Skip to main content

Drug and Gene Therapy Mediated by Physical Methods

  • Chapter
  • First Online:
Drug Product Development for the Back of the Eye

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 2))

  • 1611 Accesses

Abstract

A strategy to deliver drugs to the posterior segment of the eye is via a combination of physical methods to place the drug adjacent to the target cell and to open the cell membrane so that the drug can pass into the cell. Electric fields can be used to transport small and large charged molecules and to open pores in the plasma membrane. Here we review these physical methods and the progress to exploit electric fields in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behar-Cohen FF, Parel JM, Pouliquen Y, Thillaye-Goldenberg B, Goureau O, Heydolph S, Courtois Y, De Kozak Y (1997) Iontophoresis of dexamethasone in the treatment of endotoxin-induced-uveitis in rats. Exp Eye Res 65(4):533–545. doi:10.1006/exer.1997.0364

    Google Scholar 

  • Behar-Cohen FF, El Aouni A, Gautier S, David G, Davis J, Chapon P, Parel JM (2002) Transscleral coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp Eye Res 74(1):51–59. doi:10.1006/exer.2001.1098

    Google Scholar 

  • Boatright JH, Moring AG, McElroy C, Phillips MJ, Do VT, Chang B, Hawes NL, Boyd AP, Sidney SS, Stewart RE, Minear SC, Chaudhury R, Ciavatta VT, Rodrigues CM, Steer CJ, Nickerson JM, Pardue MT (2006) Tool from ancient pharmacopoeia prevents vision loss. Mol Vis 12:1706–1714

    PubMed  CAS  Google Scholar 

  • Butterwick A, Vankov A, Huie P, Freyvert Y, Palanker D (2007) Tissue damage by pulsed electrical stimulation. IEEE Trans Biomed Eng 54(12):2261–2267

    Article  PubMed  CAS  Google Scholar 

  • Chalberg TW, Vankov A, Molnar FE, Butterwick AF, Huie P, Calos MP, Palanker DV (2006) Gene transfer to rabbit retina with electron avalanche transfection. Invest Ophthalmol Vis Sci 47(9):4083–4090. doi:10.1167/iovs.06-0092

    Google Scholar 

  • Dezawa M, Takano M, Negishi H, Mo X, Oshitari T, Sawada H (2002) Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 33(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110(3):479–489. doi:10.1016/j.jconrel.2005.09.049

    Google Scholar 

  • Geroski DH, Edelhauser HF (2000) Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 41(5):961–964

    PubMed  CAS  Google Scholar 

  • Heller LC, Jaroszeski MJ, Coppola D, McCray AN, Hickey J, Heller R (2007) Optimization of cutaneous electrically mediated plasmid DNA delivery using novel electrode. Gene Ther 14(3):275–280. doi:10.1038/sj.gt.3302867

    Google Scholar 

  • Higuchi JW, Higuchi WI, Li SK, Molokhia SA, Miller DJ, Kochambilli RP, Papangkorn K, Mix DC Jr, Tuitupou AL (2007) Noninvasive delivery of a transscleral sustained release depot of triamcinolone acetonide using the visulex(r) device to treat posterior uveitis. Invest Ophthalmol Vis Sci 48(5):5822

    Google Scholar 

  • Hughes L, Maurice DM (1984) A fresh look at iontophoresis. Arch Ophthalmol 102(12):1825–1829

    PubMed  CAS  Google Scholar 

  • Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM (2008) Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 14:2211–2226

    PubMed  CAS  Google Scholar 

  • Li SK, Jeong E-K, Hastings MS (2004) Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis. Invest Ophthalmol Vis Sci 45(4):1224–1231

    Article  PubMed  Google Scholar 

  • Li SK, Lizak MJ, Jeong E-K (2008) MRI in ocular drug delivery. NMR Biomed 21(9):941–956. doi:10.1002/nbm.1230

    Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6(7):1258–1266. doi:10.1038/sj.gt.3300947

    Google Scholar 

  • Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101(1):16–22. doi:10.1073/pnas.2235688100

    Google Scholar 

  • Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci USA 104(3):1027–1032. doi:10.1073/pnas.0610155104

  • Molokhia SA, Jeong E-K, Higuchi WI, Li SK (2008) Examination of barriers and barrier alteration in transscleral iontophoresis. J Pharm Sci 97(2):831–844. doi:10.1002/jps.21003

    Google Scholar 

  • Molokhia SA, Jeong E-K, Higuchi WI, Li SK (2009) Transscleral iontophoretic and intravitreal delivery of a macromolecule: study of ocular distribution in vivo and postmortem with MRI. Exp Eye Res 88(3):418–425. doi:10.1016/j.exer.2008.10.010

  • Nikolskaya AV, Nikolski VP, Efimov IR (2006) Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells. Cell Commun Adhes 13(4):217–222. doi:10.1080/15419060600848524

    Google Scholar 

  • Palanker D, Vankov A, Freyvert Y, Huie P (2008) Pulsed electrical stimulation for control of vasculature: temporary vasoconstriction and permanent thrombosis. Bioelectromagnetics 29(2):100–107. doi:10.1002/bem.20368

    Google Scholar 

  • Taki M, Suzuki Y, Wake K (2003) Dosimetry considerations in the head and retina for extremely low frequency electric fields. Radiat Prot Dosimetry 106(4):349–356

    PubMed  CAS  Google Scholar 

  • Timmers AM, Zhang H, Squitieri A, Gonzalez-Pola C (2001) Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis 7:131–137. doi:v7/a19[pii]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Nickerson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Nickerson, J.M., Boatright, J.H. (2011). Drug and Gene Therapy Mediated by Physical Methods. In: Kompella, U., Edelhauser, H. (eds) Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9920-7_16

Download citation

Publish with us

Policies and ethics