Skip to main content

Animal Models of Hyperinsulinemia, Insulin Resistance, and Cancer

  • Chapter
  • First Online:
Insulin Resistance and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 1))

  • 738 Accesses

Abstract

Numerous lines of evidence indicate that insulin and its receptor regulate cell proliferation, survival and transformation, and thus, tumorigenesis [52]. Indeed, the fact that insulin has a potent tumor-promoting activity has been known for a long time. In wild-type animals, administration of exogenous insulin markedly enhances development of experimental breast and colon tumors [34, 68, 117]. In contrast, insulinopenia in animals with chemically-induced type 1 diabetes (T1D) results in a significantly reduced tumor growth, which is restored after insulin administration [29, 67, 112, 113]. Moreover, intraportal implantation of pancreatic islets in rats with T1D creates an insulin-enriched microenvironment, which promotes hepatocarcinogenesis [43]. The aforementioned studies thus link insulin and cancer mechanistically, and indicate that insulin plays the role of both a tumor initiator and promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel ED, Peroni O et al (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409(6821):729–733

    CAS  PubMed  Google Scholar 

  2. Ablamunits V, Cohen Y et al (2006) Susceptibility to induced and spontaneous carcinogenesis is increased in fatless A-ZIP/F-1 but not in obese ob/ob mice. Cancer Res 66(17):8897–8902

    CAS  PubMed  Google Scholar 

  3. Aksoy M, Berger MR et al (1987) The influence of different levels of dietary fat on the incidence and growth of MNU-induced mammary carcinoma in rats. Nutr Cancer 9(4):227–235

    CAS  PubMed  Google Scholar 

  4. Aylsworth CF, Van Vugt DA et al (1984) Role of estrogen and prolactin in stimulation of carcinogen-induced mammary tumor development by a high-fat diet. Cancer Res 44(7):2835–2840

    CAS  PubMed  Google Scholar 

  5. Black PL, Holly M et al (1983) Enhanced tumor resistance and immunocompetence in obese (ob/ob) mice. Life Sci 33(Suppl 1):715–718

    CAS  PubMed  Google Scholar 

  6. Boutwell RK, Brush MK et al (1949) The stimulating effect of dietary fat on carcinogenesis. Cancer Res 9(12):741–746

    CAS  PubMed  Google Scholar 

  7. Boylan ES, Cohen LA (1986) The influence of dietary fat on mammary tumor metastasis in the rat. Nutr Cancer 8(3):193–200

    CAS  PubMed  Google Scholar 

  8. Bray GA (1977) Experimental models for the study of obesity: introductory remarks. Fed Proc 36(2):137–138

    CAS  PubMed  Google Scholar 

  9. Bruning JC, Winnay J et al (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88(4):561–572

    CAS  PubMed  Google Scholar 

  10. Butler AA (2006) The melanocortin system and energy balance. Peptides 27(2):281–290

    CAS  PubMed  Google Scholar 

  11. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591

    CAS  PubMed  Google Scholar 

  12. Carroll KK, Khor HT (1970) Effects of dietary fat and dose level of 7,12-dimethylbenz(alpha)-anthracene on mammary tumor incidence in rats. Cancer Res 30(8):2260–2264

    CAS  PubMed  Google Scholar 

  13. Chan PC, Didato F et al (1975) High dietary fat, elevation of rat serum prolactin and mammary cancer. Proc Soc Exp Biol Med 149(1):133–135

    CAS  PubMed  Google Scholar 

  14. Chan PC, Head JF et al (1977) Influence of dietary fat on the induction of mammary tumors by N-nitrosomethylurea: associated hormone changes and differences between Sprague–Dawley and F344 rats. J Natl Cancer Inst 59(4):1279–1283

    CAS  PubMed  Google Scholar 

  15. Cho H, Mu J et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731

    CAS  PubMed  Google Scholar 

  16. Chua SC Jr, Chung WK et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271(5251):994–996

    CAS  PubMed  Google Scholar 

  17. Cleary MP, Grande JP et al (2004) Diet-induced obesity and mammary tumor development in MMTV-neu female mice. Nutr Cancer 50(2):174–180

    PubMed  Google Scholar 

  18. Cleary MP, Grande JP et al (2004) Effect of high fat diet on body weight and mammary tumor latency in MMTV-TGF-alpha mice. Int J Obes Relat Metab Disord 28(8):956–962

    CAS  PubMed  Google Scholar 

  19. Cleary MP, Juneja SC et al (2004) Leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors. Exp Biol Med (Maywood) 229(2):182–193

    CAS  Google Scholar 

  20. Cleary MP, Phillips FC et al (2003) Genetically obese MMTV-TGF-alpha/Lep(ob)Lep(ob) female mice do not develop mammary tumors. Breast Cancer Res Treat 77(3):205–215

    CAS  PubMed  Google Scholar 

  21. Cohen LA, Chan PC (1982) Dietary cholesterol and experimental mammary cancer development. Nutr Cancer 4(2):99–106

    CAS  PubMed  Google Scholar 

  22. Cohen LA, Chan PC et al (1981) The role of a high-fat diet in enhancing the development of mammary tumors in ovariectomized rats. Cancer 47(1):66–71

    CAS  PubMed  Google Scholar 

  23. Cohen LA, Chen-Backlund JY et al (1993) Effect of varying proportions of dietary menhaden and corn oil on experimental rat mammary tumor promotion. Lipids 28(5):449–456

    CAS  PubMed  Google Scholar 

  24. Cohen LA, Choi K et al (1986) Effect of varying proportions of dietary fat on the development of N-nitrosomethylurea-induced rat mammary tumors. Anticancer Res 6(2):215–218

    CAS  PubMed  Google Scholar 

  25. Cohen LA, Choi KW et al (1988) Influence of dietary fat, caloric restriction, and voluntary exercise on N-nitrosomethylurea-induced mammary tumorigenesis in rats. Cancer Res 48(15):4276–4283

    CAS  PubMed  Google Scholar 

  26. Cohen LA, Kendall ME et al (1991) Modulation of N-nitrosomethylurea-induced mammary tumor promotion by dietary fiber and fat. J Natl Cancer Inst 83(7):496–501

    CAS  PubMed  Google Scholar 

  27. Cohen LA, Thompson DO et al (1986) Dietary fat and mammary cancer. I. Promoting effects of different dietary fats on N-nitrosomethylurea-induced rat mammary tumorigenesis. J Natl Cancer Inst 77(1):33–42

    CAS  PubMed  Google Scholar 

  28. Cohen LA, Thompson DO et al (1984) Influence of dietary medium-chain triglycerides on the development of N-methylnitrosourea-induced rat mammary tumors. Cancer Res 44(11):5023–5028

    CAS  PubMed  Google Scholar 

  29. Cohen ND, Hilf R (1974) Influence of insulin on growth and metabolism of 7,12-dimethylbenz­(alpha)anthracene-induced mammary tumors. Cancer Res 34(12):3245–3252

    CAS  PubMed  Google Scholar 

  30. Coleman DL (1973) Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9(4):294–298

    CAS  PubMed  Google Scholar 

  31. Coleman DL, Hummel KP (1969) Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol 217(5):1298–1304

    CAS  PubMed  Google Scholar 

  32. Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9(4):287–293

    CAS  PubMed  Google Scholar 

  33. Coleman DL, Hummel KP (1974) Hyperinsulinemia in pre-weaning diabetes (db) mice. Diabetologia 10(Suppl):607–610

    CAS  PubMed  Google Scholar 

  34. Corpet DE, Jacquinet C et al (1997) Insulin injections promote the growth of aberrant crypt foci in the colon of rats. Nutr Cancer 27(3):316–320

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Couldrey C, Moitra J et al (2002) Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn 223(4):459–468

    PubMed  Google Scholar 

  36. Danforth C (1927) Hereditary adiposity in mice. J Hered 18(4):153–162

    Google Scholar 

  37. de Assis S, Khan G et al (2006) High birth weight increases mammary tumorigenesis in rats. Int J Cancer 119(7):1537–1546

    PubMed  Google Scholar 

  38. de Assis S, Wang M et al (2006) Excessive weight gain during pregnancy increases carcinogen-induced mammary tumorigenesis in Sprague–Dawley and lean and obese Zucker rats. J Nutr 136(4):998–1004

    PubMed  Google Scholar 

  39. de Bravo MG, de Antueno RJ et al (1991) Effects of an eicosapentaenoic and docosahexaenoic acid concentrate on a human lung carcinoma grown in nude mice. Lipids 26(11):866–870

    PubMed  Google Scholar 

  40. Debons AF, Krimsky I et al (1977) Gold thioglucose obesity syndrome. Fed Proc 36(2):143–147

    CAS  PubMed  Google Scholar 

  41. DeWille JW, Waddell K et al (1993) Dietary fat promotes mammary tumorigenesis in MMTV/v-Ha-ras transgenic mice. Cancer Lett 69(1):59–66

    CAS  PubMed  Google Scholar 

  42. Dinkova-Kostova AT, Fahey JW et al (2008) Rapid body weight gain increases the risk of UV radiation-induced skin carcinogenesis in SKH-1 hairless mice. Nutr Res 28(8):539–543

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dombrowski F, Bannasch P et al (1997) Hepatocellular neoplasms induced by low-number pancreatic islet transplants in streptozotocin diabetic rats. Am J Pathol 150(3):1071–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Drew JE, Farquharson AJ et al (2007) Insulin, leptin, and adiponectin receptors in colon: regulation relative to differing body adiposity independent of diet and in response to dimethylhydrazine. Am J Physiol Gastrointest Liver Physiol 293(4):G682–G691

    CAS  PubMed  Google Scholar 

  45. Ealey KN, Lu S et al (2008) Development of aberrant crypt foci in the colons of ob/ob and db/db mice: evidence that leptin is not a promoter. Mol Carcinog 47(9):667–677

    CAS  PubMed  Google Scholar 

  46. Earl TM, Nicoud IB et al (2009) Silencing of TLR4 decreases liver tumor burden in a murine model of colorectal metastasis and hepatic steatosis. Ann Surg Oncol 16(4):1043–1050

    CAS  PubMed  Google Scholar 

  47. Ellison G, Klinowska T et al (2002) Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55(5):294–299

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan W, Boston BA et al (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385(6612):165–168

    CAS  PubMed  Google Scholar 

  49. Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458

    CAS  PubMed  Google Scholar 

  50. Fernandez AM, Kim JK et al (2001) Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15(15):1926–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fodde R, Edelmann W et al (1994) A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 91(19):8969–8973

    CAS  PubMed  Google Scholar 

  52. Frasca F, Pandini G et al (2008) The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 114(1):23–37

    CAS  PubMed  Google Scholar 

  53. Fujisawa T, Endo H et al (2008) Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut 57(11):1531–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujise T, Iwakiri R et al (2007) Long-term feeding of various fat diets modulates azoxymethane-induced colon carcinogenesis through Wnt/beta-catenin signaling in rats. Am J Physiol Gastrointest Liver Physiol 292(4):G1150–G1156

    CAS  PubMed  Google Scholar 

  55. Genuth SM, Przybylski RJ et al (1971) Insulin resistance in genetically obese, hyperglycemic mice. Endocrinology 88(5):1230–1238

    CAS  PubMed  Google Scholar 

  56. Gonzalez MJ, Schemmel RA et al (1991) Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis 12(7):1231–1235

    CAS  PubMed  Google Scholar 

  57. Gordon RR, Hunter KW et al (2008) Genotype X diet interactions in mice predisposed to mammary cancer: II. Tumors and metastasis. Mamm Genome 19(3):179–189

    CAS  PubMed  Google Scholar 

  58. Gravaghi C, Bo J et al (2008) Obesity enhances gastrointestinal tumorigenesis in Apc-mutant mice. Int J Obes (Lond) 32(11):1716–1719

    CAS  Google Scholar 

  59. Hakkak R, Holley AW et al (2005) Obesity promotes 7,12-dimethylbenz(a)anthracene-induced mammary tumor development in female zucker rats. Breast Cancer Res 7(5):R627–R633

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hakkak R, MacLeod S et al (2007) Obesity increases the incidence of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in an ovariectomized Zucker rat model. Int J Oncol 30(3):557–563

    CAS  PubMed  Google Scholar 

  61. Halaas JL, Gajiwala KS et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546

    CAS  PubMed  Google Scholar 

  62. Hardie LJ, Rayner DV et al (1996) Circulating leptin levels are modulated by fasting, cold exposure and insulin administration in lean but not Zucker (fa/fa) rats as measured by ELISA. Biochem Biophys Res Commun 223(3):660–665

    CAS  PubMed  Google Scholar 

  63. Hardman WE (2007) Dietary canola oil suppressed growth of implanted MDA-MB 231 human breast tumors in nude mice. Nutr Cancer 57(2):177–183

    CAS  PubMed  Google Scholar 

  64. Heston WE (1942) Relationship between the lethal yellow (A(y)) gene of the mouse and susceptibility to induced pulmonary tumors. J Natl Cancer Inst 3(3):303–308

    Google Scholar 

  65. Heston WE, Deringer MK (1947) Relationship between the lethal yellow (Ay) gene of the mouse and susceptibility to spontaneous pulmonary tumors. J Natl Cancer Inst 7(6):463–465

    CAS  PubMed  Google Scholar 

  66. Heukamp I, Gregor JI et al (2006) Influence of different dietary fat intake on liver metastasis and hepatic lipid peroxidation in BOP-induced pancreatic cancer in Syrian hamsters. Pancreatology 6(1–2):96–102

    CAS  PubMed  Google Scholar 

  67. Heuson JC, Legros N (1972) Influence of insulin deprivation on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction. Cancer Res 32(2):226–232

    CAS  PubMed  Google Scholar 

  68. Heuson JC, Legros N et al (1972) Influence of insulin administration on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in intact, oophorectomized, and hypophysectomized rats. Cancer Res 32(2):233–238

    CAS  PubMed  Google Scholar 

  69. Hilakivi-Clarke L, Onojafe I et al (1996) Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. J Natl Cancer Inst 88(24):1821–1827

    CAS  PubMed  Google Scholar 

  70. Hirose Y, Hata K et al (2004) Enhancement of development of azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice. Carcinogenesis 25(5):821–825

    CAS  PubMed  Google Scholar 

  71. Hu X, Juneja SC et al (2002) Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst 94(22):1704–1711

    CAS  PubMed  Google Scholar 

  72. Hummel KP, Dickie MM et al (1966) Diabetes, a new mutation in the mouse. Science 153(740):1127–1128

    CAS  PubMed  Google Scholar 

  73. Ingalls AM, Dickie MM et al (1950) Obese, a new mutation in the house mouse. J Hered 41(12):317–318

    CAS  PubMed  Google Scholar 

  74. Kahle EB, Butz KG et al (1997) The rat corpulent (cp) mutation maps to the same interval on (Pgm1-Glut1) rat chromosome 5 as the fatty (fa) mutation. Obes Res 5(2):142–145

    CAS  PubMed  Google Scholar 

  75. Karmali RA, Reichel P et al (1987) The effects of dietary omega-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Res 7(6):1173–1179

    CAS  PubMed  Google Scholar 

  76. Kato T, Hancock RL et al (2002) Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett 187(1–2):169–177

    CAS  PubMed  Google Scholar 

  77. Katz EB, Stenbit AE et al (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377(6545):151–155

    CAS  PubMed  Google Scholar 

  78. Kido Y, Burks DJ et al (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 105(2):199–205

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kimura Y, Sumiyoshi M (2007) High-fat, high-sucrose, and high-cholesterol diets accelerate tumor growth and metastasis in tumor-bearing mice. Nutr Cancer 59(2):207–216

    CAS  PubMed  Google Scholar 

  80. Klurfeld DM, Lloyd LM et al (1991) Reduction of enhanced mammary carcinogenesis in LA/N-cp (corpulent) rats by energy restriction. Proc Soc Exp Biol Med 196(4):381–384

    CAS  PubMed  Google Scholar 

  81. Kobayashi N, Barnard RJ et al (2008) Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res 68(8):3066–3073

    CAS  PubMed  Google Scholar 

  82. Koch TC, Briviba K et al (2008) Obesity-related promotion of aberrant crypt foci in DMH-treated obese Zucker rats correlates with dyslipidemia rather than hyperinsulinemia. Eur J Nutr 47(3):161–170

    CAS  PubMed  Google Scholar 

  83. Koohestani N, Tran TT et al (1997) Insulin resistance and promotion of aberrant crypt foci in the colons of rats on a high-fat diet. Nutr Cancer 29(1):69–76

    CAS  PubMed  Google Scholar 

  84. Kubota N, Tobe K et al (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49(11):1880–1889

    CAS  PubMed  Google Scholar 

  85. Kuklin AI, Mynatt RL et al (2004) Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes. Mol Cancer 3:17

    PubMed  Google Scholar 

  86. Lann D, LeRoith D (2008) The role of endocrine insulin-like growth factor-I and insulin in breast cancer. J Mammary Gland Biol Neoplasia 13(4):371–379

    PubMed  Google Scholar 

  87. Lee WM, Lu S et al (2001) Susceptibility of lean and obese Zucker rats to tumorigenesis induced by N-methyl-N-nitrosourea. Cancer Lett 162(2):155–160

    CAS  PubMed  Google Scholar 

  88. Leung G, Benzie IF et al (2002) No effect of a high-fat diet on promotion of sex hormone-induced prostate and mammary carcinogenesis in the Noble rat model. Br J Nutr 88(4):399–409

    CAS  PubMed  Google Scholar 

  89. Liu Z, Uesaka T et al (2001) High fat diet enhances colonic cell proliferation and carcinogenesis in rats by elevating serum leptin. Int J Oncol 19(5):1009–1014

    CAS  PubMed  Google Scholar 

  90. Lu YP, Lou YR et al (2006) Stimulatory effect of voluntary exercise or fat removal (partial lipectomy) on apoptosis in the skin of UVB light-irradiated mice. Proc Natl Acad Sci USA 103(44):16301–16306

    CAS  PubMed  Google Scholar 

  91. Luijten M, Thomsen AR et al (2004) Effects of soy-derived isoflavones and a high-fat diet on spontaneous mammary tumor development in Tg.NK (MMTV/c-neu) mice. Nutr Cancer 50(1):46–54

    CAS  PubMed  Google Scholar 

  92. Luijten M, Verhoef A et al (2007) Modulation of mammary tumor development in Tg.NK (MMTV/c-neu) mice by dietary fatty acids and life stage-specific exposure to phytoestrogens. Reprod Toxicol 23(3):407–413

    CAS  PubMed  Google Scholar 

  93. Mai V, Colbert LH et al (2003) Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res 63(8):1752–1755

    CAS  PubMed  Google Scholar 

  94. Matsui Y, Halter SA et al (1990) Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell 61(6):1147–1155

    CAS  PubMed  Google Scholar 

  95. Mori A, Sakurai H et al (2006) Severe pulmonary metastasis in obese and diabetic mice. Int J Cancer 119(12):2760–2767

    CAS  PubMed  Google Scholar 

  96. Narita S, Tsuchiya N et al (2008) Candidate genes involved in enhanced growth of human prostate cancer under high fat feeding identified by microarray analysis. Prostate 68(3):321–335

    CAS  PubMed  Google Scholar 

  97. Nunez NP, Oh WJ et al (2006) Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res 66(10):5469–5476

    CAS  PubMed  Google Scholar 

  98. Nunez NP, Perkins SN et al (2008) Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer 60(4):534–541

    CAS  PubMed  Google Scholar 

  99. Otto C, Kaemmerer U et al (2008) Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8:122

    PubMed  Google Scholar 

  100. Phillips MS, Liu Q et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13(1):18–19

    CAS  PubMed  Google Scholar 

  101. Poretsky L, Cataldo NA et al (1999) The insulin-related ovarian regulatory system in health and disease. Endocr Rev 20(4):535–582

    CAS  PubMed  Google Scholar 

  102. Raju J, Bird RP (2003) Energy restriction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor beta and cyclooxygenase isoforms in Zucker obese (fa/fa) rats. Cancer Res 63(20):6595–6601

    CAS  PubMed  Google Scholar 

  103. Rao CV, Hirose Y et al (2001) Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids. Cancer Res 61(5):1927–1933

    CAS  PubMed  Google Scholar 

  104. Ray A, Nkhata KJ et al (2007) Diet-induced obesity and mammary tumor development in relation to estrogen receptor status. Cancer Lett 253(2):291–300

    CAS  PubMed  Google Scholar 

  105. Rose DP, Cohen LA (1988) Effects of dietary menhaden oil and retinyl acetate on the growth of DU 145 human prostatic adenocarcinoma cells transplanted into athymic nude mice. Carcinogenesis 9(4):603–605

    CAS  PubMed  Google Scholar 

  106. Rose DP, Connolly JM (1993) Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. J Natl Cancer Inst 85(21):1743–1747

    CAS  PubMed  Google Scholar 

  107. Rose DP, Connolly JM et al (1996) Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res 2(10):1751–1756

    CAS  PubMed  Google Scholar 

  108. Rose DP, Connolly JM et al (1991) Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. J Natl Cancer Inst 83(20):1491–1495

    CAS  PubMed  Google Scholar 

  109. Rose DP, Connolly JM et al (1995) Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst 87(8):587–592

    CAS  PubMed  Google Scholar 

  110. Russell JC, Ahuja SK et al (1987) Insulin resistance and impaired glucose tolerance in the atherosclerosis-prone LA/N corpulent rat. Arteriosclerosis 7(6):620–626

    CAS  PubMed  Google Scholar 

  111. Schwartz MW, Woods SC et al (2000) Central nervous system control of food intake. Nature 404(6778):661–671

    CAS  PubMed  Google Scholar 

  112. Shafie SM, Grantham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67(1):51–56

    CAS  PubMed  Google Scholar 

  113. Sharon R, Pillemer G et al (1993) Insulin dependence of murine T-cell lymphoma. II. Insulin-deficient diabetic mice and mice fed low-energy diet develop resistance to lymphoma growth. Int J Cancer 53(5):843–849

    CAS  PubMed  Google Scholar 

  114. Silverstone H, Tannenbaum A (1951) The influence of dietary fat and riboflavin on the formation of spontaneous hepatomas in the mouse. Cancer Res 11(3):200–203

    CAS  PubMed  Google Scholar 

  115. Sylvester PW, Ip C et al (1986) Effects of high dietary fat on the growth and development of ovarian-independent carcinogen-induced mammary tumors in rats. Cancer Res 46(2):763–769

    CAS  PubMed  Google Scholar 

  116. Thompson CI, Kreider JW et al (1983) Genetically obese mice: resistance to metastasis of B16 melanoma and enhanced T-lymphocyte mitogenic responses. Science 220(4602):1183–1185

    CAS  PubMed  Google Scholar 

  117. Tran TT, Medline A et al (1996) Insulin promotion of colon tumors in rats. Cancer Epidemiol Biomark Prev 5(12):1013–1015

    CAS  Google Scholar 

  118. Truett GE, Bahary N et al (1991) Rat obesity gene fatty (fa) maps to chromosome 5: evidence for homology with the mouse gene diabetes (db). Proc Natl Acad Sci USA 88(17):7806–7809

    CAS  PubMed  Google Scholar 

  119. Venkateswaran V, Haddad AQ et al (2007) Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J Natl Cancer Inst 99(23):1793–1800

    PubMed  Google Scholar 

  120. Vona-Davis L, Howard-McNatt M et al (2007) Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes Rev 8(5):395–408

    CAS  PubMed  Google Scholar 

  121. Wang Y, Ausman LM et al (2009) Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine-initiated early hepatocarcinogenesis in rats. Int J Cancer 124(3):540–546

    CAS  PubMed  Google Scholar 

  122. Waxler SH, Brecher G et al (1979) The effect of fat-enriched diet on the incidence of spontaneous mammary tumors in obese mice. Proc Soc Exp Biol Med 162(2):365–368

    CAS  PubMed  Google Scholar 

  123. Waxler SH, Leef MF (1966) Augmentation of mammary tumors in castrated obese C3H mice. Cancer Res 26(5):860–862

    CAS  PubMed  Google Scholar 

  124. Waxler SH, Tabar P (1953) Appearance of hepatomas in obese C3H male mice. Stanford Med Bull 11(4):272–273

    CAS  PubMed  Google Scholar 

  125. Weber RV, Stein DE et al (2000) Obesity potentiates AOM-induced colon cancer. Dig Dis Sci 45(5):890–895

    CAS  PubMed  Google Scholar 

  126. Welsch CW, DeHoog JV et al (1985) Influence of dietary fat levels on development and hormone responsiveness of the mouse mammary gland. Cancer Res 45(12 Pt 1):6147–6154

    CAS  PubMed  Google Scholar 

  127. Welsch CW, O’Connor DH (1989) Influence of the type of dietary fat on developmental growth of the mammary gland in immature and mature female BALB/c mice. Cancer Res 49(21):5999–6007

    CAS  PubMed  Google Scholar 

  128. Withers DJ, Gutierrez JS et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391(6670):900–904

    CAS  PubMed  Google Scholar 

  129. Wolff GL (1987) Body weight and cancer. Am J Clin Nutr 45(1 Suppl):168–180

    CAS  PubMed  Google Scholar 

  130. Wolff GL, Roberts DW et al (1986) Prenatal determination of obesity, tumor susceptibility, and coat color pattern in viable yellow (Avy/a) mice. The yellow mouse syndrome. J Hered 77(3):151–158

    CAS  PubMed  Google Scholar 

  131. Wolff GL, Roberts DW et al (1987) Tumorigenic responses to lindane in mice: potentiation by a dominant mutation. Carcinogenesis 8(12):1889–1897

    CAS  PubMed  Google Scholar 

  132. Yakar S, Nunez NP et al (2006) Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology 147(12):5826–5834

    CAS  PubMed  Google Scholar 

  133. Yang W, Bancroft L et al (2003) Targeted inactivation of p27kip1 is sufficient for large and small intestinal tumorigenesis in the mouse, which can be augmented by a Western-style high-risk diet. Cancer Res 63(16):4990–4996

    CAS  PubMed  Google Scholar 

  134. Yang WC, Mathew J et al (2001) Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res 61(2):565–569

    CAS  PubMed  Google Scholar 

  135. Yen TT, Gill AM et al (1994) Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J 8(8):479–488

    CAS  PubMed  Google Scholar 

  136. Z’Graggen K, Warshaw AL et al (2001) Promoting effect of a high-fat/high-protein diet in DMBA-induced ductal pancreatic cancer in rats. Ann Surg 233(5):688–695

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang Y, Proenca R et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432

    CAS  PubMed  Google Scholar 

  138. Zucker LM, Zucker TF (1961) Fatty – new mutation in rat. J Hered 52(6):275–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek LeRoith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Novosyadlyy, R., Vijayakumar, A., Fierz, Y., LeRoith, D. (2011). Animal Models of Hyperinsulinemia, Insulin Resistance, and Cancer. In: Fantus, I. (eds) Insulin Resistance and Cancer. Energy Balance and Cancer, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9911-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9911-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9910-8

  • Online ISBN: 978-1-4419-9911-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics