Skip to main content

Proton-fountain Electric-field-assisted Nanolithography (PEN)

  • Chapter
  • First Online:
Tip-Based Nanofabrication
  • 1093 Accesses

Abstract

This chapter describes the implementation of Proton-fountain Electric-field-assisted Nanolithography (PEN) as a potential tool for fabricating nanostructures by exploiting the properties of stimuli-responsive materials. The merits of PEN are demonstrated using poly(4-vinylpyridine) (P4VP) films, whose structural (swelling) response is triggered by the delivery of protons from an acidic fountain tip into the polymer substrate. Despite the probably many intervening factors affecting the fabrication process, PEN underscores the improved reliability in the pattern formation when using an external electric field (with voltage values of up to 5 V applied between the probe and the sample) as well as when controlling the environmental humidity conditions. PEN thus expands the applications of P4VP as a stimuli-responsive material into the nanoscale domain, which could have technological impact on the fabrication of memory and sensing devices as well as in the fabrication of nanostructures that closely mimic natural bio-environments. The reproducibility and reversible character of the PEN fabrication process offers opportunities to also use these films as test bed for studying fundamental (thermodynamic and kinetic) physical properties of responsive materials at the nanoscale level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Lattice models of polymer solutions are widely used for their simplicity and computational convenience. Their use for predicting solution properties of polymers solutions dates back to the 1940s.

  2. 2.

    Since all phosphate salts are used in hydrated condition, the molecular weight (MW) should include the corresponding portion of water. For NaH2PO4 we should include one molecules of water, hence the MW is 137.99. On the other hand, for the Na2HPO4 we should consider 7 molecules of water (heptahydrate), which gives a MW of 268.07. Hence, if 13.8 and 0.036 g of NaH2PO4 and Na2HPO4 are used respectively, then we can quote the concentration of NaH2PO4 (the buffer strength) to be practically equal to 0.1 M.

  3. 3.

    AFM XE-120 from Park Systems Inc.

  4. 4.

    ibid.

References

  1. K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145 (2007).

    Article  Google Scholar 

  2. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-Pen nanolithography,” Science 283, 661 (1999).

    Article  Google Scholar 

  3. I. Tokarev and S. Minko, “Stimuli-responsive hydrogel thin films,” Soft Matter 5, 511 (2009).

    Article  Google Scholar 

  4. L. Anson, “Membrane protein biophysics,” Nature 459, 343 (2009).

    Article  Google Scholar 

  5. C. Ainsworth, “Stretching the imagination,” Nature 456, 696 (2008).

    Article  Google Scholar 

  6. B. Bhushan, “Biomimetics: lessons from nature-an overview,” Phil. Trans. R. Soc. A 367, 1445 (2009).

    Article  Google Scholar 

  7. I. Tokarev, M. Motornov, and S. Minko;, “Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials,” J. Mater. Chem. 19, 6932 (2009).

    Article  Google Scholar 

  8. C. Cofield, “Cell is mechanical device,” Am. Phys. Soc., APS News, Series II, 19, 4 (June 2010).

    Google Scholar 

  9. C. Wu, Y. Li, J. H. Haga, R. Kaunas, J. Chiu, F. Su, S. Usami, and S. Chien, “Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micro patterned anisotropic geometry,” PNAS 104, 1254 (2007).

    Article  Google Scholar 

  10. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276, 1425 (1997).

    Article  Google Scholar 

  11. M. A. Greenfield, J. R. Hoffman, M. Olvera de la Cruz, and S. I. Stupp, “Tunable mechanics of peptide nanofiber gels,” Langmuir 26, 3641 (2010).

    Article  Google Scholar 

  12. M. M. Stevens and J. H. George, “Exploring and engineering the cell surface interface,” Science 310, 1135 (2005).

    Article  Google Scholar 

  13. S. Maeda, Y. Hara, T. Sakai, R. Yoshida, and S. Hashimoto, “Self-walking gel, Adv. Mater. 19, 3480 (2007).

    Article  Google Scholar 

  14. T. K. Tam, M. Ornatska, M. Pita, S. Minko, and E. Katz, “Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications,” J. Phys. Chem. C 112, 8438 (2008).

    Article  Google Scholar 

  15. D. Wang, I. Lagzi, P. J. Wesson, and B. A. Grzybowski, “Rewritable and pH-sensitive micropatterns based on nanoparticle ‘Inks’,” Small 6, 2114 (2010).

    Article  Google Scholar 

  16. J. Ruhe, M. Ballauff, M. Biesalski, P. Dziezok, F. Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, and H. Zhang, “Polyelectrolyte brushes” in: “Polyelectrolytes with Defined Molecular Architecture,” M. Schmidt Ed. Adv. Polym. Sci. 165, 79 (2004).

    Google Scholar 

  17. C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mater. Chem. 17, 1543 (2007).

    Article  Google Scholar 

  18. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano, “Comb-type grafted hydrogels with rapid deswelling response to temperature changes,” Nature 374, 240 (1995).

    Article  Google Scholar 

  19. T. Suzuki, S. Shinkai, and K. Sada, “Supramolecular crosslinked linear poly(trimethylene iminium trifluorosulfonimide) polymer gels sensitive to light and thermal stimuli,” Adv. Mater. 18, 1043 (2006).

    Article  Google Scholar 

  20. B. A. Evans, A. R. Shields, R. Lloyd Carroll, S. Washburn, M. R. Falvo, and R. Superfine, “Magnetically actuated nanorod arrays as biomimetic cilia,” Nano Lett. 7, 1428 (2007).

    Article  Google Scholar 

  21. O. Ikkala and G. Brinke, “Functional materials based on self assembly of polymeric supramolecules,” Science 295, 2407 (2002).

    Article  Google Scholar 

  22. M. Kaholek, W. K. Lee, B. LaMattina, K. C. Caster, and S. Zauscher, “Fabrication of stimulus-responsive nanopatterned polymer brushes by scanning-probe lithography,” Nano Lett. 4, 373 (2004).

    Article  Google Scholar 

  23. X. Liu, S. Guo, and C. A. Mirkin, “Surface and site-specific ring-opening metathesis polymerization initiated by dip-pen nanolithography,” Angew. Chem. Int. Ed. 42, 4785 (2003).

    Article  Google Scholar 

  24. Y. Okawa and M. Aono, “Nanoscale control of chain polymerization,” Nature 409, 683 (2001).

    Article  Google Scholar 

  25. S. P. Sullivan, A. Schnieders, S. K. Mbugua, and T. P. Beebe Jr., “Controlled polymerization of substituted diacetylene self-organized monolayers confined in molecule corrals,” Langmuir 21, 1322 (2005).

    Article  Google Scholar 

  26. Y. Okawa, D. Takajo, S. Tsukamoto, T. Hasegawa, and M. Aono, “Atomic force microscopy and theoretical investigation of the lifted-up conformation of polydiacetylene on a graphite substrate,” Soft Matter 4, 1041 (2008).

    Article  Google Scholar 

  27. P. Calvert, “Hydrogels for soft machines,” Adv. Mater. 21, 743 (2009).

    Article  Google Scholar 

  28. P. J. Flory and J. Rehner, “Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity,” J. Chem. Phys. 11, 512 (1943).

    Article  Google Scholar 

  29. P. J. Flory and J. Rehner, “Statistical mechanics of cross-linked polymer networks II. Swelling,” J. Chem. Phys. 11, 521 (1943).

    Article  Google Scholar 

  30. K. Huang, “Statistical Mechanics,” Wiley, New York, 2nd Ed. (1987).

    MATH  Google Scholar 

  31. F. P. Chinard and T. Enns, “Osmotic pressure,” Science 124, 472 (1956).

    Article  Google Scholar 

  32. P. J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Oxford (1969).

    Google Scholar 

  33. Y. Osada and J. Gong, “Soft and wet materials: Polymer gels,” Adv. Mater. 10, 827 (1998).

    Article  Google Scholar 

  34. L. D. Landau and E. M. Lifshitz, “Statistical Physics”, Elsevier, New York, 3rd Ed., Part 1, pp. 72, 267 (2006).

    Google Scholar 

  35. P. J. Flory, “Thermodynamics of high polymer solutions,” J. Chem. Phys. 10, 51 (1942).

    Article  Google Scholar 

  36. P. J. Flory, “Statistical mechanics of swelling of network structures,” J. Chem. Phys. 18, 108 (1950).

    Article  Google Scholar 

  37. W. Hu and D. Frenkel, “Lattice-model study of the thermodynamic interplay of polymer crystallization and liquid–liquid demixing,” J. Chem. Phys. 118, 10343 (2003).

    Article  Google Scholar 

  38. A. Yu. Grosberg and A. R. Khokhlov, “Giant Molecules. Here, There and Everywhere,” Academic Press, New York (1997).

    Google Scholar 

  39. D. Woo, “Spectroscopic Ellipsometry Studies of Polymers on Silicon Wafer,” Thesis for the Master degree in Physics, Portland State University, Portland, OR (2009).

    Google Scholar 

  40. C. Maedler, H. Graaf, S. Chada, M. Yan, and A. La Rosa, “Nano-structure formation driven by local protonation of polymer thin films”, Proc. SPIE, 7364, 736409-1 (2009).

    Google Scholar 

  41. X. Wang, “Characterization of Mesoscopic Fluid-Like Films with the Novel Shear-Force/Acoustic Microscopy,” Thesis for the Master degree in Physics, Portland State University, Portland, OR (2010).

    Google Scholar 

  42. X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric field-assisted dip-pen nanolithography on poly(4-vinyl pyridine) films,” ACS Appl. Mater. Interface 2, 2904–2909 (2010).

    Article  Google Scholar 

  43. J. Lahann, S. Mitragotri, T. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, and R. Langer, “A reversibly switching surface,” Science 299, 371 (2003).

    Article  Google Scholar 

  44. I. S. Lokuge and P. W. Bohn, “Voltage-tunable volume transitions in nanoscale films of poly(hydroxyethyl methacrylate) surfaces grafted onto gold,” Langmuir 21 , 1979 (2005).

    Article  Google Scholar 

  45. T. Tanaka, I. Nishio, S. Sun, and S. Ueno-Nishio, “Collapse of gels in an electric field,” Science, 218, 467 (1982).

    Article  Google Scholar 

  46. M. Annakaand and T. Tanaka, “Multiple phases of polymer gels,” Nature 355, 430 (1992).

    Article  Google Scholar 

  47. A. Matsuyama, “Volume phase transitions of smectic gels,” Phys. Rev. E 79, 051704 (2009).

    Article  Google Scholar 

  48. W. Xue, and I. W. Hamley, “Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer,” Polymer 43, 3069 (2002).

    Article  Google Scholar 

  49. A. Richter, G. Paschew, S. Klatt, J. Lienig, K. Arndt, and H. P. Adler, “Review on hydrogel-based pH sensors and microsensors,” Sensors 8, 561 (2008).

    Article  Google Scholar 

  50. T. Tanaka, D. Fillmore, S.-T. Sun, I. Nishio, G. Swislow, and A. Shah, “Phase transitions in ionic gels,” Phys. Rev. Lett. 45, 1636 (1980).

    Article  Google Scholar 

  51. A. Suzuki and T. Tanaka, “Phase transition in polymer gels induced by visible light,” Nature 346, 345 (1990).

    Article  Google Scholar 

  52. F. Ilmain, T. Tanaka, and E. Kokufuta, “Volume transition in a gel driven by hydrogen bonding,” Nature 349, 400 (1991).

    Article  Google Scholar 

  53. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178 (2000).

    Article  Google Scholar 

  54. M. Shibayama and T. Tanaka, “Small-angle neutron scattering study on weakly charged temperature sensitive polymer gels,” J. Chem. Phys. 97, 6842 (1992).

    Article  Google Scholar 

  55. S. Hong and C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808 (2000).

    Article  Google Scholar 

  56. C. Maedler, S. Chada, X. Cui, M. Taylor, M. Yan, and A. La Rosa, “Creation of nanopatterns by local protonation of P4VP via dip pen nanolithography.” J. Appl. Phys. 104, 014311 (2008).

    Article  Google Scholar 

  57. C. Maedler, “Applying Different Modes of Atomic Force Microscopy for the Manipulation and Characterization of Spatially Localized Structures and Charges,” Diploma Thesis for the academic degree of Diplom Physiker; Faculty of Natural Sciences Institute of Physics, Chemnitz University of Technology (2009).

    Google Scholar 

  58. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921 (1991).

    Google Scholar 

  59. M. Schenk, M. Futing, and R. Reichelt, “Direct visualization of the dynamic behavior of water meniscus by scanning electron microscopy,” J. Appl. Phys. 84, 4880 (1998).

    Article  Google Scholar 

  60. L. M. Demers, D. S. Ginger, Z. Li, S.-J. Park, S.-W. Chung, and C. A. Mirkin, “Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography,” Science 296,1836 (2002).

    Article  Google Scholar 

  61. S. Rozhok, P. Sun, R. Piner, M. Lieberman, and C. A. Mirkin, “AFM study of water meniscus formation between an aFM tip and NaCl substrate,” J. Phys. Chem. B 108, 7814 (2004).

    Article  Google Scholar 

  62. P. E. Sheehan and L. J. Whitman, “Thiol diffusion and the role of humidity in ‘dip pen nanolithography’,” Phys. Rev. Lett. 88, 156104 (2002).

    Article  Google Scholar 

  63. Z. Zheng, M. Yang, and B. Zhang, “Reversible nanopatterning on self-assembled monolayers on gold,” J. Phys. Chem. C 112, 6597 (2008).

    Article  Google Scholar 

  64. J.-W. Jang, D. Maspoch, T. Fujigaya, and C. A. Mirkin, “A ‘molecular eraser’ for dip-pen nanolithography,” Small 3, 600 (2007).

    Article  Google Scholar 

  65. Y. Li, B. W. Maynor, and J. Liu, “Electrochemical AFM ‘Dip-pen’ nanolithography,” J. Am. Chem. Soc. 123, 2105 (2001).

    Article  Google Scholar 

  66. F. C. Simeone, C. Albonetti, and M. Cavallini, “Progress in micro- and nanopatterning via electrochemical lithography,” J. Phys. Chem. C 113, 18987 (2009).

    Article  Google Scholar 

  67. R. Maoz, E. Frydman, S. R. Cohen, and J. Sagiv, “’Constructive nanolithography’: inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures: a generic approach,” Adv. Mater. 12, 725 (2000).

    Article  Google Scholar 

  68. Z. Zheng, M. Yang, and B. Zhang, “Constructive nanolithography by chemically modified tips: nanoelectrochemical patterning on SAMs/Au,” J. Phys. Chem. C 114, 19220 (2010).

    Article  Google Scholar 

  69. Y. Cai and B. M. Ocko, “Electro pen nanolithography,” J. Am. Chem. Soc. 127, 16287 (2005).

    Article  Google Scholar 

  70. D. Chowdhury, R. Maoz, and J. Sagiv, “Wetting driven self-assembly as a new approach to template-guided fabrication of metal nanopatterns,” Nano Lett. 7, 1770 (2007).

    Article  Google Scholar 

  71. A. Zeira, D. Chowdhury, S. Hoeppener, S. T. Liu, J. Berson, S. R. Cohen, R. Maoz, and J. Sagiv, “Patterned organosilane monolayers as lyophobic−lyophilic guiding templates in surface self-assembly: monolayer self-assembly versus wetting-driven self-assembly,” J. Langmuir 25, 13984 (2009).

    Article  Google Scholar 

  72. P. Yao, G. J. Schneider, J. Murakowski, and D. W. Prather, “Chemical lithography,” J. Vac. Sci. Technol. B 24, 2553 (2006).

    Article  Google Scholar 

  73. K. Shanmuganathan, J. R. Capadona, S. J. Rowan, and C. Weder, “Stimuli-responsive mechanically adaptive polymer nanocomposites,” ACS Appl. Mater. Interface 2, 165 (2010).

    Article  Google Scholar 

  74. R. Klajn, P. J. Wesson, K. J. M. Bishop, and B. A. Grzybowski, “Writing self-erasing images using metastable nanoparticle ‘Inks’,” Angew. Chem. Int. Ed. 48, 7035 (2009).

    Article  Google Scholar 

  75. S. V. Kalinin and N. Balk, “Local Electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives,” Adv. Mater. 22, E193–E209 (2010).

    Article  Google Scholar 

  76. A. A. Tseng, A. Notargiacomo, and T. P. Chen, “Nanofabrication by scanning probe microscope lithography: a review,” J. Vac. Sci. Technol. B 23, 877 (2005).

    Article  Google Scholar 

  77. A. A. Tseng, A. Notargiacomo, T. P. Chen, and Y. Liu, “Profile uniformity of overlapped oxide dots induced by atomic force microscopy,” J. Nanosci. Nanotechnol. 10, 4390 (2010).

    Article  Google Scholar 

  78. K. B. Jinesh and J. W. M. Frenken, “Capillary condensation in atomic scale friction: how water acts like a glue,” PRL 96, 166103 (2006).

    Article  Google Scholar 

  79. P. J. Feibelman, “The first wetting layer on a solid,” Physics Today 63, 34 (2010).

    Article  Google Scholar 

  80. E. Kapetanakis, A. M. Douvas, D. Velessiotis, E. Makarona, P. Argitis, N. Glezos, and P. Normand, “Hybrid organic–inorganic materials for molecular proton memory devices,” Org. Electron. 10, 711 (2009).

    Article  Google Scholar 

  81. E. Kapetanakis, A. M. Douvas, D. Velessiotis, E. Makarona, P. Argitis, N. Glezos, and P. Normand, “Molecular storage elements for proton memory devices,” Adv. Mater. 20, 4568 (2008).

    Article  Google Scholar 

  82. S. M. Haile, D. A. Boysen, C. R. Chisholm, and R. B. Merle, “Solid acids as fuel cell electrolytes,” Nature 410, 910 (2001).

    Article  Google Scholar 

  83. T. Norby, “The promise of protonics,” Nature 410, 877 (2001).

    Article  Google Scholar 

  84. P. M. Gilbert, K. L. Havenstrite, K. E. G. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau, “Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture,” Science 329, 1078 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres La Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

La Rosa, A., Yan, M. (2011). Proton-fountain Electric-field-assisted Nanolithography (PEN). In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics