Skip to main content

Nanopattern Formation Using Dip-Pen Nanolithography

  • Chapter
  • First Online:
Tip-Based Nanofabrication

Abstract

The fabrication of bottom-up nanostructures is a crucial step for the advancement of nanotechnology. Dip-pen nanolithography has started off as a method for the transfer of small organic molecules and has matured over the years to one of the most versatile patterning techniques available in the nanoscale. Three-dimensional structures made from organic or inorganic materials on a large variety of different substrates and length scales have been fabricated. This review highlights the techniques used for the fabrication of these structures together with their practical applications. Furthermore, the physical mechanisms involved in the dip-pen process are discussed by summarizing the experimental and theoretical results obtained so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

CNT:

Carbon nanotube

DNA:

Deoxyribonucleic acid

DPN:

Dip-pen nanolithography

MHA:

Mercaptohexadecanoic acid

MUA:

Mercaptoundecanoic acid

ODT:

Octadecanethiol

SAM:

Self-assembled monolayer

STM:

Scanning tunneling microscope

References

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett., 49, 57–61 (1982).

    Article  Google Scholar 

  2. G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56, 930–933 (1986).

    Article  Google Scholar 

  3. G. Friedbacher, H. Fuchs, Classification of scanning probe microscopies, Pure Appl. Chem., 71, 1337–1357 (1999).

    Article  Google Scholar 

  4. D. M. Eigler, E. K.Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature, 344, 524–526 (1990).

    Article  Google Scholar 

  5. R. W. Carpick, M. Salmeron, Scratching the surface: fundamental investigations of tribology with atomic force microscopy, Chem. Rev., 97, 1163–1194 (1997).

    Article  Google Scholar 

  6. M. Liu, N. A. Amro, G. Y. Liu, Nanografting for surface physical chemistry, Ann. Rev. Phys. Chem., 59, 367–386 (2008).

    Article  Google Scholar 

  7. D. Stievenard, B. Legrand, Silicon surface nano-oxidation using scanning probe microscopy, Prog. Surf. Sci., 81, 112–140 (2006).

    Article  Google Scholar 

  8. A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: a review, J. Vac. Sci. Technol. B, 23, 877–894 (2005).

    Article  Google Scholar 

  9. X. N. Xie, H. J. Chung, C. H. Sow, A. T. S. Wee, Nanoscale materials patterning by atomic force microscopy nanolithography, Mat. Sci. Eng. R, 54, 1–48 (2006).

    Article  Google Scholar 

  10. D. Wouters, S. Hoeppener, U. S. Schubert, Local probe oxidation of self-assembled monolayers: templates for the assembly of functional nanostructures, Angew. Chem. Int. Ed., 48, 1732–1739 (2009).

    Article  Google Scholar 

  11. R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, “Dip-pen” nanolithography, Science, 283, 661–663 (1999).

    Article  Google Scholar 

  12. D. S. Ginger, H. Zhang, C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed., 43, 30–45 (2004).

    Article  Google Scholar 

  13. J. Jang, G. C. Schatz, M. A. Ratner, Liquid meniscus condensation in dip-pen nanolithography, J. Chem. Phys., 116, 3875–3886 (2002).

    Article  Google Scholar 

  14. J. Jang, G. C. Schatz, M. A. Ratner, Capillary force on a nanoscale tip in dip-pen nanolithography, Phys. Rev. Lett., 90, 156104 (2003).

    Article  Google Scholar 

  15. J. Jang, G. C. Schatz, M. A. Ratner, How narrow can a meniscus be? Phys. Rev. Lett., 92, 085504 (2004).

    Article  Google Scholar 

  16. B. L. Weeks, M. W. Vaughn, J. J. DeYoreo, Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir, 21, 8096–8098 (2005).

    Article  Google Scholar 

  17. B. L. Weeks, J. J. DeYoreo, Dynamic meniscus growth at a scanning probe tip in contact with a gold substrate, J. Phys. Chem. B, 110, 10231–10233 (2006).

    Article  Google Scholar 

  18. M. G. Boyle, J. Mitra, P. Dawson, The tip-sample water bridge and light emission from scanning tunneling microscopy, Nanotechnology, 20, 335202 (2009).

    Article  Google Scholar 

  19. J. R. Hampton, A. A. Dameron, P. S. Weiss, Double-ink dip-pen nanolithography studies elucidate molecular transport, J. Am. Chem. Soc., 128, 1648–1653 (2006).

    Article  Google Scholar 

  20. R. Agrawal, N. Moldovan, H. D. Espinosa, An energy model to predict wear in nanocrystalline diamond atomic force microscopy tips, J. Appl. Phys., 106, 064311 (2009).

    Article  Google Scholar 

  21. D. M. Heo, M. Yang, H. Kim, L. C. Saha, J. Jang, Tip dependence of the self-assembly in dip-pen nanolithography, J. Phys. Chem. C, 113, 13813–13818 (2009).

    Article  Google Scholar 

  22. J. W. van Honschoten, N. R. Tas, M. Elwenspoek The profile of a capillary liquid bridge between solid surfaces, Am. J. Phys., 78, 277–286 (2010).

    Article  Google Scholar 

  23. N. S. John, G. U. Kulkarni, Dip-pen lithography using pens of different thicknesses, J. Nanosci. Nanotechnol., 7, 977–981 (2007).

    Article  Google Scholar 

  24. B. L. Weeks, A. Noy, A. E. Miller, J. J. DeYoreo, Effect of dissolution kinetics on feature size in dip-pen nanolithography, Phys. Rev. Lett., 88, 255505 (2002).

    Article  Google Scholar 

  25. S. Rozhok, R. Piner, C. A. Mirkin, Dip-pen nanolithography: what controls ink transport? J. Phys. Chem. B, 107, 751–757 (2003).

    Article  Google Scholar 

  26. P. E. Sheehan, L. J. Whitman, Thiol diffusion and the role of humidity in “dip-pen nanolithography”, Phys. Rev. Lett., 88, 156404–156107 (2002).

    Article  Google Scholar 

  27. S. Rozhok, P. Sung, R. Piner, M. Lieberman, C. A. Mirkin, AFM study of water meniscus formation between an AFM tip and NaCl substrate, J. Phys. Chem. B, 108, 7814–7819 (2004).

    Article  Google Scholar 

  28. E. J. Peterson, B. L. Weeks, J. J. De Yoreo, P. V. Schwartz, Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid, J. Phys. Chem. B, 108, 15206–15210 (2004).

    Article  Google Scholar 

  29. G. W. Bradberry, P. S. Vukusic, J. R. Sambles, A study of the adsorption of alkanes on a thin-metal film, J. Chem. Phys., 98, 651–654 (1993).

    Article  Google Scholar 

  30. K. Salaita, A. Amarnath, T. B. Higgins, C. A. Mirkin, The effects of organic vapor on alkanethiol deposition via dip-pen nanolithography, Scanning, 32, 9–14 (2010).

    Google Scholar 

  31. P. V. Schwartz, Molecular transport from an atomic force microscope tip: a comparative study of dip-pen nanolithography, Langmuir, 18, 4041–4046 (2002).

    Article  Google Scholar 

  32. C.-D. Wu, W.-H. Fang, J.-F. Lin, Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics, Langmuir, 26, 3237–3241 (2010).

    Article  Google Scholar 

  33. R. G. Sanedrin, N. A. Amro, J. Rendlen, M. Nelson, Temperature controlled dip-pen nanolithography, Nanotechnology, 21, 115302 (2010).

    Article  Google Scholar 

  34. I. Nocedal, H. Espinosa, K.-H. Kim, Ink diffusion in dip-pen nanolithography: a study in the development of nano fountain probes, Nanoscape, 2, 105–111 (2005).

    Google Scholar 

  35. S. K. Saha, M. L. Culpepper, A surface diffusion model for dip pen nanolithography line writing, Appl. Phys. Lett., 96, 243105 (2010).

    Article  Google Scholar 

  36. H. Jung, C. K. Dalal, S. Kuntz, R. Shah, C. P. Collier, Surfactant activated dip-pen nanolithography, Nano Lett., 4, 2171–2177 (2004).

    Article  Google Scholar 

  37. H. Kim, J. Jang, Serial pushing model for the self-assembly in dip-pen nanolithography, J. Phys. Chem. A, 113, 4313–4319 (2009).

    Article  Google Scholar 

  38. J. Jang, S. Hong, G. C. Schatz, M. A. Ratner, Self-assembly of ink molecules in dip-pen nanolithography: a diffusion model, J. Chem. Phys., 115, 2721–2729 (2001).

    Article  Google Scholar 

  39. D. M. Heo, M. Yang, S. Hwang, J. Jang, Molecular dynamics of monolayer deposition using a nanometer tip source, J. Phys. Chem. C, 112, 8791–8796 (2008).

    Article  Google Scholar 

  40. N.-K. Lee, S. Hong, Modeling collective behavior of molecules in nanoscale direct deposition processes, J. Chem. Phys., 124, 114711 (2006).

    Article  Google Scholar 

  41. P. Manandhar, J. Jang, G. C. Schatz, M. A. Ratner, S. Hong, Anomalous surface diffusion in nanoscale direct deposition processes, Phys. Rev. Lett., 90, 115505 (2003).

    Article  Google Scholar 

  42. H. Brunner, T. Vallant, U. Mayer, H. Hoffmann, B. Basnar, M. Vallant, G. Friedbacher, Substrate effects on the formation of alkylsiloxane monolayers, Langmuir, 15, 1899–1901 (1999).

    Article  Google Scholar 

  43. W. M. Wang, R. M. Stoltenberg, S. Liu, Z. Bao, Direct patterning of nanoparticles using dip-pen nanolithography, ACS Nano, 2, 2135–2142 (2008).

    Article  Google Scholar 

  44. A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, Ann. Phys. (Leipzig), 17, 549–560 (1905).

    Google Scholar 

  45. X.-M. Li, J. Huskens, D. N. Reinhoudt, Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies, J. Mater. Chem., 14, 2954–2971 (2004).

    Article  Google Scholar 

  46. S. R. Wasserman, Y.-T. Tao, G. M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilane on silicon substrates, Langmuir, 5, 1074–1087 (1989).

    Article  Google Scholar 

  47. H. Jung, R. Kulkarni, C. P. Collier, Dip-pen nanolithography of reactive alkoxysilanes on glass, J. Am. Chem. Soc., 125, 12096–12097 (2003).

    Article  Google Scholar 

  48. S. E.Kooi, L. A. Baker, P. E. Sheehan, L. J. Whitman, Dip-pen nanolithography of chemical templates on silicon oxide, Adv. Mater., 16, 1013–1016 (2004).

    Article  Google Scholar 

  49. M. Su, V. P. Dravid, Colored ink dip-pen nanolithography, Appl. Phys. Lett., 80, 434–4436 (2002).

    Article  Google Scholar 

  50. M. Su, M. Aslam, L. Fu, N. Wu, V. P. Dravid, Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink, Appl. Phys. Lett., 84, 4200–4202 (2004).

    Article  Google Scholar 

  51. J.-H. Lim, C. A. Mirkin, Electrostatically driven dip-pen nanolithography of conducting polymers, Adv. Mater, 14, 1474–1477 (2002).

    Article  Google Scholar 

  52. A. Mulder, S. Onclin, M. Péter, J. P. Hoogenboom, H. Beijleveld, J. ter Maat, M. F. García-Parajó, B. J. Ravoo, J. Huskens, N. F. van Hulst, D. N. Reinhoudt, Molecular printboards on silicon oxide: lithographic patterning of cyclodextrin monolayers with multivalent, fluorescent guest molecules, Small, 1, 242–253 (2005).

    Article  Google Scholar 

  53. J. C. Garno, Y. Yang, N. A. Amro, S. Cruchon-Dupeyrat, S. Chen, G.-Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography, Nano Lett., 3, 389–395 (2003).

    Article  Google Scholar 

  54. B. Wu, A. Ho, N. Moldovan, H. D. Espinosa, Direct deposition and assembly of gold colloidal particles using a nanofountain probe, Langmuir, 23, 9120–9123 (2007).

    Article  Google Scholar 

  55. P. J. Thomas, G. U. Kulkarni, C. N. R. Rao, Dip-pen lithography using aqueous metal nanocrystal dispersions, J. Mater. Chem., 14, 625–628 (2004).

    Article  Google Scholar 

  56. M. Ben Ali, T. Ondarçuhu, M. Brust, C. Joachim, Atomic force microscope tip nanoprinting of gold nanoclusters, Langmuir, 18, 872–876 (2002).

    Article  Google Scholar 

  57. L. M. Demers, D. S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, C. A. Mirkin, Direct patterning of oligonucleotides on metals and insulators by dip-pen nanolithography, Science, 296, 1836–1838 (2002).

    Article  Google Scholar 

  58. B. Basnar, Y. Weizmann, Z. Cheglakov, I. Willner, Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks, Adv. Mater., 18, 713–718 (2006).

    Article  Google Scholar 

  59. G. Agarwal, L. A. Sowards, R. R. Naik, M. O. Stone, Dip-pen nanolithography in tapping mode, J. Am. Chem. Soc., 125, 580–583 (2003).

    Article  Google Scholar 

  60. C.-C. Wu, H. Xu, C. Otto, D. N. Reinhoudt, R. G. H. Lammertink, J. Huskens, V. Subramaniam, A. H. Velders, Porous multilayer-coated AFM tips for dip-pen nanolithography of proteins, J. Am. Chem. Soc., 131, 7526–7527 (2009).

    Article  Google Scholar 

  61. A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, J. J. DeYoreo, Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography, Nano Lett., 2, 109–112 (2002).

    Article  Google Scholar 

  62. M. Lee, D.-K. Kang, H.-K. Yang, K.-H. Park, S. Y. Choe, C.-S. Kang, S.-I. Chang, M. H. Han, I.-C. Kang, Protein nanoarray on Prolinker™ surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction, Proteomics, 6, 1094–1103 (2006).

    Article  Google Scholar 

  63. A. J. Senesi, D. I. Rozkiewicz, D. N. Reinhoudt, C. A. Mirkin, Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins, ACS Nano, 3, 2394–2402 (2009).

    Article  Google Scholar 

  64. L. Huang, A. B. Braunschweig, W. Shim, L. Qin, J. K. Lim, S. J. Hurst, F. Huo, C. Xue, J.-W. Jang, C. A. Mirkin, Matrix-assisted dip-pen nanolithography and polymer pen lithography, Small, 6, 1077–1081 (2010).

    Article  Google Scholar 

  65. J.-F. Liu, G. P. Miller, Field-assisted nanopatterning, J. Phys. Chem. C, 111, 10758–10760 (2007).

    Article  Google Scholar 

  66. P. S. Spinney, S. D. Collins, R. L. Smith, Solid-phase direct write (SPDW) of carbon via scanning force microscopy, Nano Lett., 7, 1512–1515 (2007).

    Article  Google Scholar 

  67. W.-K. Lee, S. Chen, A. Chilkoti, S. Zauscher, Fabrication of gold nanowires by electric-field-induced probe lithography and in situ chemical development, Small, 3, 249–254.

    Google Scholar 

  68. Y. Cia, B. M. Ocko, Electro pen nanolithography, J. Am. Chem. Soc., 127, 16287–16291 (2005).

    Article  Google Scholar 

  69. G. Agarwal, R. R. Naik, M. O. Stone, Immobilization of histidine-tagged proteins on nickel by electrochemical dip-pen nanolithography, J. Am. Chem. Soc., 125, 7408–7412 (2003).

    Article  Google Scholar 

  70. A. Ivanisevic, C. A. Mirkin, “Dip-pen” nanolithography on semiconductor surfaces, J. Am. Chem. Soc., 123, 7887–7889 (2001).

    Article  Google Scholar 

  71. P. E. Sheehan, L. J. Whitman, W. P. King, B. A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett., 85, 1589–1591 (2004).

    Article  Google Scholar 

  72. M. Yang, P. E. Sheehan, W. P. King, L. J. Whitman, Direct writing of a conducting polymer with molecular-level control of physical dimensions and orientation, J. Am. Chem. Soc., 128, 6774–6775 (2006).

    Article  Google Scholar 

  73. P. C. Fletcher, J. R. Felts, Z. Dai, T. D. Jacobs, H. Zeng, W. Lee, P. E. Sheehan, J. A. Carlisle, R. W. Carpick, W. P. King, Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing, ACS Nano, 4, 3338–3334 (2010).

    Article  Google Scholar 

  74. B. A. Nelson, W. P. King, A. R. Laracuente, P. E. Sheehan, L. J. Whitman, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett., 88, 033104 (2006).

    Article  Google Scholar 

  75. B. W. Maynor, Y. Li, J. Liu, Au “ink” for AFM “dip-pen” nanolithography, Langmuir, 17, 2575–2578 (2001).

    Article  Google Scholar 

  76. L. A. Porter Jr., H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies, Nano Lett., 2, 1369–1372 (2002).

    Article  Google Scholar 

  77. Y. Li, B. W. Maynor, J. Liu, Electrochemical AFM “dip-pen” nanolithography, J. Am. Chem. Soc., 123, 2105–2106 (2001).

    Article  Google Scholar 

  78. B. W. Maynor, S. F. Filocamo, M. W. Grinstaff, J. Liu, Direct-writing of polymer nanostructures: poly(thiophene) nanowires on semiconducting and insulating surfaces, J. Am. Chem. Soc., 124, 522–523 (2002).

    Article  Google Scholar 

  79. Z. Zheng, M. Yang, B. Zhang, Reversible nanopatterning on self-assembled monolayers on gold, J. Phys. Chem. C, 112, 6597–6604 (2008).

    Article  Google Scholar 

  80. A. B. Braunschweig, A. J. Senesi, C. A. Mirkin, Redox-activating dip-pen nanolithography (RA-DPN), J. Am. Chem. Soc., 131, 922–923 (2009).

    Article  Google Scholar 

  81. M. Su, X. Liu, S.-Y. Li, V. P. Dravid, C. A. Mirkin, Moving beyond molecules: patterning solid-state features via dip-pen nanolithography with sol-based inks, J. Am. Chem. Soc., 124, 1560–1561 (2002).

    Article  Google Scholar 

  82. L. Ding, Y. Li, H. Chu, X. Li, J. Liu, Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography, J. Phys. Chem. B, 109, 22337–22340 (2005).

    Article  Google Scholar 

  83. Z. Zheng, M. Yang, Y. Liu, B. Zhang, Direct patterning of negative nanostructures on self-assembled monolayers of 16-mercaptohexadecanoic acid on Au(111) substrates via dip-pen nanolithography, Nanotechnology, 17, 5378–5386 (2006).

    Article  Google Scholar 

  84. R. E. Ionescu, R. S. Marks, L. A. Gheber, Nanolithography using protease etching of protein surfaces, Nano Lett., 3, 1639–1642 (2003).

    Article  Google Scholar 

  85. R. E. Ionescu, R. S. Marks, L. A. Gheber, Manufacturing of nanochannels with controlled dimensions using protease nanolithography, Nano Lett., 5, 821–827 (2005).

    Article  Google Scholar 

  86. J. Hyun, J. Kim, S. L. Craig, A. Chilkoti, Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold, J. Am. Chem. Soc., 126, 4770–4771 (2004).

    Article  Google Scholar 

  87. B. Li, Y. Zhang, S.-H. Yan, J.-H. Lü, M. Ye, M.-Q. Li, J. Hu, Positioning scission of single DNA molecules with nonspecific endonuclease based on nanomanipulation, J. Am. Chem. Soc., 129, 6668–6669 (2007).

    Article  Google Scholar 

  88. S. Matsubara, H. Yamamoto, K. Oshima, E. Mouri, H. Matsuoka, Fabrication of nano-structure by Diels-Alder reaction, Chem. Lett., 31, 886–887 (2002).

    Article  Google Scholar 

  89. D. A. Long, K. Unal, R. C. Pratt, M. Malkoch, J. Frommer, Localized “click” chemistry through dip-pen nanolithography, Adv. Mater., 19, 4471–4473 (2007).

    Article  Google Scholar 

  90. B. Movassagh, P. Shaygan, Michael addition of thiols to α,β-unsaturated carbonyl compounds under solvent-free conditions, ARKIVOC, 130–137 (XII/2006).

    Google Scholar 

  91. X. G. Liu, S. W. Guo, C. A. Mirkin, Surface and site-specific ring-opening metathesis polymerization initiated by dip-pen nanolithography, Angew. Chem. Int. Ed., 42, 4785–4789 (2003).

    Article  Google Scholar 

  92. L. Riemenschneider, S. Blank, M. Radmacher, Enzyme-assisted nanolithography, Nano Lett., 5, 1643–1646 (2005).

    Article  Google Scholar 

  93. J. Yang, J. Han, K. Isaacson, D. Y. Kwok, Effects of surface defects, polycrystallinity, and nanostructure of self-assembled monolayers for octadecanethiol adsorbed onto Au on wetting and its surface energetic interpretation, Langmuir, 19, 9231–9238 (2003).

    Article  Google Scholar 

  94. D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, T. B. Higgins, Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via ‚dip-pen“ nanolithograpy and wet chemical etching, Adv. Mater., 12, 1600–1603 (2000).

    Article  Google Scholar 

  95. H. Zhang, S. W. Chung, C. A. Mirkin, Fabrication of sub-50-nm solid-state nanostructures on the basis of dip-pen nanolithography, Nano Lett., 3, 43–45 (2003).

    Article  Google Scholar 

  96. H. Zhang, C. A. Mirkin, DPN-generated nanostructures made of gold, silver, and palladium, Chem. Mater., 16, 1480–1484 (2004).

    Article  Google Scholar 

  97. K. S. Salaita, S. W. Lee, D. S. Ginger, C. A. Mirkin, DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays, Nano Lett., 6, 2493–2498 (2006).

    Article  Google Scholar 

  98. M. Woodson, J. Liu, Functional nanostructures from surface chemistry patterning, Phys. Chem. Chem. Phys., 9, 207–225 (2007).

    Article  Google Scholar 

  99. X. M. Li, J. Huskens, D.N. Reinhoudt, Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies, J. Mater. Chem., 14, 2954–2971 (2004).

    Article  Google Scholar 

  100. J.-H. Lim, D. S. Ginger, K.-B. Lee, J. Heo, J.-M. Nam, C. A. Mirkin, Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces, Angew. Chem. Int. Ed., 42, 2309–2312 (2003).

    Article  Google Scholar 

  101. M. Yu, D. Nyamjav, A. Ivanisevic, Fabrication of positively and negatively charged polyelectrolyte structures by dip-pen nanolithography, J. Mater. Chem., 15, 649–652 (2005).

    Article  Google Scholar 

  102. S. Myung, M. Lee, G. T. Kim, J. S. Ha, S. Hong, Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices, Adv. Mater., 17, 2361–2364 (2005).

    Article  Google Scholar 

  103. Y. Wang, D. Maspoch, S. Zou, G. C. Schatz, R. E. Smalley, C. A. Mirkin, Controlling the shape, orientation, and linkage of carbon nanotubes with nano affinity templates, Proc. Nat. Acad. Sci. USA, 103, 2026–2031 (2006).

    Article  Google Scholar 

  104. C.-C. Wu, D. N. Reinhoudt, C. Otto, A. H. Velders, V. Subramaniam, Protein immobilization on Ni(II) ion patterns prepared by microcontact printing and dip-pen nanolithography, ACS Nano, 4, 1083–1091 (2010).

    Article  Google Scholar 

  105. D. C. Kim, D. J. Kang, Molecular recognition and specific interactions for biosensing applications, Sensors, 8, 6605–6641 (2008).

    Article  MathSciNet  Google Scholar 

  106. K. B. Lee, E. Y. Kim, C. A. Mirkin, S. M. Wolinsky, The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma, Nano Lett., 4, 1869–1872 (2004).

    Article  Google Scholar 

  107. S. Lee, S. Lee, Y.-H. Ko, H. Jung, J. D. Kim, J. M. Song, J. Choo, S. K. Eo, S. H. Kang, Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay, Talanta, 78, 608–612 (2009).

    Article  Google Scholar 

  108. S. W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, C. A. Mirkin, Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits, Small, 1, 64–69 (2005).

    Article  Google Scholar 

  109. J. Li, C. Lu, B. Maynor, S. Huang, J. Liu, Controlled growth of long GaN nanowires from catalyst patterns fabricated by “dip-pen” nanolithographic techniques, Chem. Mater., 16, 1633–1636 (2004).

    Article  Google Scholar 

  110. S.-W. Kang, D. Banerjee, A. B. Kaul, K. G. Megerian, Nanopatterning of catalyst by dip pen nanolithography (DPN) for synthesis of carbon nanotubes (CNT), Scanning, 32, 42–48 (2010).

    Google Scholar 

  111. S. Zapotoczny, E. M. Benetti, G. J. Vancso, Preparation and characterization of macromolecular “hedge” brushes grafted from Au nanowires, J. Mater. Chem., 17, 3293–3296 (2007).

    Article  Google Scholar 

  112. P. Xu, H. Uyama, J. E. Whitten, S. Kobayashi, D. L. Kaplan, Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid, J. Am. Chem. Soc., 127, 11745–11753 (2005).

    Article  Google Scholar 

  113. L. Fu, X. Liu, Y. Zhang, V. P. Dravid, C. A. Mirkin, Nanopatterning of “hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink, Nano Lett., 3, 757–760 (2003).

    Article  Google Scholar 

  114. A. Lewis; Y. Kheifetz, E. Shambrodt, A. Radko, E. Khatchatryan, C. Sukenik, Fountain pen nanochemistry: atomic force control of chrome etching, Appl. Phys. Lett., 75, 2689–2691 (1999).

    Article  Google Scholar 

  115. M.-H. Hong, K. H. Kim, J. Bae, W. Jhe, Scanning nanolithography using a material-filled nanopipette, Appl. Phys. Lett., 77, 2604–2606 (2000).

    Article  Google Scholar 

  116. Y.-K. Lee, S.-H. Lee, Y.-J. Kim, H. Kim, A novel passive membrane pumping nano fountain-pen, Proc. 2nd IEEE Conf. Nano/Micro Engineered and Molecular Systems, Jan 18–21, 2006, Zhuhai, China, pp. 1012–1017

    Google Scholar 

  117. K. Hwang, V.-D. Dinh, S.-H. Lee, Y.-J. Kim, H.-M. Kim, Analysis of line width with nano fountain pen using active membrane pumping, Proc. 2nd IEEE Conf. Nano/Micro Engineered and Molecular Systems, Jan 16–19, 2007, Bangkok, Thailand, pp. 759–763

    Google Scholar 

  118. N. Moldovan, K.-H. Kim, H. D. Espinosa, A multi-ink linear array of nanofountain probes, J. Micromech. Microeng., 16, 1935–1942 (2006).

    Article  Google Scholar 

  119. Y. Lovski, A. Lewis, C. Sukenik, E. Grushka, Atomic-force-controlled capillary electrophoretic nanoprinting of proteins, Anal. Bioanal. Chem., 396, 133–138 (2010).

    Article  Google Scholar 

  120. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “millipede – nanotechnology entering data storage, IEEE Trans. Nanotechnol., 1, 39–55 (2002).

    Article  Google Scholar 

  121. S. Hong, C. A. Mirkin, A nanoplotter with both parallel and serial writing capabilities, Science, 288, 1808–1811 (2000).

    Article  Google Scholar 

  122. S. C. Minne, J. D. Adams, G. Yaralioglu, S.R. Manalis, A. Atalar, C. F. Quate, Centimeter scale atomic force microscope imaging and lithography, Appl. Phys. Lett., 73, 1742–1744 (1998).

    Article  Google Scholar 

  123. K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, C. A. Mirkin, Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays, Angew. Chem. Int. Ed., 45, 7220–7223 (2006).

    Article  Google Scholar 

  124. J. Zou, D. Bullen, X. Wang, C. Liu, C. A. Mirkin, Conductivity-based contact sensing for probe arrays in dip-pen nanolithography, Appl. Phys. Lett., 83, 581–583 (2003).

    Article  Google Scholar 

  125. X. Wang, D. A. Bullen, J. Zou, C. Liu, C. A. Mirkin, Thermally actuated probe array for parallel dip-pen nanolithography, J. Vac. Sci. Technol. B, 22, 2563–2567 (2004).

    Article  Google Scholar 

  126. D. Bullen, C. Liu, Electrostatically actuated dip pen nanolithography probe arrays, Sens. Actuators A, 125, 504–511 (2006).

    Article  Google Scholar 

  127. M. K. Yapici, J. Zou, A novel micromachining technique for the batch fabrication of scanning probe arrays with precisely defined tip contact areas, J. Micromech. Microeng., 18, 085015 (2008).

    Article  Google Scholar 

  128. M. K. Yapici, J. Zou, Microfabrication of colloidal scanning probes with controllable tip radii of curvature, J. Micromech. Microeng., 19, 105021 (2009).

    Article  Google Scholar 

  129. X. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett., 5, 1867–1872 (2005).

    Article  Google Scholar 

  130. D. Banerjee, N. A. Amro, S. Disawal, J. Fragala, Optimizing microfluidic ink delivery for dip pen nanolithography, J. Microlith., Microfab., Microsyst., 4, 023014 (2005).

    Article  Google Scholar 

  131. B. Rosner, T. Duenas, D. Banerjee, R. While, N. Amro, J. Rendlen, Functional extensions of dip pen nanolithography™: active probes and microfluidic ink delivery, Smart Mater. Struct., 15, S124–S130 (2006).

    Article  Google Scholar 

  132. Y. Wang, L. R. Giam. M. Park, S. Lenhert, H. Fuchs, C. A. Mirkin, A self-correcting inking strategy for cantilever arrays addressed by an inkjet printer and used for dip-pen nanolithography, Small, 4, 16666–1670 (2008).

    Google Scholar 

  133. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, Polymer pen lithography, Science, 321, 1658–1660 (2008).

    Article  Google Scholar 

  134. H. Zhang, R. Elghanian, N. A. Amro, S. Disawal, R. Eby, Dip pen nanolithography stamp tip, Nano Lett., 4, 1649–1655 (2004).

    Article  Google Scholar 

  135. X. Liao, A. B. Braunschweig, Z. Zheng, C. A. Mirkin, Force- and time-dependent feature size and shape control in molecular printing via polymer-pen lithography, Small, 6, 1082–1086 (2010).

    Article  Google Scholar 

  136. X. Liao, A. B. Braunschweig, C. A. Mirkin, “Force-feedback” leveling of massively parallel arrays in polymer pen lithography, Nano Lett., 10, 1335–1340 (2010).

    Article  Google Scholar 

  137. Z. Zheng, W. L. Daniel, L. R. Giam, F. Huo, A. J. Senesi, G. Zheng, C. A. Mirkin, Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge, Angew. Chem. Int. Ed., 48, 7626–7629 (2009).

    Article  Google Scholar 

  138. A. B. Braunschweig, F. Huo, C. A. Mirkin, Molecular printing, Nat. Chem., 1, 353–358 (2009).

    Article  Google Scholar 

  139. A. Ulman, An introduction to ultrathin organic films, Academic Press, San Diego, CA, 1991.

    Google Scholar 

  140. S. Onclin, B. J. Ravoo, D. N. Reinhoudt, Engineering silicon oxide surfaces using self-assembled monolayers, Angew. Chem. Int. Ed., 44, 6282–6304 (2005).

    Article  Google Scholar 

  141. S. Krämer, R. R. Fuierer, C. B. Gorman, Scanning probe lithography using self-assembled monolayers, Chem. Rev., 103, 4367–4418 (2003).

    Article  Google Scholar 

  142. S. Hong, J. Zhu, C. A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter, Science, 286, 523–525 (1999).

    Article  Google Scholar 

  143. S. Lenhert, P. Sun, Y. Wang, H. Fuchs, C. A. Mirkin, Massively parallel dip-pen nanolithography of heterogeneous supported phospholipids multilayer patterns, Small, 3, 71–75 (2007).

    Article  Google Scholar 

  144. S. Lenhert, F. Brinkmann, T. Lauer, W. Walheim, C. Vannahme, S. Klinkhammer, M. Xu, S. Sekula, T. Mappes, T. Schimmel, H. Fuchs, Lipid multilayer gratings, Nat. Nanotechnol., 5, 275–279 (2010).

    Article  Google Scholar 

  145. H. Zhang, K.-B. Lee, Z. Li, C. A. Mirkin, Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography, Nanotechnology, 14, 1113–1117 (2003).

    Article  Google Scholar 

  146. H. Zhou, Z. Li, A. Wu, G. Wei, Z. Liu, Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography, Appl. Surf. Sci., 236, 18–24 (2004).

    Article  Google Scholar 

  147. J. Huskens, M. A. Deij, D. N. Reinhoudt, Attachment of molecules at a molecular printboard by multiple host-guest interactions, Angew. Chem. Int. Ed., 41, 4467–4471 (2002).

    Article  Google Scholar 

  148. Z. Nie, E. Kumacheva, Patterning surfaces with functional polymers, Nat. Mater., 7, 277–290 (2008).

    Article  Google Scholar 

  149. R. McKendry, W. T. S. Huck, B. Weeks, M. Fiorini, C. Abell, T. Rayment, Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography, Nano Lett., 2, 713–716 (2002).

    Article  Google Scholar 

  150. G. H. Degenhart, B. Dordi, H. Schönherr, G. J. Vancso, Micro- and nanofabrication of robust reactive arrays based on the covalent coupling of dendrimers to activated monolayers, Langmuir, 20, 6216–6224 (2004).

    Article  Google Scholar 

  151. R. B. Salazar, A. Shovsky, H. Schönherr, G. J. Vancso, Dip-pen nanolithography on (bio)reactive monolayer and block-copolymer platforms: deposition of lines of single macromolecules, Small, 2, 1274–1282 (2006).

    Article  Google Scholar 

  152. P. L. Stiles, Direct deposition of micro- and nanoscale hydrogels using dip pen nanolithography (DPN), Nat. Methods, 7, (2010), doi:10.1038/nmeth.f.309.

    Google Scholar 

  153. S. W. Lee, R. G. Sanedrin, B.-K. Oh, C. A. Mirkin, Nanostructured polyelectrolyte multilayer thin films generated via parallel dip-pen nanolithography, Adv. Mater., 17, 2749–2753 (2005).

    Article  Google Scholar 

  154. L. M. Demers, C. A. Mirkin, Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays, Angew. Chem. Int. Ed., 40, 3069–3071 (2001).

    Article  Google Scholar 

  155. D. Nyamjav, A. Ivanisevic, Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing, Chem. Mater., 16, 5216–5219 (2004).

    Article  Google Scholar 

  156. D. C. Coffey, D. S. Ginger, Patterning phase separation in polymer films with dip-pen nanolithography, J. Am. Chem. Soc., 127, 4564–4565 (2005).

    Article  Google Scholar 

  157. J. Chiota, J. Shearer, M. Wei, C. Barry, J. Mead, Multiscale directed assembly of polymer blends using chemically functionalized nanoscale-patterned templates, Small, 5, 2788–2791 (2009).

    Article  Google Scholar 

  158. Q. Tang, S.-Q. Shi, Preparation of gas sensors via dip-pen nanolithography, Sens. Actuators B, 131, 379–383 (2008).

    Article  Google Scholar 

  159. J. Hyun, W.-K. Lee, N. Nath, A. Chilkoti, S. Zauscher, Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”, J. Am. Chem. Soc., 126, 7330–7335 (2004).

    Article  Google Scholar 

  160. K. Ariga, T. Nakanishi, T. Michinobu, Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies) and their related functions, J. Nanosci. Nanotechnol., 6, 2278–2301 (2006).

    Article  Google Scholar 

  161. W. Senaratne, L. Andruzzi, C. K. Ober, Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives, Biomacromol., 6, 2427–2448 (2005).

    Article  Google Scholar 

  162. M. A. Kramer, H. C. Park, A. Ivanisevic, Dip-pen nanolithography on SiOx and tissue-derived substrates: comparison with multiple biological inks, Scanning, 32, 330–34 (2010).

    Google Scholar 

  163. K. L. Christman, V. D. Enriquez-Rios, H. D. Maynard, Nanopatterning proteins and peptides, Soft Matter, 2, 928–939 (2006).

    Article  Google Scholar 

  164. J.-M. Nam, S. W. Han, K.-B. Lee, X. Liu, M. A. Ratner, C. A. Mirkin, Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography, Angew. Chem. Int. Ed., 43, 1246–1249 (2004).

    Article  Google Scholar 

  165. B. Li, Y. Zhang, J. Hu, M. Li, Fabricating protein nanopatterns on a single DNA molecule with dip-pen nanolithography, Ultramicroscopy, 105, 312–315 (2005).

    Article  Google Scholar 

  166. K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, M. Mrksich, Protein nanoarrays generated by dip-pen nanolithography, Science, 295, 1702–1705 (2002).

    Article  Google Scholar 

  167. K. H. Kim, J. D. Kim, Y. J. Kim, S. H. Kang, S. Y. Jung, H. Jung, Protein immobilization without purification via dip-pen nanolithography, Small, 8, 1089–1094 (2008).

    Article  Google Scholar 

  168. J. Ji, J.-C. Yang, D. N. Larson, Nanohole arrays of mixed designs and microwriting for simultaneous and multiple protein binding studies, Biosens. Bioelectron., 24, 2847–2852 (2009).

    Article  Google Scholar 

  169. J. Lü, M. Ze, N. Duan, B. Li, Enzymatic digestion of single DNA molecules anchored on nanogold-modified surfaces, Nanoscale Res. Lett., 4, 1029–1034 (2009).

    Article  Google Scholar 

  170. L. M. Demers, S.-J. Park, T. A. Taton, Z. Li, C. A. Mirkin, Orthogonal assembly of nanoparticle building blocks on dip-pen nanolithographically generated templates of DNA, Angew. Chem. Int. Ed., 40, 3071–3073 (2001).

    Article  Google Scholar 

  171. H. Zhang, Z. Li, C. A. Mirkin, Dip-pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides, Adv. Mater., 14, 1472–1474 (2002).

    Article  Google Scholar 

  172. A. Baserga, M. Vigano, C. S. Casari, S. Turri, A. L. Bassi, M. Levi, C. E. Bottani, Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by dip pen nanolithography, Langmuir, 24, 13212–13217 (2008).

    Article  Google Scholar 

  173. S. Li, S. Szegedi, E. Goluch, C. Liu, Dip pen nanolithography functionalized electrical gaps for multiplexed DNA detection, Anal. Chem., 80, 5899–5904 (2008).

    Article  Google Scholar 

  174. R. J. Stokes, J. A. Dougan, D. Graham, Dip-pen nanolithography and SERRS as synergetic techniques, Chem. Commun., 5734–5736 (2008).

    Google Scholar 

  175. D. K. Hoover, E.-J. Lee, E. W. L. Chan, M. N. Yousaf, Electroactive nanoarrays for biospecific ligand mediated studies on cell adhesion, Chem. Bio. Chem., 8, 1920–1923 (2007).

    Google Scholar 

  176. D. K. Hoover, E. W. L. Chan, M. N. Yousaf, Asymmetric peptide nanoarray surfaces for studies of single-cell polarization, J. Am. Chem. Soc., 130, 3280–3281 (2008)

    Article  Google Scholar 

  177. Q. Wang, W. Xian, S. Li, C. Liu, G. W. Padua, Topography and biocompatibility of patterned hydrophobic/hydrophilic zein layers, Acta Biomater., 4, 844–851 (2008).

    Article  Google Scholar 

  178. S. Sekula, J. Fuchs, S. Weg-Remers, P. Nagel, S. Schuppler, J. Fragala, N. Theilacker, M. Franzreb, C. Wingren, P. Ellmark, C. A. K. Borrebaeck, C. A. Mirkin, H. Fuchs, S. Lenhert, Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture, Small, 4, 1785–1793 (2008).

    Article  Google Scholar 

  179. R. A. Vega, C. K.-F. Shen, D. Maspoch, J. G. Robach, R. A. Lamb, C. A. Mirkin, Monitoring single-cell infectivity from virus particle nanoarrays fabricated by parallel dip-pen nanolithography, Small, 3, 1482–1485 (2007).

    Article  Google Scholar 

  180. B. Basnar, I. Willner, Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces, Small, 5, 28–44 (2009).

    Article  Google Scholar 

  181. D. Prime, S. Paul, C. Pearson, M. Green, M. C. Petty, Nanoscale patterning of gold nanoparticles using an atomic force microscope, Mat. Sci. Eng. C, 25, 33–38 (2005).

    Article  Google Scholar 

  182. R. J. Barsotti Jr., F. Stellacci, Chemically directed assembly of monolayer protected gold nanoparticles on lithographically generated patterns, J. Mater. Chem., 16, 962–965 (2006).

    Article  Google Scholar 

  183. K. B. Lee, E. Y. Kim, C. A. Mirkin, Protein nanostructures formed via direct-write dip-pen nanolithography, J. Am. Chem. Soc., 125, 5588–5589 (2003).

    Article  Google Scholar 

  184. C. M. Bruinink, C. A. Nijhuis, M. Péter, B. Dordi, O. Crespo-Biel, T. Auletta, A. Mulder, H. Schönherr, G. J. Vancso, J. Huskens, D. N. Reinhoudt, Supramolecular microcontact printing and dip-pen nanolithography on molecular printboards, Chem. Eur. J., 11, 3988–3996 (2005).

    Article  Google Scholar 

  185. H. Zhang, R. Jin, C. A. Mirkin, Synthesis of open-ended, cylindrical Au-Ag alloy nanostructures on a Si/SiOx surface, Nano Lett., 4, 1493–1495 (2003).

    Article  Google Scholar 

  186. S.-C. Hung, O. A. Nafday, J. R. Haaheim, F. Ren, G. C. Chi, S. J. Pearton, Dip pen nanolithography of conductive silver traces, J. Phys. Chem. C, 114, 9672–9677 (2010).

    Article  Google Scholar 

  187. K. Salaita, S. W. Lee, X. Wang, L, Huang, T.M. Dellinger, C. Liu, C. A. Mirkin, Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography, Small, 1, 940–945 (2005).

    Article  Google Scholar 

  188. H. Zhang, N. A. Amro, S. Disawal, R. Elghanian, R. Shile, J. Fragala, High-throughput dip-pen-nanolithography-based fabrication of Si nanostructures, Small, 3, 81–85 (2007).

    Article  Google Scholar 

  189. M. Su, S. Li, V. P. Dravid, Miniaturized chemical multiplexed sensor array, J. Am. Chem. Soc., 125, 9930–9931 (2003).

    Article  Google Scholar 

  190. G. Gundiah, N. S. John, P. J. Thomas, G. U. Kulkarni, C. N. R. Rao, S. Heun, Dip-pen nanolithography with magnetic Fe2O3 nanocrystals, Appl. Phys. Lett., 84, 5341–5343 (2004).

    Article  Google Scholar 

  191. X. Liu, L. Fu, S. Hong, V. P. Dravid, C. A. Mirkin, Arrays of magnetic nanoparticles patterned via “dip-pen” nanolithography, Adv. Mater., 14, 231–234 (2002).

    Article  Google Scholar 

  192. D. Nyamjav, A. Ivanisevic, Templates for DNA templated Fe3O4 nanoparticles, Biomaterials, 26, 2749–2757 (2005).

    Article  Google Scholar 

  193. Y. Wang, W. Wei, D. Maspoch, J. Wu, V. P. Dravid, C. A. Mirkin, Superparamagnetic sub-5 nm Fe@C nanoparticles: isolation, structure, magnetic properties, and directed assembly, Nano Lett., 8, 3761–3765 (2008).

    Article  Google Scholar 

  194. E. Bellido, R. De Miguel, J. Sese, D. Ruiz-Molina, A. Lostao, D. Maspoch, Nanoscale positioning of inorganic nanoparticles using biological ferritin arrays fabricated by dip-pen nanolithography, Scanning, 32, 35–41 (2010).

    Google Scholar 

  195. B. Li, C. F. Goh, X. Zhou, G. Lu, H. Tantang, Y. Chang, C. Xue, F. Y. C. Boey, H. Zhang, Patterning colloidal metal nanoparticles for controlled growth of carbon nanotubes, Adv. Mater., 20, 4873–4878 (2008).

    Article  Google Scholar 

  196. E. Granot, B. Basnar, Z. Cheglakov, E. Katz, I. Willner, Enhanced bioelectrocatalysis using single-walled carbon nanotubes (SWCNTs) polyaniline hybrid systems in thin-films and microrod structures associated with electrodes, Electroanalysis, 18, 26–34 (2006).

    Article  Google Scholar 

  197. A. Baba, F. Sato, N. Fukuda, H. Ushijima, K. Yase, Micro/nanopatterning of single-walled carbon nanotube-organic semiconductor composites, Nanotechnology, 20, 085301 (2009).

    Article  Google Scholar 

  198. S. Zaitsev, A. Svintsov, C. Ebm, S. Eder-Kapl, H. Loeschner, E. Platzgummer, G. Lalev, S. Dimov, V. Velkova, B. Basnar, 3D ion multi-beam processing with CHARPAN PMLP tool and with a single ion beam FIB tool, optimized with the ‘IonRevSim’ software, in Alternative Lithographic Technologies, F. M. Schelenberg and B. B. La Fontaine (Ed), Proceedings of SPIE Vol. 7271, The International Society for Optical Eng., 2009

    Google Scholar 

  199. J.-W. Jang, D. Maspoch, T. Fujigaya, C. A. Mirkin, A “molecular eraser” for dip-pen nanolithography, Small, 3, 600–605 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Austrian Ministry of Transport, Innovation, and Technology (BMVIT) and the FFG through the Nanoinitiative project PLATON (Project No. 819654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Basnar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Basnar, B. (2011). Nanopattern Formation Using Dip-Pen Nanolithography. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics