Skip to main content

Principles of Retinal Drug Delivery from Within the Vitreous

  • Chapter
  • First Online:
Drug Product Development for the Back of the Eye

Abstract

In recent years, vitreous humour, a connective tissue at the centre of the eye, emerged as a preferred reservoir for back of the eye drug delivery. Although vitreous humour is largely composed of water (>99%), its physical form can range from a firm gel in the youth to a collapsed gel in the elderly. These changes in the physical form of the vitreous, in conjunction with changes in its composition and turnover, can potentially influence drug delivery to target tissues from the vitreous. In order to enable the reader with the development of personalised medicines for the back of the eye, this chapter discusses vitreal anatomy, convective flow patterns, barriers to drug delivery, drug clearance mechanisms, and the influence of vitrectomy and vitreous substitutes on drug delivery. Further, it presents case studies on interactions of drug delivery systems with vitreous gel as well as the influence of eye movements on drug delivery from the vitreous. Wherever feasible, the above parameters were compared between normal and ageing eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar N, Kapran Z, Unver YB et al (2008) Early postoperative hypotony after 25-gauge sutureless vitrectomy with straight incisions. Retina 28(4):545–552

    PubMed  Google Scholar 

  • Ahmadieh H, Feghhi M, Tabatabaei H et al (2008) Triamcinolone acetonide in silicone-filled eyes as adjunctive treatment for proliferative vitreoretinopathy. A randomized clinical trial. Ophthalmology 115:1938–1943

    PubMed  Google Scholar 

  • Akiba J, Ueno N, Chakrabarti B (1994) Mechanisms of photo-induced vitreous liquefaction. Curr Eye Res 13:505–512

    PubMed  CAS  Google Scholar 

  • Akiba J, Kakehashi A, Ueno N et al (1995) Serum-induced collagen gel contraction. Graefes Arch Clin Exp Ophthalmol 233:430–434

    PubMed  CAS  Google Scholar 

  • Antcliff RJ, Spalton DJ, Stanford MR et al (2001) Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study historical image. Ophthalmology 108(4):765–772

    PubMed  CAS  Google Scholar 

  • Araie M, Maurice DM (1991) The loss of fluorescein, fluorescein glucuronide and fluorescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp Eye Res 52(1):27–39

    PubMed  CAS  Google Scholar 

  • Araiz JJ, Refojo MF, Arroyo MH et al (1993) Antiproliferative effect of retinoic acid in intravitreous silicone oil in an animal model of proliferative vitreoretionopathy. Invest Ophthalmol Vis Sci 34:522–530

    PubMed  CAS  Google Scholar 

  • Ashton P (2006) Retinal drug delivery. In: Jaffe GJ, Ashton P, Pearson PA (eds) Intraocular drug delivery. Taylor and Francis, New York, p 17

    Google Scholar 

  • Atluri H, Mitra AK (2003) Disposition of short-chain aliphatic alcohols in rabbit vitreous by ocular microdialysis. Exp Eye Res 76:315–320

    PubMed  CAS  Google Scholar 

  • Atluri H, Anand BS, Patel J et al (2003) Mechanism of a model dipeptide transport across blood ocular barriers following systemic administration. Invest Phthalmol Vis Sci 44(5): Abstract 364

    Google Scholar 

  • Atluri H, Talluri RS, Mitra AK et al (2008) Functional activity of a large neutral amino acid transporter (LAT) in rabbit retina: a study involving the in vivo retinal uptake and vitreal pharmacokinetics of l-phenyl alanine. Int J Pharm 34712:23–30

    Google Scholar 

  • Aukunuru J, Sunkara G, Bandi N et al (2001) Expression of multidrug resistance-associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm Res 18:565–572

    PubMed  CAS  Google Scholar 

  • Bakri SJ, Snyder MR, Reid JM et al (2007) Pharmacokinetics of intravitreal bevacizumab (avastin). Ophthalmology 114:855–859

    PubMed  Google Scholar 

  • Balazs EA, Denlinger JL (1982) Aging changes in the vitreous. In: Sekular R, Kline D, Dismukes K (eds) Aging and human visual function. AR Liss, New York, pp 45–57

    Google Scholar 

  • Balazs L (1960) Physiology of the vitreous body. In: Schepens CL (ed) Vitreous body in retina surgery: special emphasis on reoperations. CV Mosby, St. Louis, pp 29–48

    Google Scholar 

  • Balazs EA, Denlinger JL (1984) The vitreous. In: Daveson H (ed) The eye. Academic, New York, pp 533–589

    Google Scholar 

  • Barza M, Kane A, Baum J (1983) Pharmacokinetics of intravitreal carbenicillin, cefazolin and gentamicin in rhesus monkeys. Invest Ophthalmol Vis Sci 24:1602–1606

    PubMed  CAS  Google Scholar 

  • Beer PM, Bakri SJ, Singh RJ et al (2003) Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology 110:681–686

    PubMed  Google Scholar 

  • Benz MS, Albini TA, Holz ER et al (2006) Ophthalmology 113:1174–1178

    PubMed  Google Scholar 

  • Bettelheim FA, Samuel Zigler Jr J (2004) Regional mapping of molecular components of human liquid vitreous by dynamic light scattering. Exp Eye Res 79:713–718

    PubMed  CAS  Google Scholar 

  • Bishop P (2000) Structural macromolecules and supramolecular organization of the vitreous gel. Prog Retin Eye Res 19(3):323–344

    PubMed  CAS  Google Scholar 

  • Bito LZ (1977) The physiology and pathophysiology of intraocular fluids. Exp Eye Res 25(Suppl):273–289

    PubMed  CAS  Google Scholar 

  • Bito LZ, Baroody RA (1987) Ocular trace metal kinetics and toxicology. I. The distribution of intravitreally injected Cu++ within intraocular compartments and its loss from the globe. Invest Ophthalmol Vis Sci 28:101–105

    PubMed  CAS  Google Scholar 

  • Boon CJF, Klevering BJ, Kuijk FJ et al (2008) Reflux after intravitreal injection of bevacizumab. Ophthalmology 115(7):1268–1269

    Google Scholar 

  • Brasnjevic IH, Steinbusch WH, Schmitz C et al (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87(4):212–251

    PubMed  CAS  Google Scholar 

  • Brown DJ, Bishop P, Hamdi H, Kenney MC (1996) Cleavage of structural components of mammalian vitreous by endogeneous matrix metalloproteinase-2. Curr Eye Res 15(4):439–445

    PubMed  CAS  Google Scholar 

  • Chastain JE (2003) Chapter 3: general considerations in ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery system, vol 130. Marcel Dekker, New York, pp 83–90

    Google Scholar 

  • Ciferri A, Magnasco A (2007) The vitreous gel: a composite structured network engineered by nature. Liq Cryst 34(2):219–227

    CAS  Google Scholar 

  • Cobo LM, Forster RK (1981) The clearance of intravitreal gentamicin. Am J Ophthalmol 92:59–62

    PubMed  CAS  Google Scholar 

  • Constable PA, Lawrenson JG, Dolman DEM et al (2006) P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res 83(1):24–30

    PubMed  CAS  Google Scholar 

  • Cunha-Vaz JG (1997) The blood-ocular barriers: past, present and future. Doc Ophthalmol 93:149–157

    PubMed  CAS  Google Scholar 

  • Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Dalkara D, Kolstad KD, Caporale N et al (2009) Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 17:2096–2102

    PubMed  CAS  Google Scholar 

  • De Juan E, Hardy M, Hatchell DL et al (1986) The effect of intraocular silicone oil on anterior chamber oxygen pressure in cats. Arch Ophthalmol 104:1063–1064

    PubMed  Google Scholar 

  • Dhillon B, Kamal A, Leen C (1998) Intravitreal sustained-release ganciclovir implantation to control cytomegalovirus retinitis in AIDS. Int J STD AIDS 9(4):227–230

    PubMed  CAS  Google Scholar 

  • Dias CS, Mitra AK (2000) Vitreal elimination kinetics of large molecular weight FITC-labeled dextrans in albino rabbits using a novel microsampling technique. Pharm Sci 89:572–578

    CAS  Google Scholar 

  • Duke-Elder WS (1930) The nature of the vitreous body, Monograph supplement IV. Br J Ophthalmol. Monograph supplement V: 44

    Google Scholar 

  • Dvorhik BH, Marquis JK (2000) Disposition and toxicity of a mixed backbone antisense oligonucleotide, targeted against human cytomegalovirus, after intravitreal injection of escalating single doses in the rabbit. Drug Metab Dispos 28:1255–1261

    Google Scholar 

  • Falavarjani KG, Modarres M, Nazari H (2010) Therapeutic effect of bevacizumab injected into the silicone oil in eyes with neovascular glaucoma after vitrectomy for advanced diabetic retinopathy. Eye 24:717–719

    PubMed  CAS  Google Scholar 

  • Falkner CI, Binder S, Kruger A (2001) Outcome after silicone oil removal. Br J Ophthalmol 85:1324–1327

    PubMed  CAS  Google Scholar 

  • Fatt I (1975) Flow and diffusion in the vitreous body of the eye. Bull Math Biol 37:85–90

    PubMed  CAS  Google Scholar 

  • Fatt I (1977) Hydraulic flow conductivity of the vitreous. Invest Ophthalmol Vis Sci 16:565–568

    PubMed  CAS  Google Scholar 

  • Ficker L, Meredith TA, Gardner S et al (1990) Cefazolin levels after intravitreal injection. Invest Ophthalmol Vis Sci 31(3):502–505

    PubMed  CAS  Google Scholar 

  • Foulds WS, Allan D, Moseley H et al (1985) Effect of intravitreal hyaluronidase on the clearance of tritiated water from the vitreous to the choroid. Br J Ophthalmol 69:529–532

    PubMed  CAS  Google Scholar 

  • Fowlkes WL (1963) Meridonal flow from the corona ciliaris through the pararetinal zone in the rabbit vitreous. Invest Ophthalmol Vis Sci 2(1):63–71

    Google Scholar 

  • Friedrich S, Cheng Y, Saville B (1997a) Drug distribution in the vitreous humour of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res 16:663–669

    PubMed  CAS  Google Scholar 

  • Friedrich S, Cheng Y, Saville B (1997b) Finite element modelling of drug distribution in the vitreous humor of the rabbit eye. Ann Biomed Eng 25:303–314

    PubMed  CAS  Google Scholar 

  • Gardner TW, Antonetti DA, Barber AJ et al (2000) The molecular structure and function of the inner blood-retinal barrier. Doc Ophthalmol 97:229–237

    Google Scholar 

  • Gauthier R, Joly S, Pernet V et al (2005) Brain-derived neurotrophic factor gene delivery to mueller glia preserves structure and function of light-damaged photoreceptors. Invest Ophthalmol Vis Sci 46:3383–3392

    PubMed  Google Scholar 

  • Giordano GG, Refojo MF (1998) Silicone oils as vitreous substitutes. Prog Polym Sci 23:509–532

    CAS  Google Scholar 

  • Gisladottir S, Loftsson T, Stefansson E (2009) Diffusion characteristics of vitreous humour and saline solution follow the Stokes Einstein equation. Graefes Arch Clin Exp Ophthalmol 247:1677–1684

    PubMed  Google Scholar 

  • Guembel HOC, Krieglsteiner S, Rosenkranz C et al (1999) Complications after implantation of intraocular devices in patients with cytomegalovirus retinitis. Graefes Arch Clin Exp Ophthalmol 237:824–829

    PubMed  CAS  Google Scholar 

  • Halfter W (1998) Disruption of the retinal basal lamina during early embryonic development leads to a retraction of vitreal endfeet, and increased number of ganglion cells, and aberrant axon outgrowth. J Comp Neurol 397:89–104

    PubMed  CAS  Google Scholar 

  • Halfter W, Dong S, Schurer B et al (2005) Embryonic synthesis of the inner limiting membrane and vitreous body. Invest Ophthalmol Vis Sci 46:2202–2209

    PubMed  Google Scholar 

  • Han Y, Sweet DH, Hu D et al (2001) Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther 296:450–457

    PubMed  CAS  Google Scholar 

  • Hardwig PW, Pulido JS, Bakri SJ (2008) The safety of intraocular methotrexate in silicone-filled eyes. Retina 28:1082–1086

    PubMed  Google Scholar 

  • Heiduschka P, Fietz PH, Hofmeister S et al (2007) Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci 48:2814–2823

    PubMed  Google Scholar 

  • Hennessy M, Spiers JP (2007) A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res 55(1):1–15

    PubMed  CAS  Google Scholar 

  • Hertz L, Dienel GA (2004) Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res 79(1–2):11–18

    Google Scholar 

  • Holekamp NM (2010) The vitreous gel: more than meets the eye. Am J Ophthalmol 149:32–36

    PubMed  Google Scholar 

  • Hornan D, Edmeades N, Krishnan R et al (2010) Use of pegaptanib for recurrent and non-clearing vitreous haemorrhage in proliferative diabetic retinopathy. Eye (Lond). doi:10.1038/eye.2010.14

  • Hosoya K, Kondo T, Tomi M et al (2001) MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharm Res 18:1670–1676

    Google Scholar 

  • Hosoya K, Ohshima Y, Katayama K et al (2003) Use of microdialysis to evaluate efflux transport of organic anions across the blood-retinal barrier. AAPS PharmSci 5(S1):583

    Google Scholar 

  • Hosoya K, Makihara A, Tsujikawa Y et al (2009a) Roles of inner blood-retina barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin and 6-mercaptopurine. J Pharm Exp Ther 329:87–93

    CAS  Google Scholar 

  • Hosoya K, Tachikawa M et al (2009b) Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm Res 26:2055–2065

    PubMed  CAS  Google Scholar 

  • Itakura H, Kishi S, Kotajima N et al (2009) Decreased vitreal hyaluronan levels with aging. Ophthalmologica 223:32–35

    PubMed  Google Scholar 

  • Jongebloed WL, Worst JFG (1987) The cisternal anatomy of the vitreous body. Doc Ophthalmol 67:183–196

    PubMed  CAS  Google Scholar 

  • Jonas JB, Halyer JK, Panda-Jonas S (2000) Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative vitreoretinopathy. Br J Ophthalmol 84:1064–1067

    PubMed  CAS  Google Scholar 

  • Kakeshi A, Ueno N, Chakrabarti B (1994) Molecular mechanisms of photochemically induced posterior vitreous detachment. Ophthalmic Res 26:51–59

    Google Scholar 

  • Kathawate J, Acharya S (2008) Computational modeling of intravitreal drug delivery in the vitreous chamber with different vitreous substitutes. Int J Heat Mass Transfer 51(23–24):5598–5609

    Google Scholar 

  • Kagemann L, Wollstein G, Ishikawa H et al (2006) Persistence of Cloquet’s Canal in normal healthy eyes. Am J Ophthalmol 142:862–864

    Google Scholar 

  • Kim H, Lizak MJ, Tansey G et al (2005) Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng 33(2):150–164

    PubMed  Google Scholar 

  • Kim H, Csaky KG, Chan C et al (2006) The pharmacokinetics of rituximab following an intravitreal injection. Exp Eye Res 82(5):760–766

    PubMed  CAS  Google Scholar 

  • Kitano S, Nagataki S (1986) Transport of fluorescein monoglucuronide out of the vitreous. Invest Ophthalmol Vis Sci 27:998–1001

    PubMed  CAS  Google Scholar 

  • Koeberle MJ, Hughes PM, Skellern GG et al (2003) Binding of memantine to melanin: influence of type of melanin and characteristics. Pharm Res 20(10):1702–1709

    PubMed  CAS  Google Scholar 

  • Kolancy D, Pars-Vanginderdueren R, Van Lommel A, Stalmans P (2005) Vitrectomy with peeling of the inner limiting membrane for treating diabetic macular edema. Bull Soc Belge Ophthalmol 296:15–23

    Google Scholar 

  • Konstantinidis L, Mameletzi E, Mantel I et al (2009) Intravitreal ranibizumab (Lucentis) in the treatment of retina angiomatous proliferation (RAP). Graefes Arch Clin Ophthalmol 247(9):1165–1171

    CAS  Google Scholar 

  • Kralinger MR, Kieselbach GF, Voigt M et al (2001a) Slow release of acetylsalicylic acid by intravitreal silicone oil. Retina 21:513–520

    PubMed  CAS  Google Scholar 

  • Kralinger MT, Hamasaki D, Kieselbach GF et al (2001b) Intravitreal acetylsalicylic acid in silicone oil: pharmacokinetics and evaluation of its safety by ERG and histology. Graefes Arch Clin Exp Ophthalmol 239:208–216

    PubMed  CAS  Google Scholar 

  • Krohne TU, Eter N, Holz FG et al (2008) Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol 146(4):508–512

    PubMed  CAS  Google Scholar 

  • Kunimoto DY, Kaiser RS, Wills Eye Retina Service (2007) Incidence of endophthalmitis after 20-and 25-gauge vitrectomy. Ophthalmology 114:2133–2137

    PubMed  Google Scholar 

  • Kusuhara H, Sugiyama Y (2004) Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Deliv Rev 56(12):1741–1763

    PubMed  CAS  Google Scholar 

  • Lai MM, Ruby AJ, Sarrafizadeh R et al (2008) Repair of primary rhegmatogeneous retinal detachment using 25-gauge transconjunctival sutureless vitrectomy. Retina 28(5):729–734

    PubMed  Google Scholar 

  • Laude A, Tan LE, Wilson CG et al (2010) Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res 29(6):466–475

    PubMed  CAS  Google Scholar 

  • Lee SS, Harutyunyan I, D’Argenio DZ et al (2009) The effect of vitreous syneresis on drug transport. In: Proceedings: ARVO summer eye research conference, NIH, Bethesda. Abstract no 8, p 17

    Google Scholar 

  • Mannermaa E, Vellonen K-S, Urtti A et al (2006) Drug transport in corneal epithelium and blood-retina barrier: Emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58(11):1136–1163

    PubMed  CAS  Google Scholar 

  • Maurice DM (1957) The exchange of sodium between the vitreous body and the blood and aqueous humor. J Physiol 137:110–125

    PubMed  CAS  Google Scholar 

  • Maurice DM (1987) Flow of water between aqueous and vitreous compartments in the rabbit eye. Am J Physiol 252:F104–F108

    PubMed  CAS  Google Scholar 

  • Maurice DM (1997) The regurgitation of large vitreous injections. J Ocul Pharmacol Ther 13(5):461–463

    PubMed  CAS  Google Scholar 

  • McLeod D (1986) Silicone-oil injection during closed microsurgery for diabetic retinal detachment. Graefes Arch Clin Exp Ophthalmol 224:55–59

    PubMed  CAS  Google Scholar 

  • Missel P (2002) Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res 19(11):1636–1647

    PubMed  CAS  Google Scholar 

  • Missel P, Homer M, Muralikrishnan R (2010) Simulating dissolution of intravitreal triamcinolone acetonide suspensions in an anatomically accurate rabbit eye model. Pharm Res 27:1530–1546

    PubMed  CAS  Google Scholar 

  • Modarres M, Nazari H, Falavarjani KG et al (2009) Intravitreal injection of bevacizumab before vitrectomy for proliferative diabetic retinopathy. Eur J Ophthalmol 19(5):848–852

    PubMed  Google Scholar 

  • Moldow B, Sander B, Larsen M et al (1998) The effect of acetazolamide passive and active transport of fluorescein across the blood-retina barrier in retinitis pigmentosa complicated by macular oedema. Graefes Arch Clin Exp Ophthalmol 236:881–889

    PubMed  CAS  Google Scholar 

  • Mortlet N, Young SH (1993) Prevention of intraocular pressure rise following intravitreal injection. Br J Ophthalmol 77:572–573

    Google Scholar 

  • Moseley H (1981) Mathematical model of diffusion in the vitreous humour of the eye. Clin Phys Physiol Meas 2(3):175–181

    PubMed  CAS  Google Scholar 

  • Moseley H, Foulds WS, Allan D et al (1984) Routes of clearance of radioactive water from the rabbit vitreous. Br J Ophthalmol 68:145–151

    PubMed  CAS  Google Scholar 

  • Mura M, Tan SH, Smet MD (2009) Use of 25-gauge vitrectomy in the management of primary rhegmatogeneous retinal detachment. Retina 29:1299–1304

    PubMed  Google Scholar 

  • Nakagawa M, Refojo MF, Marin JF et al (1995) Retinoic acid in silicone and silicone-fluorosilicone copolymer oils in a rabbit model of proliferative vitreoretionopathy. Invest Ophthalmol Vis Sci 36:2388–2395

    PubMed  CAS  Google Scholar 

  • Nakin KN, Lavin MJ, Leaver PK (1992) Primary vitrectomy for rhegmatogeneous retinal detachment. Graefes Arch Clin Exp Ophthalmol 231:344–346

    Google Scholar 

  • Okamoto F, Okamoto Y, Fukada S et al (2010) Vision-related quality of life and visual function after vitrectomy for various vitreoretinal disorders. Invest Opthalmol 51:744–751

    Google Scholar 

  • Park J, Bungay PM, Lutz RJ et al (2005) Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release 105(3):279–295

    PubMed  CAS  Google Scholar 

  • Park KH, Woo SJ, Hwang JM et al (2010) Short-term outcome of bimanual 23-gauge transconjunctival sutureless vitrectomy for patients with complicated vitreoretinopathies. Ophthalmic Surg Lasers Imaging 41(2):207–214

    PubMed  Google Scholar 

  • Parravano M, Oddone F, Tedeschi M et al (2010) Retinal functional changes measured by microperimetry in neovascular age-related macular degeneration treated with ranibizumab: 24-month results. Retina 30(7):1017–1024

    PubMed  Google Scholar 

  • Pastor JC, Nozal MJD, Zamarron E et al (2008) Solubility of triamcinolone acetonide and other anti-inflammatory drugs in silicone oil. Implications for therapeutic efficacy. Retina 28:1247–1250

    PubMed  Google Scholar 

  • Peeters L, Sanders N, Braeckmans K et al (2005) Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci 46:3553–3561

    PubMed  Google Scholar 

  • Perkins SL, Yang CH, Ashton P et al (2001) Pharmacokinetics of the ganciclovir implant in the silicone-filled eye. Retina 21:10–14

    PubMed  CAS  Google Scholar 

  • Pitkänen L, Ruponen M, Nieminen J (2003) Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 20(4):576–583

    PubMed  Google Scholar 

  • Pitkänen L, Ranta V, Moilanen H et al (2005) Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci 46:641–646

    PubMed  Google Scholar 

  • Poliner LS, Schoch LH (1987) Intraocular pressure assessment in gas-filled eyes following vitrectomy. Arch Ophthalmol 105(2):200–202

    PubMed  CAS  Google Scholar 

  • Rajan PD, Kekuda R, Chancy CD et al (2000) Expression of the extraneuronal monoamine transporter in RPE and neural retina. Curr Eye Res 20:195–204

    PubMed  CAS  Google Scholar 

  • Richards AJ, Baguley DM, Yates JRW et al (2000) Variation in the vitreous phenotype of stickler syndrome can be caused by different amino acid substitutions in the X position of the type ii collagen gly-X-Y triple helix. Am J Hum Genet 67:1083–1094

    PubMed  CAS  Google Scholar 

  • Ruby AJ, Grand MG, William D et al (1999) Intraoperative acetazolamide in the prevention of intraocular pressure rise after pars plana vitrectomy with fluid-gas exchange. Retina 19(3):185–187

    PubMed  CAS  Google Scholar 

  • Sakurai E, Ozeki H, Kunou N et al (2001) Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res 33:31–36

    PubMed  CAS  Google Scholar 

  • Scholes GN, O’Brien WJ, Abrams G et al (1985) Clearance of triamcinolone from vitreous. Arch Ophthalmol 103:1567–1569

    PubMed  CAS  Google Scholar 

  • Sebag J (1987) Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol 225:89–93

    PubMed  CAS  Google Scholar 

  • Sebag J (1989) The vitreous. Springer, New York

    Google Scholar 

  • Sebag J (1998) Macromolecular structure of the corpus vitreous. Prog Polym Sci 23:415–446

    CAS  Google Scholar 

  • Sebag J (2005) Molecular biology of pharmacology vitreolysis. Trans Am Opthalmol Soc 103:473–494

    CAS  Google Scholar 

  • Sebag J, Balazs EA (1989) Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci 30:1867–1871

    PubMed  CAS  Google Scholar 

  • Shen J, Cross ST, Tang-Liu D et al (2003) Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal-barrier. Pharm Res 20:1357–1363

    PubMed  CAS  Google Scholar 

  • Shimada H, Nakashizuka H, Hattori T et al (2008) Incidence of endophthalmitis after 20- and 25-gauge vitrectomy. Causes and prevention. Ophthalmology 115:2215–2220

    PubMed  Google Scholar 

  • Shimada H, Hattori T, Nakashizuka H et al (2009) Highly viscous fluid in macular holes. Case report. Int Ophthalmol. doi:10.007/s10792-009-9321-z

  • Singh A, Stewart JM (2008) Intraocular bevacizumab for iris neovascularization in a silicone oil-filled eye. Retinal Cases Brief Reports 2:253–255

    Google Scholar 

  • Smith RJH (1981) Rubeotic glaucoma. Br J Ophthalmol 65:606–609

    PubMed  CAS  Google Scholar 

  • Spielberg L, Leys A (2009) Intravitreal bevacizumab for hyopic choroidal neovascularization: short-term and 1-year results. Bull Soc Belge Ophthalmol 312:17–27

    Google Scholar 

  • Spitzer MS, Kaczmarek RT, Yoeruek E et al (2009) The distribution, release kinetics and biocompatibility of triamcinolone injected and dispersed in silicone oil. Invest Ophthalmol Vis Sci 50:2337–2343

    PubMed  Google Scholar 

  • Stay MS, Xu J, Randolph TW et al (2003) Computer simulation of convective and diffusive transport of controlled release drugs in the vitreous humor. Pharm Res 20:96–102

    PubMed  CAS  Google Scholar 

  • Stefánsson E (2009) Physiology of vitreous surgery. Graefes Arch Clin Exp Ophthalmol 247:147–163

    PubMed  Google Scholar 

  • Stepanova LV, Marchenko IY, Sychev GM (2005) Direction of fluid transport in the lens [Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny]. Bull Exp Biol Med 139(1):57–58

    Google Scholar 

  • Steuer H, Jaworski A, Elger B et al (2005) Functional characterization and comparison of the outer blood-retinal barrier. Invest Ophthalmol Vis Sci 46:1047–1053

    PubMed  Google Scholar 

  • Stocchino A, Repetto R, Siggers JH (2010) Mixing processes in the vitreous chamber induced by eye rotations. Phys Med Biol 55:453–467

    PubMed  Google Scholar 

  • Takahashi J, Hikichi T, Mori F et al (2004) Effect of nucleotide P2Y2 receptor agonists on outward active transport of fluorescein across normal blood-retina barrier in rabbit. Exp Eye Res 78(1):103–108

    PubMed  CAS  Google Scholar 

  • Tan LE, Orilla W, Tsai S et al (2011) Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran and fluorescent microparticles. Invest Opthalmol Vis Sci 52(2):1111–1118

    CAS  Google Scholar 

  • Thompson JT, Glaser BM (1984) Effect of lensectomy on the movement of tracers from vitreous to aqueous. Arch Ophthalmol 102:1077–1078

    PubMed  CAS  Google Scholar 

  • Thomas AV, Gilbert SJ, Duance VC (2000) Elevated levels of proteolytic enzymes in the aging human vitreous. Invest Ophthalmol Vis Sci 41(11):3299–3304

    PubMed  CAS  Google Scholar 

  • Tiedel KG, Gabel VP, Neubaer L et al (1990) Intravitreal silicone oil injection: complications and treatment of 415 consecutive patients. Graefes Arch Clin Exp Ophthalmol 228:19–23

    Google Scholar 

  • Tognetto D, Minutola D, Sanguinetti G et al (2005) Anatomical and functional outcomes after heavy silicone oil tamponade in vitreoretinal surgery for complicated retinal detachment. A pilot study. Ophthalmology 112:1574–1578

    PubMed  Google Scholar 

  • Tojo K, Nakagawa K, Morita Y et al (1999) A pharmacokinetic model of intravitreal delivery of ganciclovir. Eur J Pharm Biopharm 47(2):99–104

    PubMed  CAS  Google Scholar 

  • Tsuji A (2005) Influx transporters and drug targeting: application of peptide and cation transporters. Int Congress Series 1277:75–84

    CAS  Google Scholar 

  • Ueno N, Sebag J, Hirokawa H et al (1987) Effects of visible-light irradiation on vitreous structure in the presence of a photosensitizer. Exp Eye Res 44:863–870

    PubMed  CAS  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Del Rev 58:1131–1135

    CAS  Google Scholar 

  • Wolter JR (1964) Pores in the inner limiting membrane of the human retina. Acta Ophthalmol 42:971–974

    CAS  Google Scholar 

  • Worst JGF, Los LI (1995) Chapter 3: functional anatomy of the vitreous. In: Cisternal anatomy of the vitreous. Kugler Publications, Amsterdam, Netherlands, pp 33–48

    Google Scholar 

  • Xu J, Heys JJ, Barocas VH et al (2000) Permeability and diffusion in the vitreous humor: implications for drug delivery. Pharm Res 17:664–669

    PubMed  CAS  Google Scholar 

  • Yoganathan P, Deramo VA, Lai JC et al (2006) Visual improvement following intravitreal bevacizumab (avastin) in exudative age-related macular degeneration. Retina 26:994–998

    PubMed  Google Scholar 

  • Yoneyama D, Shinozaki Y, Lu WL et al (2010) Involvement of system A in the retina-to-blood transport of l-proline across the inner blood-retinal barrier. Exp Eye Res 90(4):507–513

    Google Scholar 

  • Young S, Larkin G, Branley M et al (2001) Safety and efficacy of intravitreal triamcinolone for cystoid macular oedema in uveitis. Clin Exp Ophthalmol 29(1):2–6

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive G. Wilson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Wilson, C.G., Tan, L.E., Mains, J. (2011). Principles of Retinal Drug Delivery from Within the Vitreous. In: Kompella, U., Edelhauser, H. (eds) Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9920-7_6

Download citation

Publish with us

Policies and ethics