys. Rev. B 2, 4302 (1970)

    Article  Google Scholar 

  273. Katakura, I., Tokunaga, M., Matsuo, A., Kawaguchi, K., Kindo, J., Hitomi, M., Akahoshi, D., Kuwahara, H.: Development of high-speed polarizing imaging system for operation in high pulsed magnetic field. Rev. Sci. Inst. 81, 043701 (2010)

    Article  CAS  Google Scholar 

  274. MRS Bull. 34(11) (2009)

    Google Scholar 

  275. Zavalij, P.Y., Whittingham, M.S.: Structural chemistry of vanadium oxides with open frameworks. Acta Cryst. B 55, 627–663 (1999)

    Article  Google Scholar 

  276. O’Dwyer, C., Navas, D., Lavayen, V., Benavente, E., Santa Ana, M.A., González, G., Newcomb, S.B., Sotomayor Torres, C.M.: Nano-Urchin: The formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 18, 3016–3022 (2006)

    Article  CAS  Google Scholar 

  277. Wang, Y., Cao, G.: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787–2804 (2006)

    Article  CAS  Google Scholar 

  278. Krumeich, F., Muhr, H.-J., Niederberger, M., Bieri, F., Schnyder, B., Nesper, R.: Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am. Chem. Soc. 121, 8324–8331 (1999)

    Article  CAS  Google Scholar 

  279. Niederberger, M., Muhr, H.-J., Krumeich, F., Bieri, F., Günther, D., Nesper, R.: Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem. Mater. 12, 1995–2000 (2000)

    Article  CAS  Google Scholar 

  280. Reinoso, J.M., Muhr, H.-J., Krumeich, F., Bieri, F., Nesper, R.: Controlled uptake and release of metal cations by vanadium oxide nanotubes. Helv. Chim. Acta 83, 1724–1733 (2000)

    Article  CAS  Google Scholar 

  281. Cao, J., Musfeldt, J.L., Mazumdar, S., Chernova, N., Whittingham, M.S.: Pinned low energy excitation in metal exchanged vanadium oxide nanoscrolls. Nano Lett. 7, 2351–2355 (2007)

    Article  CAS  Google Scholar 

  282. Sipos, B., Duchamp, M., Magrez, A., Forró, L., Barisić, N., Kis, A., Seo, J.W., Bieri, F., Krumeich, F., Nesper, R., Patzke, G.R.: Mechanical and electronic properties of vanadium oxide nanotubes. J. App. Phys. 105, 074317 (2009)

    Article  CAS  Google Scholar 

  283. Mahamuni, S., Borgohain, K., Bendre, B.S., Leppert, B.J., Risbud, S.H.: Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys. 85, 2861–2865 (1999)

    Article  CAS  Google Scholar 

  284. Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., Wong, P.K.W.: Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl. Phys. Lett. 76, 2901–2903 (2000)

    Article  CAS  Google Scholar 

  285. Kim, K.-K., Koguchi, N., Ok, Y.-W., Seong, T.Y., Park, S.-J.: Fabrication of ZnO quantum dots embedded in an amorphous oxide layer. Appl. Phys. Lett. 84, 3810–3812 (2004)

    Article  CAS  Google Scholar 

  286. Du, X.-W., Fu, Y.-S., Sun, J., Han, X., Liu, J.: Complete uv emission of ZnO nanoparticles in a PMMA matrix. Semicond. Sci. Technol. 21, 1202–1206 (2006)

    Article  CAS  Google Scholar 

  287. Oftadeh, M., Salavati-Niasari, M., Davar, F.: Synthesis of ZnO nanoparticles and their optical properties. Int. J. Nanopart. 2, 307–313 (2009)

    Article  CAS  Google Scholar 

  288. Zheng, M.J., Zhang, L.D., Li, G.H., Shen, W.Z.: Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 363, 123–128 (2002)

    Article  CAS  Google Scholar 

  289. Stichtenoth, D., Ronning, C., Niermann, T., Wischmeier, L., Voss, T., Chien, C.-J., Chang, P.-C., Lu, J.G.: Optical size effects in ultrathin ZnO nanowires. Nanotechnology 18, 435701 (2007)

    Article  Google Scholar 

  290. Pal, E., Dekany, I.: Structural, optical, photoelectric properties of indium-doped zinc oxide nanoparticles prepared in dimethyl sulphoxide. Coll. Surf. A 318, 141–150 (2008)

    Article  CAS  Google Scholar 

  291. Hilli, S.M., Willander, M.: Optical properties of zinc oxide nanoparticles embedded in dielectric medium for uv region: numerical simulations. J. Nanopart. Res. 8, 79–97 (2006)

    Article  CAS  Google Scholar 

  292. Kahn, M.L., Monge, M., Colliére, V., Senocq, F., Maisonnat, A., Chaudrei, B.: Size and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method. Adv. Funct. Mater. 15, 458–461 (2005)

    Article  CAS  Google Scholar 

  293. Oo, W.M.H., McCluskey, M.D., Lalonde, A.D., Norton, M.G.: Infrared spectroscopy of ZnO nanoparticles containing CO2 impurities. Appl. Phys. Lett. 86, 073111 (2005)

    Article  CAS  Google Scholar 

  294. Ischenko, V., Polarz, S., Grote, D., Stavarache, V., Fink, K., Driess, M.: Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 15, 1945–1954 (2005)

    Article  CAS  Google Scholar 

  295. Zhao, X., Chen, Z., Luo, Y., Wang, L.: Giant enhanced infrared and orange emissions of ZnO nanoparticles induced by rich oxygen atmosphere. Solid State Commun. 147, 447–451 (2008)

    Article  CAS  Google Scholar 

  296. Carrasco, J., Illas, F., Bromley, S.T.: Ultralow-density nanocage-based metal-oxide polymorphs. Phys. Rev. Lett. 99, 235502 (2007)

    Article  CAS  Google Scholar 

  297. Lassaletta, G., Fernandez, A., Espinos, J.P., González-Elipe, A.R.: Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition. J. Phys. Chem. 99, 1484–1490 (1995)

    Article  CAS  Google Scholar 

  298. Monticone, S., Tufeu, R., Janaev, A.V., Scolan, E., Sanchez, C.: Quantum size effect in TiO2 nanoparticles: does it exist? Appl. Surf. Sci. 162–163, 565–570 (2000)

    Article  Google Scholar 

  299. Lin, Y., Wu, G.S., Yuan, X.Y., Zie, T., Zhang, L.D.: Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membrane. J. Phys. Condens. Matter 15, 2917–2922 (2003)

    Article  CAS  Google Scholar 

  300. Frova, A., Boddy, P.J., Chen, Y.S.: Electromodulation of the optical constants of rutile in the uv. Phys. Rev. 157, 700–708 (1967)

    Article  CAS  Google Scholar 

  301. Jiménez González, A.E., Gelover Santiago, S.: Structural and optoelectronic characterization of TiO2 films prepared using the sol-gel technique. Semicond. Sci. Techol. 22, 709–716 (2007)

    Article  CAS  Google Scholar 

  302. Gao, Y., Masuda, Y., Peng, Z.-F., Yonezawa, T., Koumoto, K.: Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 13, 608–613 (2003)

    Article  CAS  Google Scholar 

  303. Lee, H.-S., Woo, C.-S., Youn, B.-K., Kim, S.-Y., Oh, S.-T., Sung, Y.-E., Lee, H.-I.: Bandgap modulation of TiO2 and its effect on the activity in photocatallytic oxidation of 2-isopropyl-6-methyl-4-pyrimidinol. Top. Catal. 35, 255–260 (2005)

    Article  CAS  Google Scholar 

  304. Oregan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  CAS  Google Scholar 

  305. Mor, G.P., Prakasam, H.E., Varghese, O.K., Shankar, K., Grimes, C.A.: Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano. Lett. 7, 2356 (2007)

    Google Scholar 

  306. Hill, N.A., Rabe, K.M.: First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite. Phys. Rev. B 59, 8759–8769 (1999)

    Article  CAS  Google Scholar 

  307. Seshadri, R., Hill, N.A.: Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892–2899 (2001)

    Article  CAS  Google Scholar 

  308. Baettig, P., Seshadri, R., Spaldin, N.A.: Anti-polarity in ideal BiMnO3. J. Am. Chem. Soc. 129, 9854–9855 (2007)

    Article  CAS  Google Scholar 

  309. Baettig, P., Seshadri, R., Spaldin, N.A.: Private communication.

    Google Scholar 

  310. Basu, S.R., Martin, L.W., Chu, Y.H., Gajek, M., Ramesh, R., Rai, R.C., Xu, X., Musfeldt, J.L.: Photoconductivity in BiFeO3 thin films. App. Phys. Lett. 92, 091905 (2008)

    Article  CAS  Google Scholar 

  311. Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V., Cheong, S.-W.: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63 (2009)

    Article  CAS  Google Scholar 

  312. Yang, S.Y., Martin, L.W., Byrnes, S.J., Conry, T.E., Basu, S.R., Paran, D., Reichertz, L., Ihlefeld, J., Adamo, C., Melville, A., Chu, Y.-H., Yang, C.-H., Musfeldt, J.L., Schlom, D.G., Ager, J.W., Ramesh, R.: Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95, 062909 (2009)

    Article  CAS  Google Scholar 

  313. Arunachalam, V.S., Fleischer, E.L.: The global energy landscape and materials innovation. MRS Bull. 33, 264–276 (2008)

    Article  CAS  Google Scholar 

  314. Park, T.-J., Mao, Y., Wong, S.S.: Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chem. Commun. 23, 2708–2709 (2004)

    Article  CAS  Google Scholar 

  315. Park, T.-J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Size-dependent magnetic properties of single-crystalline mulitferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  CAS  Google Scholar 

  316. Selbach, S.M., Tybell, T., Einarsrud, A.-A., Grande, T.: Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19, 6478–6484 (2007)

    Article  CAS  Google Scholar 

  317. Chen, P., Podraza, N.J., Xu, X.S., Melville, A., Vlahos, E., Ramesh, R., Gopalan, V., Schlom, D.G., Musfeldt, J.L.: Optical properties of tetragonal BiFeO3 thin film. Appl. Phys. Lett. 96, 131907 (2010)

    Article  CAS  Google Scholar 

  318. Chen, P., Xu, X.S., Santulli, A.C., Koenigsmann, C., Wong, S.S., Musfeldt, J.L.: Size-dependent infrared phonon modes and ferroelectric phase transition in BiFeO3 nanoparticles. Nano Lett. 10, 4526–4532 (2010)

    Article  CAS  Google Scholar 

  319. Xu, X.S., Ihlefeld, J.F., Lee, J.H., Vlahos, E., Ramesh, R., Gopalan, V., Schlom, D.G., Musfeldt, J.L.: Tunable band gap in Bi(Fe1-xMnx)O3 alloy films. Appl. Phys. Lett. 96, 192901 (2010)

    Article  CAS  Google Scholar 

  320. Lee, J.H., Ke, X., Misra, R., Ihlefeld, J.F., Xu, X.S., Mei, Z.G., Meeg, T., Roecherath, M., Schubert, J., Liu, Z.K., Musfeldt, J.L., Schiffer, P., Schlom, D.G.: Absorption-controlled growth of BiMnO3 thin films by molecular-beam epitaxy. Appl. Phys. Lett. 96, 262905 (2010)

    Article  CAS  Google Scholar 

  321. Ihlefeld, J.F., Podraza, N.J., Liu, Z.K., Rai, R.C., Xu, X., Heeg, T., Chen, Y.B., Li, J., Collins, R.W., Musfeldt, J.L., Pan, X.Q., Schubert, J., Ramesh, R., Schlom, D.G.: Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908 (2008)

    Article  CAS  Google Scholar 

  322. Kumar, A., Rai, R.C., Podraza, N.J., Denev, S., Ramirez, M., Chu, Y.-H., Ihlefeld, J.F., Heeg, T., Schubert, J., Schlom, D.G., Orenstein, J., Ramesh, R., Collins, R.W., Musfeldt, J.L., Gopalan, V.: Linear and nonlinear optical constants of BiFeO3. Appl. Phys. Lett. 92, 121915 (2008)

    Article  CAS  Google Scholar 

  323. Li, S., Lin, Y.-H., Zhang, B., Wang, Y., Nan, C.: Controlled fabrication of BiFeO3 uniform microscrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114, 2903 (2010)

    Article  CAS  Google Scholar 

  324. Reches, J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.-H., Kumar, A., Wang, C.H., Melviite, A., Adamo, C., Sheng, G., Chu, Y.-H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., Ramesh, R.: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009)

    Article  CAS  Google Scholar 

  325. Homes, C.C., Dordevic, S.V., Gu, G.D., Li, Q., Valla, T., Tranquada, J.M.: Charge order, metallic behavior, superconductivity in La2-xBaxCuO4 with x = 1/8. Phys. Rev. Lett. 96, 257002 (2006)

    Article  CAS  Google Scholar 

  326. Poudeu, P.F.P., D’Angelo, J., Downey, A.D., Short, J.L., Hogan, T.P., Kanatzidis, M.G.: High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. Angew. Chem. Int. Ed. 45, 3835–3839 (2006)

    Article  CAS  Google Scholar 

  327. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W.J., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.D.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  CAS  Google Scholar 

  328. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  CAS  Google Scholar 

  329. Long, J.R., Yaghi, O.M.: The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213–1214 (2009)

    Article  CAS  Google Scholar 

  330. Bonino, F., Chavan, S., Vitillo, J.G., Groppo, E., Agostini, G., Lamberti, C., Dietzel, P.D.C., Prestipino, C., Bordiga, S.: Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO. Chem. Mater. 20, 2957–4968 (2008)

    Article  CAS  Google Scholar 

  331. Britt, D., Furukawa, H., Wang, B., Glover, T.G., Yaghi, O.M.: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. USA 106, 20637–20640 (2009)

    Article  CAS  Google Scholar 

  332. Chavan, S., Vitillo, J.G., Groppo, E., Bonino, F., Lamberti, C., Dietzel, P.D.C., Bordiga, S.: CO absorption on CPO-27-Ni coordination polymer: spectroscopic feature and interaction energy. J. Phys. Chem. C 113, 3292–3299 (2009)

    Article  CAS  Google Scholar 

  333. Czaja, A.U., Trukhan, N., Müller, U.: Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009)

    Article  CAS  Google Scholar 

  334. Han, S.S., Furukawa, H., Yaghi, O.M., Goddard, W.A.: Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008)

    Article  CAS  Google Scholar 

  335. Zecchina, A., Groppo, E., Bordiga, S.: Selective catalysis and nanoscience: an inseparable pair. Chemistry 13, 2440–2460 (2007)

    Article  CAS  Google Scholar 

  336. Wang, B., Coté, A.P., Furukawa, H., O’Keeffe, M., Yaghi, O.M.: Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008)

    Article  CAS  Google Scholar 

  337. Zecchina, G., Spoto, S.: Bordiga, Probing the acid sites in confined spaces of microporous materials by vibrational spectroscopy. Phys. Chem. Chem. Phys. 7, 1627–1642 (2005)

    Article  CAS  Google Scholar 

  338. Rzepka, M., Kamp, P., de la Casa-Lillo, M.A.: Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 102, 10894–10898 (1998)

    Article  CAS  Google Scholar 

  339. Britt, D., Tranchemontagne, D.J., Yaghi, O.M.: Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 105, 11623–11627 (2008)

    Article  CAS  Google Scholar 

  340. Dinca, M., Dailly, A., Liu, Y., Brown, C.M., Neumann, D.A., Long, J.R.: Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 128, 16876–16883 (2006)

    Article  CAS  Google Scholar 

  341. Bordiga, S., Bitillo, J.G., Ricchiardi, G., Regli, L., Cocina, D., Zecchina, A., Arstad, B., Bjorgen, M., Harizocic, J., Lillerud, K.P.: Interaction of hydrogen with MOF-5. J. Phys. Chem. B 109, 18237–18242 (2005)

    Article  CAS  Google Scholar 

  342. Vitillo, J.G., Regli, L., Chavan, S., Ricchiardi, G., Spoto, G., Dietzel, P.D.C., Bordiga, S., Zecchina, A.: Role of exposed metal sites in hydrogen storage in MOFs. J. Am. Chem. Soc. 130, 8386–8396 (2008)

    Article  CAS  Google Scholar 

  343. Roswell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005)

    Article  CAS  Google Scholar 

  344. Xu, X.S., Sun, Q.-C., Rosentsveig, R., Musfeldt, J.L.: Evaluation of Born and local effective changes in unoriented materials from vibrational spectra. Phys. Rev. B 80, 014303 (2009)

    Article  CAS  Google Scholar 

  345. Sun, Q.C., Xu, X.S., Baker, S.N., Christianson, A.D., Musfeldt, J.J.: Experimental determination of ionicity in MnO. Chem. Mater. 23, 2956 (2011)

    Article  CAS  Google Scholar 

  346. Sun, Q.C., Baker, S.N., Christianson, A.D., Musfeldt, J.L. Magneto-elastic coupling in bulk and nanoscale MnO. Phys. Rev. B. 84, 014301 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JLM thanks the Materials Science Division, Basic Energy Sciences, U.S. Department of Energy and the Joint Directed Research and Development Program at the University of Tennessee for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice L. Musfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Musfeldt, J.L. (2012). Optical Properties of Nanoscale Transition Metal Oxides. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_5

Download citation

Publish with us

Policies and ethics