Skip to main content

Nanografting: A Method for Bottom-up Fabrication of Designed Nanostructures

  • Chapter
  • First Online:
Tip-Based Nanofabrication

Abstract

Nanografting is a scanning probe-based technique which takes advantage of the localized tip-surface contact to rapidly and reproducibly inscribe arrays of nanopatterns of thiol self-assembled monolayers (SAMs) and other nanomaterials with nanometer-scale resolution. Scanning probe-based approaches for lithography such as nanografting with self-assembled monolayers extend beyond simple fabrication of nanostructures to enable nanoscale control of the surface composition and chemical reactivity from the bottom-up. Commercial scanning probe instruments typically provide software to control the length, direction, speed and applied force of the scanning motion of a tip, analogous to a pen-plotter. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol ink molecules from solution. Desired surface chemistries can be patterned by choosing SAMs of different lengths and terminal groups. By combining nanografting and designed spatial selectivity of n-alkanethiols, in situ studies provide new capabilities for nanoscale surface reactions with proteins, nanoparticles or chemical assembly. Methods to precisely arrange molecules on surfaces will contribute to development of molecular device architectures for future nanotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscope

APDES:

Aminopropyldiethoxysilane

bps:

Base pairs

BSA:

Bovine serum albumin

C8DMS:

Octyldimethylmonochlorosilane

C10:

Decanethiol

C12:

Dodecanethiol

C18:

Octadecanethiol

CAM:

Computer-assisted manufacturing

DNA:

Deoxyribonucleic acid

DPN:

Dip-pen nanolithography

DPP:

5,10-diphenyl-15,20-di-pyridin-4-yl-porphyrin

dsDNA:

Double-stranded DNA

EDC:

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

EG:

Ethylene glycol

GIXD:

Grazing incidence X-ray diffraction

IgG:

Immunoglobulin G

MBP:

Maltose binding protein

MCH:

6-mercaptohexan-1-ol

16-MHA:

16-mercaptohexadecanoic acid

MHP:

n-(6-mercapto hexyl) pyridinium bromide

MPA:

3-mercaptopropionic acid

11-MUA:

11-mercaptoundecanoic acid

11-MUD:

11-mercaptoundecanol

NEXAFS:

Near-edge X-ray absorption fine structure spectroscopy

NHS:

N-hydroxysuccinimide

NPRW:

Nanopen reader and writer

ODT:

Octadecanethiol

OTS:

Octadecyltrichlorosilane (CH3(CH2)17SiCl3)

SAMs:

Self-assembled monolayers

SpA:

Staphylococcal protein A

SPL:

Scanning probe lithography

ssDNA:

Single-stranded DNA

References

  1. A. B. Chwang, E. L. Granstrom, C. D. Frisbie, Fabrication of a sexithiophene semiconducting wire: Nanoshaving with an atomic force microscope tip, Adv. Mater. 12, 285–288 (2000).

    Article  Google Scholar 

  2. J. Shi, J. Chen, P. S. Cremer, Sub-100 nm patterning of supported bilayers by nanoshaving lithography, J. Am. Chem. Soc. 130, 2718–2719 (2008).

    Article  Google Scholar 

  3. D. Zhou, A. Bruckbauer, L. Ying, C. Abell, D. Klenerman, Building three-dimensional surface biological assemblies on the nanometer scale, Nano Lett. 3, 1517–1520 (2003).

    Article  Google Scholar 

  4. L. G. Rosa, J. Jiang, O. V. Lima, J. Xiao, E. Utreras, P. A. Dowben, L. Tan, Selective nanoshaving of self-assembled monolayers of 2-(4-pyridylethyl)triethoxysilane, Mater. Lett. 63, 961–964 (2009).

    Article  Google Scholar 

  5. J. E. Headrick, M. Armstrong, J. Cratty, S. Hammond, B. A. Sheriff, C. L. Berrie, Nanoscale patterning of alkyl monolayers on silicon using the atomic force microscope, Langmuir 21, 4117–4122 (2005).

    Article  Google Scholar 

  6. J. C. Garno, J. D. Batteas, in Applied scanning probe methods, vol. IV, industrial applications, B. Bhushan, Ed. (Springer, Berlin; Heidelberg; New York, 2006).

    Google Scholar 

  7. Z. M. LeJeune, W. Serem, A. T. Kelley, J. N. Ngunjiri, J. C. Garno, in Encyclopedia of nanoscience and technology, (2nd edition), H. S. Nalwa, Ed. (American Scientific Publishers, Stevenson Ranch, CA, 2010).

    Google Scholar 

  8. S. Xu, G. Y. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir 13, 127–129 (1997).

    Article  Google Scholar 

  9. S. Xu, S. Miller, P. E. Laibinis, G. Y. Liu, Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting, Langmuir 15, 7244–7251 (1999).

    Article  Google Scholar 

  10. D. S. Ginger, H. Zhang, C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed. 43, 30–45 (2004).

    Article  Google Scholar 

  11. K. Salaita, Y. H. Wang, C. A. Mirkin, Applications of dip-pen nanolithography, Nat. Nanotechnol. 2, 145–155 (2007).

    Article  Google Scholar 

  12. A. T. Kelley, J. N. Ngunjiri, W. K. Serem, J.-J. Yu, S. Lawrence, S. Crowe, J. C. Garno, Applying AFM-based nanofabrication for measuring the thickness of nanopatterns: The role of headgroups in the vertical self-assembly of ω-functionalized n-alkanethiols, Langmuir 26, 3040–3049 (2010).

    Article  Google Scholar 

  13. C. A. Hacker, J. D. Batteas, J. C. Garno, M. Marquez, C. A. Richter, L. J. Richter, R. D. vanZee, C. D. Zangmeister, Structural and chemical characterization of monofluoro-substituted oligo(phenylene-ethynylene) thiolate self-assembled monolayers on gold, Langmuir 20, 6195–6205 (2004).

    Article  Google Scholar 

  14. N. A. Amro, S. Xu, G.-Y. Liu, Patterning surfaces using tip-directed displacement and self-assembly, Langmuir 16, 3006–3009 (2000).

    Article  Google Scholar 

  15. W. T. Muller, D. L. Klein, T. Lee, J. Clarke, P. L. McEuen, P. G. Schultz, A strategy for the chemical synthesis of nanostructures, Science 268, 272–273 (1995).

    Article  Google Scholar 

  16. J. J. Davis, C. B. Bagshaw, K. L. Busuttil, Y. Hanyu, K. S. Coleman, Spatially controlled Suzuki and Heck catalytic molecular coupling, J. Am. Chem. Soc. 128, 14135–14141 (2006).

    Article  Google Scholar 

  17. J. J. Davis, K. S. Coleman, K. L. Busuttil, C. B. Bagshaw, Spatially resolved Suzuki coupling reaction initiated and controlled using a catalytic AFM probe, J. Am. Chem. Soc. 127, 13082–13083 (2005).

    Article  Google Scholar 

  18. H. Lee, S. A. Kim, S. J. Ahn, H. Lee, Positive and negative patterning on a palmitic acid Languir–Blodgett monolayer on Si surface using bias-dependent atomic force microscopy lithography, Appl. Phys. Lett. 81, 138–140 (2002).

    Article  Google Scholar 

  19. J. Gu, C. M. Yam, S. Li, C. Cai, Nanometric protein arrays on protein-resistant monolayers on silicon surfaces, J. Am. Chem. Soc. 126, 8098–8099 (2004).

    Article  Google Scholar 

  20. H. G. Hansma, J. Vesenka, C. Siegerist, G. Kelderman, H. Morrett, R. l. Sinsheimer, V. Elings, C. Bustamante, P. K. Hansma, Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope, Science 256, 1180–1184 (1992).

    Article  Google Scholar 

  21. A. L. Weisenhorn, P. Maivald, H. J. Butt, P. K. Hansma, Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope, Phys. Rev. B 45, 11226–11232 (1992).

    Article  Google Scholar 

  22. J. N. Ngunjiri, A. T. Kelley, Z. M. LeJeune, J.-R. Li, B. Lewandowski, W. K. Serem, S. L. Daniels, K. L. Lusker, J. C. Garno, Achieving precision and reproducibility for writing patterns of n-alkanethiol SAMs with automated nanografting, Scanning 30, 123–136 (2008).

    Article  Google Scholar 

  23. S. Cruchon-Dupeyrat, S. Porthun, G. Y. Liu, Nanofabrication using computer-assisted design and automated vector-scanning probe lithography, Appl. Surf. Sci. 175, 636–642 (2001).

    Article  Google Scholar 

  24. G. Y. Liu, N. A. Amro, Positioning protein molecules on surfaces: A nanoengineering approach to supramolecular chemistry, Proc. Natl. Acad. Sci. USA 99, 5165–5170 (2002).

    Article  Google Scholar 

  25. M. Liu, N. A. Amro, G.-Y. Liu, Nanografting for surface physical chemistry, Ann. Rev. Phys. Chem. 59, 367–386 (2008).

    Article  Google Scholar 

  26. J. C. Garno, C. D. Zangmeister, J. D. Batteas, Directed electroless growth of metal nanostructures on patterned self-assembled monolayers, Langmuir 23, 7874–7879 (2007).

    Article  Google Scholar 

  27. J. C. Garno, Y. Y. Yang, N. A. Amro, S. Cruchon-Dupeyrat, S. W. Chen, G. Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography, Nano Lett. 3, 389–395 (2003).

    Article  Google Scholar 

  28. Z. M. LeJeune, M. McKenzie, E. Hao, M. G. H. Vicente, B. Chen, J. C. Garno, Surface assembly of pyridyl-substituted porphyrins on Au(111) investigated in situ using scanning probe lithography, SPIE Proceedings 7593, 759311 (2010).

    Article  Google Scholar 

  29. J. N. Ngunjiri, J. C. Garno, AFM-based lithography for nanoscale protein assays, Anal. Chem. 80, 1361–1369 (2008).

    Article  Google Scholar 

  30. K. Wadu-Mesthrige, N. A. Amro, J. C. Garno, S. Xu, G. Y. Liu, Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization, Biophys. J. 80, 1891–1899 (2001).

    Article  Google Scholar 

  31. K. Wadu-Mesthrige, S. Xu, N. A. Amro, G. Y. Liu, Fabrication and imaging of nanometer-sized protein patterns, Langmuir 15, 8580–8583 (1999).

    Article  Google Scholar 

  32. Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, G. Y. Liu, A nanoengineering approach for investigation and regulation of protein immobilization, ACS Nano 2, 2374–2384 (2008).

    Article  Google Scholar 

  33. M. Liu, N. A. Amro, C. S. Chow, G.-Y. Liu, Production of nanostructures of DNA on surfaces, Nano Lett. 2, 863–867 (2002).

    Article  Google Scholar 

  34. S. M. D. Watson, K. S. Coleman, A. K. Chakraborty, A new route to the production and nanoscale patterning of highly smooth, ultrathin zirconium films, ACS Nano 2, 643–650 (2008).

    Article  Google Scholar 

  35. Y.-H. Chan, A. E. Schuckman, L. M. Perez, M. Vinodu, C. M. Drain, J. D. Batteas, Synthesis and characterization of a thiol-tethered tripyridyl porphyrin on Au(111), J. Phys. Chem. C 112, 6110–6118 (2008).

    Article  Google Scholar 

  36. M. A. Case, G. L. McLendon, Y. Hu, T. K. Vanderlick, G. Scoles, Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold, Nano Lett. 3, 425–429 (2003).

    Article  Google Scholar 

  37. J. Hu, A. Das, M. H. Hecht, G. Scoles, Nanografting de novo proteins onto gold surfaces, Langmuir 21, 9103–9109 (2005).

    Article  Google Scholar 

  38. S. Xu, S. J. N. Cruchon-Dupeyrat, J. C. Garno, G. Y. Liu, G. K. Jennings, T. H. Yong, P. E. Laibinis, In situ studies of thiol self-assembly on gold from solution using atomic force microscopy, J. Chem. Phys. 108, 5002–5012 (1998).

    Article  Google Scholar 

  39. G. E. Poirier, E. D. Pylant, The self-assembly mechanism of alkanethiols on Au(111), Science 272, 1145–1148 (1996).

    Article  Google Scholar 

  40. G. E. Poirier, Mechanism of formation of Au vacancy islands in alkanethiol monolayers on Au(111), Langmuir 13, 2019–2026 (1997).

    Article  Google Scholar 

  41. T. T. Brown, Z. M. LeJeune, K. Liu, S. Hardin, J.-R. Li, K. Rupnik, J. C. Garno, Automated scanning probe lithography with n-alkanethiol self-assembled monolayers on Au(111): Application for teaching undergraduate laboratories, J. Am. Lab Automat., 16, 112–125 (2011).

    Google Scholar 

  42. S. Xu, N. A. Amro, G. Y. Liu, Characterization of AFM tips using nanografting, Appl. Surf. Sci. 175, 649–655 (2001).

    Article  Google Scholar 

  43. A.-S. Duwez, Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: A review, J. Electron Spectrosc. Relat. Phenom. 134, 97–138 (2004).

    Article  Google Scholar 

  44. P. Fenter, P. Eisenberger, K. S. Liang, Chain-length dependence of the structures and phases of ch3(ch2)n-1sh self-assembled on Au(111), Phys. Rev. Lett. 70, 2447–2450 (1993).

    Article  Google Scholar 

  45. R. G. Nuzzo, E. M. Korenic, L. H. Dubois, Studies of the temperature-dependent phase-behavior of long-chain normal-alkyl thiol monolayers on gold, J. Chem. Phys. 93, 767–773 (1990).

    Article  Google Scholar 

  46. M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry, J. Am. Chem. Soc. 109, 3559–3568 (1987).

    Article  Google Scholar 

  47. R. G. Nuzzo, B. R. Zegarski, L. H. Dubois, Fundamental-studies of the chemisorption of organosulfur compounds on Au(111) – implications for molecular self-assembly on gold surfaces, J. Am. Chem. Soc. 109, 733–740 (1987).

    Article  Google Scholar 

  48. T. L. Brower, J. C. Garno, A. Ulman, G. Y. Liu, C. Yan, A. Golzhauser, M. Grunze, Self-assembled multilayers of 4,4'-dimercaptobiphenyl formed by Cu(II)-catalyzed oxidation, Langmuir 18, 6207–6216 (2002).

    Article  Google Scholar 

  49. M. Kadalbajoo, J.-H. Park, A. Opdahl, H. Suda, J. C. Garno, J. D. Batteas, M. J. Tarlov, P. DeShong, Synthesis and structural characterization of glucopyranosylamide films on gold, Langmuir 23, 700–707 (2007).

    Article  Google Scholar 

  50. D. Liu, A. Bruckbauer, C. Abell, S. Balasubramanian, D.-J. Kang, D. Klenerman, D. Zhou, A reversible pH-driven DNA nanoswitch array, J. Am. Chem. Soc. 128, 2067–2071 (2006).

    Article  Google Scholar 

  51. J. t. Riet, T. Smit, M. J. J. Coenen, J. W. Gerritsen, A. Cambi, J. A. A. W. Elemans, S. Speller, C. G. Figdor, AFM topography and friction studies of hydrogen-bonded bilayers of functionalized alkanethiols, Soft Matter 6, 3450–3454 (2010).

    Article  Google Scholar 

  52. J. T. Riet, T. Smit, J. W. Gerritsen, A. Cambi, J. Elemans, C. G. Figdor, S. Speller, Molecular friction as a tool to identify functionalized alkanethiols, Langmuir 26, 6357–6366 (2010).

    Article  Google Scholar 

  53. W. J. Price, P. K. Kuo, T. R. Lee, R. Colorado, Z. C. Ying, G.-Y. Liu, Probing the local structure and mechanical response of nanostructures using force modulation and nanofabrication, Langmuir 21, 8422–8428 (2005).

    Article  Google Scholar 

  54. W. J. Price, S. A. Leigh, S. M. Hsu, T. E. Patten, G.-Y. Liu, Measuring the size dependence of Young's modulus using force modulation atomic force microscopy, J. Phys. Chem. A 110, 1382–1388 (2006).

    Article  Google Scholar 

  55. D. Scaini, M. Castronovo, L. Casalis, G. Scoles, Electron transfer mediating properties of hydrocarbons as a function of chain length: A differential scanning conductive tip atomic force microscopy investigation, ACS Nano 2, 507–515 (2008).

    Article  Google Scholar 

  56. S. Xu, P. E. Laibinis, G. Y. Liu, Accelerating the kinetics of thiol self-assembly on gold – a spatial confinement effect, J. Am. Chem. Soc. 120, 9356–9361 (1998).

    Article  Google Scholar 

  57. J. J. Yu, Y. H. Tan, X. Li, P. K. Kuo, G. Y. Liu, A nanoengineering approach to regulate the lateral heterogeneity of self-assembled monolayers, J. Am. Chem. Soc. 128, 11574–11581 (2006).

    Article  Google Scholar 

  58. S. F. Chen, L. Y. Li, C. L. Boozer, S. Y. Jiang, Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au(111), Langmuir 16, 9287–9293 (2000).

    Article  Google Scholar 

  59. D. Hobara, T. Kakiuchi, Domain structure of binary self-assembled monolayers composed of 3-mercapto-1-propanol and 1-tetradecanethiol on Au(111) prepared by coadsorption Electrochem. Commun. 3, 154–157 (2001).

    Article  Google Scholar 

  60. S. Ryu, G. C. Schatz, Nanografting: Modeling and simulation, J. Am. Chem. Soc. 128, 11563–11573 (2006).

    Article  Google Scholar 

  61. J. Liang, L. G. Rosa, G. Scoles, Nanostructuring, imaging and molecular manipulation of dithiol monolayers on Au(111) surfaces by atomic force microscopy, J. Phys. Chem C 111, 17275–17284 (2007).

    Article  Google Scholar 

  62. J. F. Liu, S. Cruchon-Dupeyrat, J. C. Garno, J. Frommer, G. Y. Liu, Three-dimensional nanostructure construction via nanografting: Positive and negative pattern transfer, Nano Lett. 2, 937–940 (2002).

    Article  Google Scholar 

  63. J. M. Lim, Z. S. Yoon, J. Y. Shin, K. S. Kim, M. C. Yoon, D. Kim, The photophysical properties of expanded porphyrins: Relationships between aromaticity, molecular geometry and non-linear optical properties, Chem. Commun. 3, 261–273 (2009).

    Article  Google Scholar 

  64. T. Hasobe, Supramolecular nanoarchitectures for light energy conversion, Phys. Chem. Chem. Phys. 12, 44–57 (2010).

    Article  Google Scholar 

  65. Z. M. LeJeune, M. E. McKenzie, E. Hao, M. G. H. Vicente, B. Chen, J. C. Garno, Self-assembly of pyridyl-substituted porphyrins investigated in situ using AFM, Abstracts Am. Chem. Soc. 235, 216-COLL (2008).

    Google Scholar 

  66. R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan, G. M. Whitesides, Surveying for surfaces that resist the adsorption of proteins, J. Am. Chem. Soc. 122, 8303–8304 (2000).

    Article  Google Scholar 

  67. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, G. M. Whitesides, Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir 17, 6336–6343 (2001).

    Article  Google Scholar 

  68. R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, G. M. Whitesides, Zwitterionic sams that resist nonspecific adsorption of protein from aqueous buffer, Langmuir 17, 2841–2850 (2001).

    Article  Google Scholar 

  69. E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, G. M. Whitesides, A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir 17, 5605–5620 (2001).

    Article  Google Scholar 

  70. Y.-Y. Luk, M. Kato, M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment, Langmuir 16, 9604–9608 (2000).

    Article  Google Scholar 

  71. S. Herrwerth, W. Eck, S. Reinhardt, M. Grunze, Factors that determine the protein resistance of oligoether self-assembled monolayers – internal hydrophilicity, terminal hydrophilicity, and lateral packing density, J. Am. Chem. Soc. 125, 9359–9366 (2003).

    Article  Google Scholar 

  72. Z. Grabarek, J. Gergely, Zero-length crosslinking procedure with the use of active esters, Anal. Biochem. 185, 131–135 (1990).

    Article  Google Scholar 

  73. D. J. Zhou, X. Z. Wang, L. Birch, T. Rayment, C. Abell, AFM study on protein immobilization on charged surfaces at the nanoscale: Toward the fabrication of three-dimensional protein nanostructures, Langmuir 19, 10557–10562 (2003).

    Article  Google Scholar 

  74. J. R. Kenseth, J. A. Harnisch, V. W. Jones, M. D. Porter, Investigation of approaches for the fabrication of protein patterns by scanning probe lithography, Langmuir 17, 4105–4112 (2001).

    Article  Google Scholar 

  75. C.-H. Jang, B. D. Stevens, R. Phillips, M. A. Calter, W. A. Ducker, A strategy for the sequential patterning of proteins: Catalytically active multiprotein nanofabrication, Nano Lett. 3, 691–694 (2003).

    Article  Google Scholar 

  76. C. Staii, D. W. Wood, G. Scoles, Verification of biochemical activity for proteins nanografted on gold surfaces, J. Am. Chem. Soc. 130, 640–646 (2007).

    Article  Google Scholar 

  77. M. Castronovo, S. Radovic, C. Grunwald, L. Casalis, M. Morgante, G. Scoles, Control of steric hindrance on restriction enzyme reactions with surface-bound DNA nanostructures, Nano Lett. 8, 4140–4145 (2008).

    Article  Google Scholar 

  78. M. Liu, G.-Y. Liu, Hybridization with nanostructures of single-stranded DNA, Langmuir 21, 1972–1978 (2005).

    Article  Google Scholar 

  79. P. V. Schwartz, Meniscus force nanografting: Nanoscopic patterning of DNA, Langmuir 17, 5971–5977 (2001).

    Article  Google Scholar 

  80. E. Mirmomtaz, M. Castronovo, C. Grunwald, F. Bano, D. Scaini, A. A. Ensafi, G. Scoles, L. Casalis, Quantitative study of the effect of coverage on the hybridization efficiency of surface-bound DNA nanostructures, Nano Lett. 8, 4134–4139 (2008).

    Article  Google Scholar 

  81. F. Bano, L. Fruk, B. Sanavio, M. Glettenberg, L. Casalis, C. M. Niemeyer, G. Scoles, Toward multiprotein nanoarrays using nanografting and DNA directed immobilization of proteins, Nano Lett. 9, 2614–2618 (2009).

    Article  Google Scholar 

  82. E. A. Josephs, T. Ye, Nanoscale positioning of individual DNA molecules by an atomic force microscope, J. Am. Chem. Soc. 132, 10236–10238 (2010).

    Article  Google Scholar 

  83. M. V. Lee, K. A. Nelson, L. Hutchins, H. A. Becerril, S. T. Cosby, J. C. Blood, D. R. Wheeler, R. C. Davis, A. T. Woolley, J. N. Harb, M. R. Linford, Nanografting of silanes on silicon dioxide with applications to DNA localization and copper electroless deposition, Chem. Mater. 19, 5052–5054 (2007).

    Article  Google Scholar 

  84. M. Despont, U. Drechsler, U. Durig, W. Haberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, G. Binnig, The “Millipede” – more than one thousand tips for future AFM data storage, IBM J. Res. Dev. 44, 323–340 (2000).

    Article  Google Scholar 

  85. K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, C. A. Mirkin, Massively parallel dip-pen nanolithography with 55,000-pen two-dimensional arrays, Angew. Chem. Int. Ed. 45, 7220–7223 (2007).

    Article  Google Scholar 

  86. J.-J. Yu, J. N. Ngunjiri, A. T. Kelley, J. C. Garno, Nanografting versus solution self-assembly of α, ω-alkanedithiols on Au(111) investigated by AFM, Langmuir 24, 11661–11668 (2008).

    Article  Google Scholar 

  87. C. H. Jang, B. D. Stevens, R. Phillips, M. A. Calter, W. A. Ducker, A strategy for the sequential patterning of proteins: Catalytically active multiprotein nanofabrication, Nano Lett. 3, 691–694 (2003).

    Article  Google Scholar 

  88. N. Nuraje, I. A. Banerjee, R. I. MacCuspie, L. T. Yu, H. Matsui, Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays, J. Am. Chem. Soc. 126, 8088–8089 (2004).

    Article  Google Scholar 

  89. C. Staii, D. W. Wood, G. Scoles, Ligand-induced structural changes in maltose binding proteins measured by atomic force microscopy, Nano Lett. 8, 2503–2509 (2008).

    Article  Google Scholar 

  90. I. Kopf, C. Grunwald, E. Brundermann, L. Casalis, G. Scoles, M. Havenith, Detection of hybridization on nanografted oligonucleotides using scanning near-field infrared microscopy, J. Phys. Chem. C 114, 1306–1311 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors received financial support from the National Science Foundation (DMR-0906873) and also from the Dreyfus Foundation for a Camille Dreyfus Teacher-Scholar award. Wilson K. Serem is an LSU doctoral candidate supported by study-leave from Masinde Muliro University, Kenya, Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne C. Garno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tian, T., LeJeune, Z.M., Serem, W.K., Yu, JJ., Garno, J.C. (2011). Nanografting: A Method for Bottom-up Fabrication of Designed Nanostructures. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics