Skip to main content

Nanofabrication of Functional Nanostructures by Thermochemical Nanolithography

  • Chapter
  • First Online:
Tip-Based Nanofabrication
  • 1170 Accesses

Abstract

Nanofabrication is the process of building functional structures with nanoscale dimensions, which can be used as components, devices, or systems with high density, in large quantities, and at low cost. Since the invention of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in 1980s, the application of scanning probe based lithography (SPL) techniques for modification of substrates and creation of functional nanoscale structures and nanostructured materials has been widespread, resulting in the emergence of a large variety of methodologies. In this chapter, we review the recent development of a thermal probe based nanofabrication technique called thermochemical nanolithography (TCNL). We start with a brief review of the evolution of the thermal AFM probes integrated with resistive heaters. We then provide an overview of some established nanofabrication techniques in which thermal probes are used, namely thermomechanical nanolithography, the Millipede project, and thermal dip-pen nanolithography. We discuss the heat transfer mechanisms of the thermal probes in the thermal writing process of TCNL. The remainder of the chapter focuses on the use of TCNL on a variety of systems and thermochemical reactions. TCNL has been successfully used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. Finally, we close this chapter by discussing some future research directions where the capabilities and robustness of TCNL can be further extended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

CD:

Cluster of differentiation

CF:

Covalent functionalization

DPN:

Dip-pen nanolithography

GO:

Graphene oxide

ICAM:

Inter-cellular adhesion molecule

IgG:

Immunoglobulin G

MEMS:

Microelectromechanical system

MR:

Molecular recognition

PKC-θ:

Protein kinase C-θ

PMC-MA:

Poly(3-(4-[(E)-3-methoxy-3-oxoprop-1-enyl]phenoxy)propyl 2-methacrylate)

PMMA:

Poly(methyl methacrylate)

PPV:

Poly(p-phenylene vinylene)

SAM:

Self-assembled monolayers

SOI:

Silicon-on-insulator

SPL:

Scanning probe lithography

SPM:

Scanning probe microscopy

STM:

Scanning tunneling microscopy

TCNL:

Thermochemical nanolithography

tDPN:

Thermal dip-pen nanolithography

THP-MA:

Poly(tetrahydro-2H-pyran-2-ylmeth-acrylate)

T g :

Temperature of glass transition in organic polymer materials

References

  1. H. M. Saavedra, T. J. Mullen, P. P. Zhang, D. C. Dewey, S. A. Claridge, P. S. Weiss, Hybrid strategies in nanolithography, Rep. Prog. Phys. 73, 036501 (2010).

    Google Scholar 

  2. Y. N. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99, 1823 (1999).

    Google Scholar 

  3. B. D. Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques, Chem. Rev. 105, 1171 (2005).

    Google Scholar 

  4. A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: A review, J. Vac. Sci. & Technol. B 23, 877 (2005).

    Google Scholar 

  5. R. F. Service, Can chip devices keep shrinking? Science 274, 1834 (1996).

    Google Scholar 

  6. G. M. Whitesides, The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161 (2003).

    Google Scholar 

  7. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics – a route to nanoscale optical devices, Adv. Mater. 13, 1501 (2001).

    Google Scholar 

  8. M. D. Levenson, N. S. Viswanathan, R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask, IEEE Trans. Electron Dev. 29, 1828 (1982).

    Google Scholar 

  9. D. R. Medeiros, A. Aviram, C. R. Guarnieri, W. S. Huang, R. Kwong, C. K. Magg, A. P. Mahorowala, W. M. Moreau, K. E. Petrillo, M. Angelopoulos, Recent progress in electron-beam a resists for advanced mask-making, IBM J. Res. Dev. 45, 639 (2001).

    Google Scholar 

  10. Y. N. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347 (1996).

    Google Scholar 

  11. G. Krausch, R. Magerle, Nanostructured thin films via self-assembly of block copolymers, Adv. Mater. 14, 1579 (2002).

    Google Scholar 

  12. M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum nanowires by electrodeposition, Science 290, 2120 (2000).

    Google Scholar 

  13. D. Wouters, U. S. Schubert, Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices, Angew. Chem. Int. Ed. 43, 2480 (2004).

    Google Scholar 

  14. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178 (1982).

    Google Scholar 

  15. G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56, 930 (1986).

    Google Scholar 

  16. D. M. Eigler, E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature 344, 524 (1990).

    Google Scholar 

  17. R. M. Nyffenegger, R. M. Penner, Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991, Chem. Rev. 97, 1195 (1997).

    Google Scholar 

  18. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, C. A. Mirkin, Dip-pen nanolithography, Science 283, 661 (1999).

    Google Scholar 

  19. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air, Appl. Phys. Lett. 56, 2001 (1990).

    Google Scholar 

  20. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “Millipede” – nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39 (2002).

    Google Scholar 

  21. R. Neffati, A. Alexeev, S. Saunin, J. C. M. Brokken-Zijp, D. Wouters, S. Schmatloch, U. S. Schubert, J. Loos, Automated scanning probe microscopy as a new tool for combinatorial polymer research: Conductive carbon black/poly(dimethylsiloxane) composites, Macromol. Rapid Commun. 24, 113 (2003).

    Google Scholar 

  22. D. S. Ginger, H. Zhang, C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed. 43, 30 (2004).

    Google Scholar 

  23. S. H. Hong, J. Zhu, C. A. Mirkin, Multiple ink nanolithography: Toward a multiple-pen nano-plotter, Science 286, 523 (1999).

    Google Scholar 

  24. A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, J. J. DeYoreo, Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography, Nano Lett. 2, 109 (2002).

    Google Scholar 

  25. L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science 296, 1836 (2002).

    Google Scholar 

  26. J. C. Garno, Y. Y. Yang, N. A. Amro, S. Cruchon-Dupeyrat, S. W. Chen, G. Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography, Nano Lett. 3, 389 (2003).

    Google Scholar 

  27. L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies, Nano Lett. 2, 1369 (2002).

    Google Scholar 

  28. D. A. Weinberger, S. G. Hong, C. A. Mirkin, B. W. Wessels, T. B. Higgins, Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching, Adv. Mater. 12, 1600 (2000).

    Google Scholar 

  29. T. Thorsen, S. J. Maerkl, S. R. Quake, Microfluidic large-scale integration, Science 298, 580 (2002).

    Google Scholar 

  30. A. Majumdar, Scanning thermal microscopy, Annu. Rev. Mater. Res. 29, 505 (1999).

    Google Scholar 

  31. W. P. King, T. W. Kenny, K. E. Goodson, Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements, Appl. Phys. Lett. 85, 2086 (2004).

    Google Scholar 

  32. W. P. King, Design analysis of heated atomic force microscope cantilevers for nanotopography measurements, J. Micromech. Microeng. 15, 2441 (2005).

    Google Scholar 

  33. A. Hammiche, H. M. Pollock, M. Song, D. J. Hourston, Sub-surface imaging by scanning thermal microscopy, Meas. Sci. Technol. 7, 142 (1996).

    Google Scholar 

  34. M. H. Li, Y. B. Gianchandani, Microcalorimetry applications of a surface micromachined bolometer-type thermal probe, J. Vac. Sci. Technol. B 18, 3600 (2000).

    Google Scholar 

  35. H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, D. Rugar, High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681 (1995).

    Google Scholar 

  36. M. A. Lantz, G. K. Binnig, M. Despont, U. Drechsler, A micromechanical thermal displacement sensor with nanometre resolution, Nanotechnology 16, 1089 (2005).

    Google Scholar 

  37. A. Pantazi, A. Sebastian, T. A. Antonakopoulos, P. Baechtold, A. R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R. A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J. L. Hedrick, D. Jubin, A. Knoll, M. A. Lantz, J. Pentaralkis, H. Pozidis, R. C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology, IBM J. Res. Dev. 52, 493 (2008).

    Google Scholar 

  38. W. P. King, T. W. Kenny, K. E. Goodson, G. Cross, M. Despont, U. Durig, H. Rothuizen, G. K. Binnig, P. Vettiger, Atomic force microscope cantilevers for combined thermomechanical data writing and reading, Appl. Phys. Lett. 78, 1300 (2001).

    Google Scholar 

  39. J. Lee, W. P. King, Improved all-silicon microcantilever heaters with integrated piezoresistive sensing, J. Microelectromech. Syst. 17, 432 (2008).

    Google Scholar 

  40. K. J. Kim, K. Park, J. Lee, Z. M. Zhang, W. P. King, Nanotopographical imaging using a heated atomic force microscope cantilever probe, Sensor. Actuat. A-Phys. 136, 95 (2007).

    Google Scholar 

  41. K. Park, J. Lee, Z. M. Zhang, W. P. King, Topography imaging with a heated atomic force microscope cantilever in tapping mode, Rev. Sci. Instrum. 78, (2007).

    Google Scholar 

  42. J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, H. W. Kesteren, Disk recording beyond 100 Gb/in2: Hybrid recording? J. Appl. Phys. 87, 5398 (2000).

    Google Scholar 

  43. H. J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003 (1992).

    Google Scholar 

  44. H. J. Mamin, Thermal writing using a heated atomic force microscope tip, Appl. Phys. Lett. 69, 433 (1996).

    Google Scholar 

  45. A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater. 22, 3361–3365 (2010).

    Google Scholar 

  46. D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science 328, 732 (2010).

    Google Scholar 

  47. P. E. Sheehan, L. J. Whitman, W. P. King, B. A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett. 85, 1589 (2004).

    Google Scholar 

  48. W. K. Lee, L. J. Whitman, J. Lee, W. P. King, P. E. Sheehan, The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography, Soft Matter 4, 1844 (2008).

    Google Scholar 

  49. B. A. Nelson, W. P. King, A. R. Laracuente, P. E. Sheehan, L. J. Whitman, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett. 88, 033104 (2006).

    Google Scholar 

  50. L. Aeschimann, A. Meister, T. Akiyama, B. W. Chui, P. Niedermann, H. Heinzelmann, N. F. De Rooij, U. Staufer, P. Vettiger, Scanning probe arrays for life sciences and nanobiology applications, Microelectron. Eng. 83, 1698 (2006).

    Google Scholar 

  51. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, J. K. Gimzewski, Translating biomolecular recognition into nanomechanics, Science 288, 316 (2000).

    Google Scholar 

  52. F. Huber, M. Hegner, C. Gerber, H. J. Guntherodt, H. P. Lang, Label free analysis of transcription factors using microcantilever arrays, Biosens. Bioelectron. 21, 1599 (2006).

    Google Scholar 

  53. G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar, Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nat. Biotechnol. 19, 856 (2001).

    Google Scholar 

  54. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate, 5X5 2D AFM cantilever arrays a first step towards a Terabit storage device, Sensor. Actuat. A-Phys. 73, 89 (1999).

    Google Scholar 

  55. M. Despont, U. Drechsler, R. Yu, H. B. Pogge, P. Vettiger, Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system, J. Microelectromech. Syst. 13, 895 (2004).

    Google Scholar 

  56. M. Zhang, D. Bullen, S. W. Chung, S. Hong, K. S. Ryu, Z. F. Fan, C. A. Mirkin, C. Liu, A MEMS nanoplotter with high-density parallel dip-pen manolithography probe arrays, Nanotechnology 13, 212 (2002).

    Google Scholar 

  57. X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett. 5, 1867 (2005).

    Google Scholar 

  58. J. Zou, D. Bullen, X. F. Wang, C. Liu, C. A. Mirkin, Conductivity-based contact sensing for probe arrays in dip-pen nanolithography, Appl. Phys. Lett. 83, 581 (2003).

    Google Scholar 

  59. J. Lee, W. P. King, Array of Microcantilever Heaters with Integrated Piezoresistors, in Proceedings of the 7th International IEEE Conference on Nanotechnology, Hong Kong, 135–140, (2007).

    Google Scholar 

  60. J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham, W. P. King, Electrical, thermal, and mechanical characterization of silicon microcantilever heaters, J. Microelectromech. Syst. 15, 1644 (2006).

    Google Scholar 

  61. L. Shi, A. Majumdar, Thermal transport mechanisms at nanoscale point contacts, J. Heat Trans-T ASME 124, 329 (2002).

    Google Scholar 

  62. S. K. Saha, L. Shi, Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon, J. Appl. Phys. 101 (2007).

    Google Scholar 

  63. B. W. Chui, M. Asheghi, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, Intrinsic-carrier thermal runaway in silicon microcantilevers, Nanosc. Microsc. Therm. 3, 217 (1999).

    Google Scholar 

  64. B. A. Nelson, W. P. King, Modeling and simulation of the interface temperature between a heated silicon tip and a substrate, Nanosc. Microsc. Therm. 12, 98 (2008).

    Google Scholar 

  65. B. Bhushan, H. Fuchs, Applied Scanning Probe Methods IV: Industrial Applications (Springer, Berlin, 2006).

    Google Scholar 

  66. D. Wang, Thermochemical Nanolithography Fabrication and Atomic Force Microscopy Characterization of Functional Nanostructures, Georgia Institute of Technology (2010).

    Google Scholar 

  67. G. Chen, Phonon heat conduction in nanostructures, Inter. J. Therm. Sci. 39, 471 (2000).

    Google Scholar 

  68. C. Hu, M. Kiene, P. S. Ho, Thermal conductivity and interfacial thermal resistance of polymeric low k films, Appl. Phys. Lett. 79, 4121 (2001).

    Google Scholar 

  69. M. M. Yovanovich, J. R. Culham, P. Teertstra, Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks, IEEE T. Compon. Pack. T 21, 168 (1998).

    Google Scholar 

  70. D. Wang, V. K. Kodali, W. D. Underwood, J. E. Jarvholm, T. Okada, S. C. Jones, M. Rumi, Z. Dai, W. P. King, S. R. Marder, J. E. Curtis, E. Riedo, Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects, Adv. Funct. Mater. 19, 1 (2009).

    Google Scholar 

  71. R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett. 7, 1064 (2007).

    Google Scholar 

  72. S. Xu, G. Y. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir 13, 127 (1997).

    Google Scholar 

  73. B. Klehn, U. Kunze, Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing, J. Appl. Phys. 85, 3897 (1999).

    Google Scholar 

  74. W. Fudickar, A. Fery, T. Linker, Reversible light and air-driven lithography by singlet oxygen, J. Am. Chem. Soc. 127, 9386 (2005).

    Google Scholar 

  75. I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, Writing-reading-erasing on tungsten oxide films using the scanning electrochemical microscope, Adv. Mater. 12, 330 (2000).

    Google Scholar 

  76. K. Seo, E. Borguet, Nanolithographic write, read, and erase via reversible nanotemplated nanostructure electrodeposition on alkanethiol-modified Au(111) in an aqueous solution, Langmuir 22, 1388 (2006).

    Google Scholar 

  77. D. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, W. P. King, Local wettability modification by thermochemical nanolithography with write-read-overwrite capability, Appl. Phys. Lett. 91, 243104 (2007).

    Google Scholar 

  78. M. A. Lantz, B. Gotsmann, U. T. Durig, P. Vettiger, Y. Nakayama, T. Shimizu, H. Tokumoto, Carbon nanotube tips for thermomechanical data storage, Appl. Phys. Lett. 83, 1266 (2003).

    Google Scholar 

  79. M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blummel, W. Eck, M. Kantlehner, H. Kessler, J. P. Spatz, Activation of integrin function by nanopatterned adhesive interfaces, Chemphyschem 5, 383 (2004).

    Google Scholar 

  80. E. Zamir, B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions, J. Cell Sci. 114, 3583 (2001).

    Google Scholar 

  81. A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, The immunological synapse: A molecular machine controlling T cell activation, Science 285, 221 (1999).

    Google Scholar 

  82. J. Duvigneau, H. Schonherr, G. J. Vancso, Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation, Langmuir 24, 10825 (2008).

    Google Scholar 

  83. C. L. Feng, G. J. Vancso, H. Schonherr, Reactive μCP on ultrathin block copolymer films: Investigation of the μCP mechanism and application to sub-μm (Bio)molecular patterning, Langmuir 23, 1131 (2007).

    Google Scholar 

  84. M. H. Yun, N. V. Myung, R. P. Vasquez, C. S. Lee, E. Menke, R. M. Penner, Electrochemically grown wires for individually addressable sensor arrays, Nano Lett. 4, 419 (2004).

    Google Scholar 

  85. J. Kameoka, D. Czaplewski, H. Q. Liu, H. G. Craighead, Polymeric nanowire architecture, J. Mater. Chem. 14, 1503 (2004).

    Google Scholar 

  86. E. Tekin, E. Holder, D. Kozodaev, U. S. Schubert, Controlled pattern formation of poly [2-methoxy-5(2 '-ethylhexyloxyl)-1,4-phenylenevinylene] (MEH-PPV) by ink-jet printing, Adv. Funct. Mater. 17, 277 (2007).

    Google Scholar 

  87. B. Dong, N. Lu, M. Zelsmann, N. Kehagias, H. Fuchs, C. M. S. Torres, L. F. Chi, Fabrication of high-density large-area conducting-polymer nanostructures, Adv. Funct. Mater. 16, 1937 (2006).

    Google Scholar 

  88. J. H. Lim, C. A. Mirkin, Electrostatically driven dip-pen nanolithography of conducting polymers, Adv. Mater. 14, 1474 (2002).

    Google Scholar 

  89. B. W. Maynor, S. F. Filocamo, M. W. Grinstaff, J. Liu, Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces, J. Am. Chem. Soc. 124, 522 (2002).

    Google Scholar 

  90. E. Betzig, J. K. Trautman, Near-field optics- microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189 (1992).

    Google Scholar 

  91. R. Riehn, A. Charas, J. Morgado, F. Cacialli, Near-field optical lithography of a conjugated polymer, Appl. Phys. Lett. 82, 526 (2003).

    Google Scholar 

  92. O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberberg, F. Cacialli, Thermochemical nanopatterning of organic semiconductors, Nat. Nanotechnol. 4, 664 (2009).

    Google Scholar 

  93. D. J. Lipomi, R. C. Chiechi, M. D. Dickey, G. M. Whitesides, Fabrication of conjugated polymer nanowires by edge lithography, Nano Lett. 8, 2100 (2008).

    Google Scholar 

  94. D. Wang, S. Kim, W. D. Underwood, A. J. Giordano, C. L. Henderson, Z. T. Dai, W. P. King, S. R. Marder, E. Riedo, Direct writing and characterization of poly(p-phenylene vinylene) nanostructures, Appl. Phys. Lett. 95, 233108 (2009).

    Google Scholar 

  95. X. S. Wu, M. Sprinkle, X. B. Li, F. Ming, C. Berger, W. A. de Heer, Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics, Phys. Rev. Lett. 101, 026801 (2008).

    Google Scholar 

  96. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448, 457 (2007).

    Google Scholar 

  97. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3, 270 (2008).

    Google Scholar 

  98. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8, 3137 (2008).

    Google Scholar 

  99. J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Q. Wei, P. Sheehan, B. H. Houston, Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Lett. 8, 3441 (2008).

    Google Scholar 

  100. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide, J. Phys. Chem. C 113, 15768 (2009).

    Google Scholar 

  101. Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. deHeer, P. E. Sheehan, E. Riedo, Nanoscale tunable reduction of graphene oxide for graphene electronics, Science 328, 1373 (2010).

    Google Scholar 

  102. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting-diodes based on conjugated polymers, Nature 347, 539 (1990).

    Google Scholar 

  103. E. Kim, Y. N. Xia, G. M. Whitesides, Polymer microstructures formed by molding in capillaries, Nature 376, 581 (1995).

    Google Scholar 

  104. J. Lee, W. P. King, Liquid operation of silicon microcantilever heaters, IEEE Sens. J. 8, 1805 (2008).

    Google Scholar 

  105. P. C. Fletcher, J. R. Felts, Z. T. Dai, T. D. Jacobs, H. J. Zeng, W. Lee, P. E. Sheehan, J. A. Carlisle, R. W. Carpick, W. P. King, Wear-resistant diamond nanoprobe tips with integrated silicon heater for Tip-based nanomanufacturing, ACS Nano 4, 3338 (2010).

    Google Scholar 

  106. O. Akbulut, J. M. Jung, R. D. Bennett, Y. Hu, H. T. Jung, R. E. Cohen, A. M. Mayes, F. Stellacci, Application of supramolecular nanostarnping to the replication of DNA nanoarrays, Nano Lett. 7, 3493 (2007).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Seth R. Marder and his research group for the fruitful discussions and the preparation of TCNL polymer samples. We would also like to acknowledge Dr. William P. King and his research group for their continuing support on thermal AFM probes. This work was supported by National Science Foundation (CMDITR program DMR 0120967, MRSEC program DMR 0820382, and DMR-0706031), Department of Energy (DE-FG02-06ER46293 and PECASE), and Georgia Institute of Technology (Georgia Tech Research Foundation, COE Cutting Edge Research Award, and COPE graduate fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Riedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, D., Kodali, V.K., Curtis, J.E., Riedo, E. (2011). Nanofabrication of Functional Nanostructures by Thermochemical Nanolithography. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics