Skip to main content

Nanomanipulation of Biological Macromolecules by AFM

  • Chapter
  • First Online:
Tip-Based Nanofabrication
  • 1156 Accesses

Abstract

AFM-based nanomanipulation has been used to study every type of biological macromolecules and revealed important, previously unknown properties and functional mechanisms. The capacity of the AFM for the isolation, transfer, positioning and assembling of individual macromolecules with nanometer spatial resolutions has significantly advanced the field of bionanotechnology toward the fabrication of functional structures and devices with macromolecules as building blocks. This review focuses on the studies of proteins, nucleic acids and polysaccharides using AFM-based nanomanipulation technique. An introduction to the principles of the technique is followed by reviewing the types of problems investigated, with emphasis on the capacities of the technique to reveal novel structural and functional mechanisms of biological macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

Dopa:

3,4-dihydroxy-L-phenylalanine

dsDNA:

Double stranded DNA

DTT:

Dithiothreitol

FJC:

Freely-joint chain

FRET:

Förster resonance energy transfer

GFP:

Green fluorescent protein

PCR:

Polymerase chain reaction

SPM:

Scanning probe microscope

ssDNA:

Single stranded DNA

STM:

Scanning tunneling microscope

TIRF:

Total internal reflection fluorescence

TMV:

Tobacco mosaic virus

WLC:

Worm-like chain

References

  1. J.P. Desai, A. Pillarisetti, A.D. Brooks, Engineering approaches to biomanipulation, Annu Rev Biomed Eng, 9, 35–53 (2007).

    Google Scholar 

  2. A. Borgia, P.M. Williams, J. Clarke, Single-molecule studies of protein folding, Annu Rev Biochem, 77, 101–125 (2008).

    Google Scholar 

  3. J. Voldman, Electrical forces for microscale cell manipulation, Annu Rev Biomed Eng, 8, 425–454 (2006).

    Google Scholar 

  4. U. Bockelmann, Single-molecule manipulation of nucleic acids, Curr Opin Struct Biol, 14, 368–373 (2004).

    Google Scholar 

  5. P.Y. Chiou, A.T. Ohta, M.C. Wu, Massively parallel manipulation of single cells and microparticles using optical images, Nature, 436, 370–372 (2005).

    Google Scholar 

  6. P.R. Selvin, T. Ha, Single-molecule techniques: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, 2008.

    Google Scholar 

  7. D.M. Eigler, E.K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature, 344, 524–526 (1990).

    Google Scholar 

  8. T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl Phys Lett, 66, 3627–3629 (1995).

    Google Scholar 

  9. A.A. Tseng, Z. Li, Manipulations of atoms and molecules by scanning probe microscopy, J Nanosci Nanotech, 7, 1–14 (2007).

    Google Scholar 

  10. P. Dörig, P. Stiefel, P. Behr, E. Sarajlic, D. Bijl, M. Gabi, J. Vörös, J.A. Vorholt, T. Zambelli, Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of fluidfm technology, Appl Phys Lett, 97, 023701 (2010).

    Google Scholar 

  11. A. Matouschek, J.T.J. Kellis, L. Serrano, A.R. Fersht, Mapping the transition state and pathway of protein folding by protein engineering, Nature, 340, 122–126 (1989).

    Google Scholar 

  12. P. Guptasarma, Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of escherichia coli, Bioessays, 17, 987–997 (1995).

    Google Scholar 

  13. Y. Seo, W. Jhe, Atomic force microscopy and spectroscopy, Rep Progr Phys, 71, 016101 (2008).

    Google Scholar 

  14. C. Bustamante, S.B. Smith, J. Liphardt, D. Smith, Single-molecule studies of DNA mechanics, Curr Opin Struct Bio, 10, 279–285 (2000).

    Google Scholar 

  15. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Phys Rev Lett, 56, 930–933 (1986).

    Google Scholar 

  16. G. Binnig, H. Rohrer, Scanning tunneling microscopy, Helv Phys Acta, 55, 726–735 (1982).

    Google Scholar 

  17. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy, Phys Rev Lett, 49, 57–60 (1982).

    Google Scholar 

  18. J.M. Fernandez, H. Li, Force-clamp spectroscopy monitors the folding trajectory of a single protein, Science, 303, 1674–1678 (2004).

    Google Scholar 

  19. H.J. Mamin, D. Ruger, Sub-attonewton force detection at millikelvin temperatures, Appl Phys Lett, 79, 3358–3360 (2001).

    Google Scholar 

  20. J.L. Hutter, J. Bechhofer, Calibration of atomic force microscope tips, Rev Sci Instrum, 64, 1868–1873 (1993).

    Google Scholar 

  21. E.-L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V.T. Moy, H.E. Gaub, Sensing specific molecular interactions with the atomic force microscope, Biosens Bioelectron, 10, 895–901 (1995).

    Google Scholar 

  22. J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma, A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev Sci Instrum, 64, 403–405 (1993).

    Google Scholar 

  23. A. Torii, M. Sasaki, K. Hane, S. Okuma, A method for detemining the spring constant of cantilevers for atomic force microscopy, Meas Sci Technol, 7, 179–184 (1996).

    Google Scholar 

  24. J.L. Choy, S.H. Parekh, O. Chaudhuri, A.P. Liu, C. Bustamante, M.J. Footer, J.A. Theriot, D.A. Fletcher, Differential force microscope for long time-scale biophysical measurements, Rev Sci Instrum, 78, 043711 (2007).

    Google Scholar 

  25. G.M. King, A.R. Carter, A.B. Churnside, L.S. Eberle, T.T. Perkins, Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions, Nano Lett, 9, 1451–1456 (2009).

    Google Scholar 

  26. G. Francius, D. Alsteens, V. Dupres, S. Lebeer, S.D. Keersmaecker, J. Vanderleyden, H.J. Gruber, Y.F. Dufrene, Stretching polysaccharides on live cells using single molecule force spectroscopy, Nat Protoc, 4, 939–946 (2009).

    Google Scholar 

  27. A. Janshoff, M. Neitzert, Y. Oberdorfer, H. Fuchs, Force spectroscopy of molecular systems – single molecule spectroscopy of polymers and biomolecules, Angew Chem Int Ed, 30, 3212–3237 (2000).

    Google Scholar 

  28. M. Rief, M. Gautel, F. Oesterheld, J. Fernandez, H. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM, Science, 276, 1109–1112 (1997).

    Google Scholar 

  29. M. Rief, H. Clausen-Schaumann, H.E. Gaub, Sequence-dependent mechanics of single DNA molecules, Nat Struct Biol, 6, 346–349 (1999).

    Google Scholar 

  30. H. Janovjak, J. Struckmeier, D.J. Muller, Hydrodynamic effects in fast AFM single-molecule force measurements, Eur Biophys J, 34, 91–96 (2005).

    Google Scholar 

  31. J.-M. Yuan, C.-L. Chyan, H.-X. Zhou, T.-Y. Chung, H. Peng, G. Ping, G. Yang, The effects of macromolecular crowding on the mechanical stability of protein molecules, Protein Sci, 17, 2156–2166 (2009).

    Google Scholar 

  32. J. Alcaraz, L. Buscemi, M. Puig-de-Morales, J. Colchero, A. Baró, D. Navajas, Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever, Langmuir, 18, 716–721 (2002).

    Google Scholar 

  33. R. Liu, M. Roman, G. Yang, Correction of the viscous drag induced errors in macromolecular manipulation experiments using atomic force microscope, Rev Sci Instrum, 81, 063703 (2010).

    Google Scholar 

  34. E.M. Puchner, H.E. Gaub, Force and function: Probing proteins with AFM-based force spectroscopy, Curr Opin Struct Biol, 19, 605–614 (2009).

    Google Scholar 

  35. W.A. Linke, A. Grützner, Pulling single molecules of titin by AFM – recent advances and physiological implications, Pflugers Arch - Eur J Physiol, 456, 101–115 (2008).

    Google Scholar 

  36. J.W. Weisel, H. Shuman, R.I. Litvinov, Protein-protein unbinding induced by force: Single-molecule studies, Curr Opin Struct Biol, 13, 227–235 (2003).

    Google Scholar 

  37. D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel, D.J. Müller, Imaging and manipulation of biological structures with the AFM, Micron, 33, 385–397 (2002).

    Google Scholar 

  38. A. Engel, H.E. Gaub, Structure and mechanics of membrane proteins, Annu Rev Biochem 77, 127–148 (2008).

    Google Scholar 

  39. D.J. Müller, A. Engel, Strategies to prepare and characterize native membrane proteins and protein membranes by AFM, Curr Opin Colloid Interface Sci, 13, 338–350 (2008).

    Google Scholar 

  40. Y.F. Dufrêne, Towards nanomicrobiology using atomic force microscopy, Nat Rev Microbiol, 6, 674–680 (2008).

    Google Scholar 

  41. F. Kienberger, G. Kada, H. Mueller, P. Hinterdorfer, Single molecule studies of antibody–antigen interaction strength versus intra-molecular antigen stability, J Mol Biol, 347, 597–606 (2005).

    Google Scholar 

  42. A.A. Deniz, S. Mukhopadhyay, E.A. Lemke, Single-molecule biophysics: At the interface of biology, physics and chemistry, J R Soc Interface, 5, 15–45 (2008).

    Google Scholar 

  43. A. Engel, D.J. Müller, Observing single biomolecules at work with the atomic force microscope, Nat Struct Biol, 7, 715–718 (2000).

    Google Scholar 

  44. A.N. Kapanidis, T. Strick, Biology, one molecule at a time, Trend Biochem Sci, 34, 234–243 (2009).

    Google Scholar 

  45. A.F. Oberhauser, M. Carrion-Vazquez, Mechanical biochemistry of proteins one molecule at a time, J Biol Chem, 283, 6617–6621 (2008).

    Google Scholar 

  46. C. Bustamante, In singulo biochemistry: When less is more, Annu Rev Biochem, 77, 45–50 (2008).

    Google Scholar 

  47. C. Bustamante, Y.R. Chemla, N.R. Forde, D. Izhaky, Mechanical processes in biochemistry, Ann Rev Biochem, 73, 705–748 (2004).

    Google Scholar 

  48. J. Castillo, M. Dimaki, W.E. Svendsen, Manipulation of biological samples using micro and nano techniques, Integr Biol, 1, 30–42 (2009).

    Google Scholar 

  49. A. Galera-Prat, A. Gomez-Sicilia, A.F. Oberhauser, M. Cieplak, M. Carrion-Vazquez, Understanding biology by stretching proteins: Recent progress, Curr Opin Struct Biol, 20, 63–69 (2010).

    Google Scholar 

  50. H. Li, M. Carrion-Vazquez, A.F. Oberhauser, P.E. Marszalek, J.M. Fernandez, Point mutations alter the mechanical stability of immunoglobulin modules, Nat Struct Biol, 7, 1117–1120 (2000).

    Google Scholar 

  51. L. Tskhovrebova, J. Trinick, J.A. Sleep, R.M. Simmons, Elasticity and unfolding of single molecules of the giant muscle protein titin, Nature, 387, 308–312 (1997).

    Google Scholar 

  52. M.S. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante, Folding-unfolding transitions in single titin molecules characterized with laser tweezers, Science, 276, 1112–1116 (1997).

    Google Scholar 

  53. J.I. Sulkowska, M. Cieplak, Stretching to understand proteins – a survey of the protein data bank, Biophys J, 94, 6–13 (2008).

    Google Scholar 

  54. T.I. Garcia, A.F. Oberhauser, W. Braun, Mechanical stability and differentially conserved physical – chemical properties of titin Ig-domains, Proteins, 75, 706–718 (2009).

    Google Scholar 

  55. S. Labeit, B. Kolmerer, Titins: Giant proteins in charge of muscle ultrastructure and elasticity, Science, 270, 293–296 (1995).

    Google Scholar 

  56. H. Li, W.A. Linke, A.F. Oberhauser, M. Carrion-Vazquez, J.G. Kerkvliet, H. Lu, P.E. Marszalek, J.M. Fernandez, Reverse engineering of the giant muscle protein titin, Nature, 418, 998–1002 (2002).

    Google Scholar 

  57. B. Bullard, T. Garcia, V. Benes, M.C. Leake, W.A. Linke, A.F. Oberhauser, The molecular elasticity of the insect flight muscle proteins projectin and kettin, Proc Natl Acad Sci USA, 103, 4451–4456 (2006).

    Google Scholar 

  58. W.A. Linke, Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction, Cardiovasc Res, 77, 637–648 (2008).

    Google Scholar 

  59. L. Tskhovrebova, J. Trinick, Properties of titin immunoglobulin and fibronectin-3 domains, J Biol Chem, 279, 46351–46354 (2004).

    Google Scholar 

  60. S. Labeit, B. Kolmerer, W.A. Linke, The giant protein titin. Emerging roles in physiology and pathophysiology, Circ Res, 80, 290–294 (1997).

    Google Scholar 

  61. W.A. Linke, Titin elasticity in the context of the sarcomere: Force and extensibility measurements on single myofibrils, Adv Exp Med Biol, 481, 179–202 (2000).

    Google Scholar 

  62. Y. Cao, H. Li, Single molecule force spectroscopy reveals a weakly populated microstate of the fniii domains of tenascin, J Mol Biol, 361, 372–381 (2006).

    Google Scholar 

  63. E. Frixione, Recurring views on the structure and function of the cytoskeleton: A 300-year epic, Cell Motil Cytoskeleton, 46, 73–94 (2000).

    Google Scholar 

  64. A. Elgsaeter, B.T. Stokke, A. Mikkelsen, D. Branton, The molecular basis of erythrocyte shape, Science, 234, 1217–1233 (1986).

    Google Scholar 

  65. D.R. Markle, E.A. Evans, R.M. Hochmuth, Force relaxation and permanent deformation of erythrocyte membrane, Biophys J, 42, 91–98 (1983).

    Google Scholar 

  66. D.M. Shotton, B.E. Burke, D. Branton, The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies, J Mol Biol, 131, 303–329 (1979).

    Google Scholar 

  67. J. Pascual, M. Pfuhl, D. Walther, M. Saraste, M. Nilges, Solution structure of the spectrin repeat: A left-handed antiparallel triple-helical coiled-coil, J Mol Biol, 273, 740–751 (1997).

    Google Scholar 

  68. D.W. Speicher, V.T. Marchesi, Erythrocyte spectrin is comprised of many homologous triple helical segments, Nature, 311, 177–180 (1984).

    Google Scholar 

  69. M. Rief, J. Pascual, M. Saraste, H.E. Gaub, Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles, J Mol Biol, 286, 553–561 (1999).

    Google Scholar 

  70. A.S. Politou, D.J. Thomas, A. Pastore, The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity, Biophys J, 69, 2601–2610 (1995).

    Google Scholar 

  71. T.M. DeSilva, S.L. Harper, L. Kotula, P. Hensley, P.J. Curtis, L. Otvos, Jr, D.W. Speicher, Physical properties of a single-motif erythrocyte spectrin peptide: A highly stable independently folding unit, Biochemistry, 36, 3991–3997 (1997).

    Google Scholar 

  72. R. Law, P. Carl, S. Harper, P. Dalhaimer, D.W. Speicher, D.E. Discher, Cooperativity in forced unfolding of tandem spectrin repeats, Biophys J, 84, 533–544 (2003).

    Google Scholar 

  73. V. Ortiz, S.O. Nielsen, M.L. Klein, D.E. Discher, Unfolding a linker between helical repeats, J Mol Biol, 349, 638–647 (2005).

    Google Scholar 

  74. R.J. Ellis, F.U. Hartl, Principles of protein folding in the cellular environment, Curr Opin Struct Biol, 9, (1999).

    Google Scholar 

  75. S.E. Radford, C.M. Dobson, From computer simulations to human disease: Emerging themes in protein folding, Cell, 97, 291–298 (1999).

    Google Scholar 

  76. J.D. Bryngelson, P.G. Wolynes, Spin glasses and the statistical mechanics of protein folding, Proc Natl Acad Sci USA, 84, 7524–7528 (1987).

    Google Scholar 

  77. J.D. Bryngelson, J.N. Onuchic, P.G. Wolynes, Funnels, pathways, and the energy landscape of protein folding: A synthesis, Proteins, 21, 167–195 (1995).

    Google Scholar 

  78. K.A. Dill, S. Chan, From levinthal to pathways to funnels, Nat Struct Biol, 4, 10–19 (1997).

    Google Scholar 

  79. K.A. Dill, S.B. Ozkan, M.S. Shell, T. R.Weikl, The protein folding problem, Annu Rev Biophys, 37, 289–316 (2008).

    Google Scholar 

  80. P.E. Leopold, M. Montal, J.N. Onuchic, Protein folding funnels: A kinetic approach to the sequence-structure relationship, Proc Natl Acad Sci USA, 89, 8712–8715 (1992).

    Google Scholar 

  81. S.S. Plotkin, J.N. Onuchic, Understanding protein folding with energy landscape theory part i: Basic concepts, Quart Rev Biophys, 35, 111–167 (2002).

    Google Scholar 

  82. J.E. Shea, J.N. Onuchic, C.L. Brooks, Energetic frustration and the nature of the transition state in protein folding, J Chem Phys, 113, 7663–7671 (2000).

    Google Scholar 

  83. M. Scalley-Kim, D. Baker, Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection, J Mol Biol, 338, 573–583 (2004).

    Google Scholar 

  84. G. Yang, C. Cecconi, W.A. Baase, I.R. Vetter, W.A. Breyer, J.A. Haack, B.W. Matthews, F.W. Dahlquist, C. Bustamante, Solid-state synthesis and mechanical unfolding of polymers of t4 lysozyme, Proc Natl Acad Sci USA, 97, 139–144 (2000).

    Google Scholar 

  85. D. Craig, A. Krammer, K. Schulten, V. Vogel, Comparison of the early stages of forced unfolding for fibronectin type III modules, Proc Natl Acad Sci USA, 98, 5590–5595 (2001).

    Google Scholar 

  86. M. Carrion-Vazquez, A.F. Oberhauser, S.B. Fowler, P.E. Marszalek, S.E. Broedel, J. Clarke, J.M. Fernandez, Mechanical and chemical unfolding of a single protein: A comparison, Proc Natl Acad Sci USA, 96, 3694–3699 (1999).

    Google Scholar 

  87. K.A. Scott, A. Steward, S.B. Fowler, J. Clarke, Titin: A multidomain protein that behaves as the sum of its parts, J Mol Biol, 315, 819–829 (2002).

    Google Scholar 

  88. A. Krammer, H. Lu, B. Isralewitz, K. Schulten, V. Vogel, Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch, Proc Natl Acad Sci USA, 96, 1351–1356 (1999).

    Google Scholar 

  89. P.M. Williams, S.B. Fowler, R.B. Best, J.L. Toca-Herrera, K.A. Scott, A. Steward, J. Clarke, Hidden complexity in the mechanical properties of titin, Nature, 422, 446–449 (2003).

    Google Scholar 

  90. C.-L. Chyan, F.-C. Lin, H. Peng, J.-M. Yuan, C.-H. Chang, S.-H. Lin, G. Yang, Reversible mechanical unfolding of single ubiquitin molecules, Biophys J, 87, 3995–4006 (2004).

    Google Scholar 

  91. H. Dietz, M. Rief, Exploring the energy landscape of GFP by single-molecule mechanical experiments, Proc Natl Acad Sci USA, 101, 16192–16197 (2004).

    Google Scholar 

  92. M. Zimmer, Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior, Chem Rev, 102, 759–781 (2002).

    Google Scholar 

  93. R. Berkovich, S. Garcia-Manyes, M. Urbakh, J. Klafter, J.M. Fernandez, Collapse dynamics of single proteins extended by force, Biophys J, 98, 2692–2701 (2010).

    Google Scholar 

  94. I. Schwaiger, M. Schleicher, A.A. Noegel, M. Rief, The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments, EMBO reports, 6, 46–51 (2005).

    Google Scholar 

  95. M. Schlierf, M. Rief, Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape, Biophys J, 90, L33–35 (2006).

    Google Scholar 

  96. S. Wennmalm, S.M. Simon, Studying individual events in biology, Annu Rev Biochem, 76, 419–446 (2007).

    Google Scholar 

  97. A.F. Oberhauser, P.E. Marszalek, M. Carrion-Vazquez, J.M. Fernandez, Single protein misfolding events captured by atomic force microscopy, Nat Struct Biol, 6, 1025–1028 (1999).

    Google Scholar 

  98. L.G. Randles, R.W.S. Rounsevell, J. Clarke, Spectrin domains lose cooperativity in forced unfolding, Biophys J, 92, 571–577 (2007).

    Google Scholar 

  99. A.F. Oberhauser, P.E. Marszalek, H.P. Erickson, J.M. Fernandez, The molecular elasticity of the extracellular matrix protein tenascin, Nature, 393, 181–185 (1998).

    Google Scholar 

  100. C.F. Wright, S.A. Teichmann, J. Clarke, C.M. Dobson, The importance of sequence diversity in the aggregation and evolution of proteins, Nature, 438, 878–881 (2005.).

    Google Scholar 

  101. C. Jäckel, P. Kast, D. Hilvert, Protein design by directed evolution, Annu Rev Biophys, 37, 153–173 (2008).

    Google Scholar 

  102. A. Mesecar, B.L. Stoddard, D.E.J. Koshland, Orbital steering in the catalytic power of enzymes: Small structural changes with large catalytic consequences, Science, 277, 202–206 (1997).

    Google Scholar 

  103. J. Alegre-Cebollada, R. Perez-Jimenez, P. Kosuri, J.M. Fernandez, Single-molecule force spectroscopy approach to enzyme catalysis, J Biol Chem, 285, 18961–18966 (2010).

    Google Scholar 

  104. M. Radmacher, M. Fritz, H.G. Hansma, P.K. Hansma, Direct observation of enzyme activity with the atomic force microscope, Science, 265, 1577–1579 (1994).

    Google Scholar 

  105. A.P. Wiita, S.R.K. Ainavarapu, H.H. Huang, J.M. Fernandez, Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques, Proc Natl Acad Sci USA, 103, 7222–7227 (2006).

    Google Scholar 

  106. C.S. Sevier, C.A. Kaiser, Formation and transfer of disulphide bonds in living cells, Nat Rev Mol Cell Biol, 3, 836–847 (2002).

    Google Scholar 

  107. B. Yan, J.W. Smith, Mechanism of integrin activation by disulfide bond reduction, Biochemistry, 40, 8861–8867 (2001).

    Google Scholar 

  108. A.P. Wiita, R. Perez-Jimenez, K.A. Walther, F. Grater, B.J. Berne, A. Holmgren, J.M. Sanchez-Ruiz, J.M. Fernandez, Probing the chemistry of thioredoxin catalysis with force, Nature, 450, 124–127 (2007).

    Google Scholar 

  109. H. Gumpp, E.M. Puchner, J.L. Zimmermann, U. Gerland, H.E. Gaub, K. Blank, Triggering enzymatic activity with force, Nano Lett, 9, 3290–3295 (2009).

    Google Scholar 

  110. S.K. Kufer, E.M. Puchner, H. Gumpp, T. Liedl, H.E. Gaub, Single-molecule cut-and-paste surface assembly, Science, 319, 594–596 (2008).

    Google Scholar 

  111. E. Wallin, G. von Heijne, Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms, Protein Sci, 7, 1029–1038 (1998).

    Google Scholar 

  112. D.J. Muller, AFM: A nanotool in membrane biology, Biochemistry, 47, 7986–7998 (2008).

    Google Scholar 

  113. D.J. Müller, J. Helenius, D. Alsteens, Y.F. Dufrêne, Force probing surfaces of living cells to molecular resolution, Nat Chem Biol, 5, (2009).

    Google Scholar 

  114. A.J. García-Sáez, P. Schwille, Single molecule techniques for the study of membrane proteins, Appl Microbiol Biotechnol, 76, 257–266 (2007).

    Google Scholar 

  115. P.L.T.M. Frederix, P.D. Bosshart, A. Engel, Atomic force microscopy of biological membranes, Biophys J, 96, 329–338 (2009).

    Google Scholar 

  116. R.P. Goncalves, S. Scheuring, Manipulating and imaging individual membrane proteins by AFM, Surf Interface Anal, 38, 1413–1418 (2006).

    Google Scholar 

  117. D.J. Muller, W. Baumeister, A. Engel, Controlled unzipping of a bacterial surface layer with atomic force microscopy, Proc Natl Acad Sci USA, 96, 13170–13174 (1999).

    Google Scholar 

  118. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A.G. Engel, H. E., D.J. Muller, Unfolding pathways of individual bacteriorhodopsins, Science, 288, 143–146 (2000).

    Google Scholar 

  119. R.P. Goncalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, S. Scheuring, Two-chamber AFM: Probing membrane proteins separating two aqueous compartments, Nat Methods, 3, 1007–1012 (2006).

    Google Scholar 

  120. M. Kessler, K.E. Gottschalk, H. Janovjak, D.J. Müller, H.E. Gaub, Bacteriorhodopsin folds into the membrane against an external force, J Mol Biol, 357, 644–654 (2006).

    Google Scholar 

  121. C.-K. Lee, Y.-M. Wang, L.-S. Huang, S. Lin, Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein – ligand interaction, Micron, 38, 446–461 (2007).

    Google Scholar 

  122. M. Benoit, D. Gabriel, G. Gerisch, H.E. Gaub, Discrete interactions in cell adhesion measured by single-molecule force spectroscopy, Nat Cell Biol, 2, 313–317 (2000).

    Google Scholar 

  123. T.S. Lim, S.R.K. Vedula, W. Hunziker, C.T. Lim, Kinetics of adhesion mediated by extracellular loops of claudin-2 as revealed by single-molecule force spectroscopy, J Mol Biol, 381, 681–691 (2008).

    Google Scholar 

  124. Y. Zhang, S. Sivasankar, W.J. Nelson, S. Chu, Resolving cadherin interactions and binding cooperativity at the single-molecule level, Proc Natl Acad Sci USA, 106, 109–114 (2009).

    Google Scholar 

  125. H. Lee, N.F. Scherer, P.B. Messersmith, Single-molecule mechanics of mussel adhesion, Proc Natl Acad Sci USA, 103, 12999–13003 (2006).

    Google Scholar 

  126. J. Hu, Y. Zhang, B. Li, H.B. Gao, U. Hartmann, M.Q. Li, Nanomanipulation of single DNA molecules and its applications, Surf Interface Anal, 36, 124–126 (2004).

    Google Scholar 

  127. J.W. Efcavitch, J.F. Thompson, Single-molecule DNA analysis, Annu Rev Anal Chem, 3, 109–128 (2010).

    Google Scholar 

  128. H.G. Hansma, K. Kasuya, E. Oroudjev, Atomic force microscopy imaging and pulling of nucleic acids, Curr Opin Struct Biol, 380–385 (2004).

    Google Scholar 

  129. F. Ritort, Single-molecule experiments in biological physics: Methods and applications, J Phys Condens Matter, 18, R531–R583 (2006).

    Google Scholar 

  130. D. Anselmetti, J. Fritz, B. Smith, Fernandez-Busquets, Single molecule DNA biophysics with atomic force microscopy, Single Mol, 1, 53–58 (2000).

    Google Scholar 

  131. A.-S. Duwez, S. Cuenot, C. Jérôme, S. Gabriel, R. Jérôme, S. Rapino, F. Zerbetto, Mechanochemistry: Targeted delivery of single molecules, Nat Nanotech, 1, 122–125 (2006).

    Google Scholar 

  132. S.B. Smith, L. Finzi, C. Bustamante, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, 258, 1122–1126 (1992).

    Google Scholar 

  133. S.B. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science, 271, 795–799 (1996).

    Google Scholar 

  134. T. Morii, R. Mizuno, H. Haruta, T. Okada, An AFM study of the elasticity of DNA molecules, Thin Solid Films, 464–465, 456–458 (2004).

    Google Scholar 

  135. C. Ke, M. Humeniuk, H. S-Gracz, P.E. Marszalek, Direct measurements of base stacking interactions in DNA by single-molecule atomic-force spectroscopy, Phys Rev Lett, 99, 018302 (2007).

    Google Scholar 

  136. G.U. Lee, L.A. Chrisey, R.J. Colton, Direct measurement of the forces between complementary strands of DNA, Science, 266, 771–773 (1994).

    Google Scholar 

  137. R. Krautbauer, M. Rief, H.E. Gaub, Unzipping DNA oligomers, Nano Lett, 3, 493–496 (2003).

    Google Scholar 

  138. B.D. Sattin, A.E. Pelling, M.C. Goh, DNA base pair resolution by single molecule force spectroscopy, Nucleic Acid Res, 32, 4876–4883 (2004).

    Google Scholar 

  139. P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, The "millipede"-more than one thousand tips for future AFM data storage, IBM J Res Devel, 44, 323–340 (2000).

    Google Scholar 

  140. R. Afrin, U.S. Zohora, H. Uehara, T. Watanabe-Nakayama, A. Ikai, Atomic force microscopy for cellular level manipulation: Imaging intracellular structures and DNA delivery through a membrane hole, J Mol Recognit, 22, 363–372 (2009).

    Google Scholar 

  141. S.W. Han, C. Nakamura, I. Obataya, N. Nakamura, J. Miyake, A molecular delivery system by using AFM and nanoneedle, Biosen Bioelectron, 20, 2120–2125 (2005).

    Google Scholar 

  142. J.H. Lu, Nanomanipulation of extended single-DNA molecules on modified mica surfaces using the atomic force microscopy, Colloids Surf B Biointerfaces, 39, 177–180 (2004).

    Google Scholar 

  143. J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, Artificial DNA patterns by mechanical nanomanipulation, Nano Lett, 2, 55–57 (2002).

    Google Scholar 

  144. Z. Liu, Z. Li, G. Wei, Y. Song, L. Wang, L. Sun, Manipulation, dissection, and lithography using modified tapping mode atomic force microscope, Microsc Res Tech, 69, 998–1004 (2006).

    Google Scholar 

  145. J.-h. Lü, H.-k. Li, H.-j. An, G.-h. Wang, Y. Wang, M.-q. Li, Y. Zhang, J. Hu, Positioning isolation and biochemical analysis of single DNA molecules based on nanomanipulation and single-molecule pcr, J Am Chem Soc, 126, 11136–11137 (2004).

    Google Scholar 

  146. A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, D. Bensimon, Alignment and sensitive detection of DNA by a moving interface, Science, 265, 2096–2098 (1994).

    Google Scholar 

  147. K. Yamanaka, M. Saito, M. Shichiri, S. Sugiyama, Y. Takamura, G. Hashiguchi, E. Tamiya, AFM picking-up manipulation of the metaphase chromosome fragment by using the tweezers-type probe, Ultramicroscopy, 108, 847–854 (2008).

    Google Scholar 

  148. S. Thalhammer, R.W. Stark, S. Muller, J. Wienberg, W.M. Heckl, The atomic force microscope as a new microdissecting tool for the generation of genetic probes, J Struct Biol, 119, 232–237 (1997).

    Google Scholar 

  149. R.W. Stark, F.J. Rubio-Sierra, S. halhammer, W.M. Heckl, Combined nanomanipulation by atomic force microscopy and uv-laser ablation for chromosomal dissection, Eur Biophys J, 32, 33–39 (2003).

    Google Scholar 

  150. X.M. Xu, A. Ikai, Retrieval and amplification of single-copy genomic DNA from a nanometer region of chromosomes: A new and potential application of atomic force microscopy in genomic research, Biochem Biophys Res Commun, 248, 744–748 (1998).

    Google Scholar 

  151. N. Liu, B. Peng, Y. Lin, Z. Su, Z. Niu, Pulling genetic RNA out of tobacco mosaic virus using single-molecule force spectroscopy, J Am Chem Soc, 132, 11036–11038 (2010).

    Google Scholar 

  152. T. Osada, H. Uehara, H. Kim, A. Ikai, Mrna analysis of single living cells, J Nanobiotechnology, 1, 2 (2003).

    Google Scholar 

  153. S. Marsden, M. Nardelli, P. Linder, J.E. McCarthy, Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation, J Mol Biol, 361, 327–335 (2006).

    Google Scholar 

  154. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Adv Drug Deliv Rev, 60, 1650–1662 (2008).

    Google Scholar 

  155. T.E. Fisher, P.E. Marszalek, J.M. Fernandez, Stretching single molecules into novel conformations using the atomic force microscope, Nat Struct Biol, 7, 719–724 (2000).

    Google Scholar 

  156. N.I. Abu-Lail, T.A. Camesano, Polysaccharide properties probed with atomic force microscopy, J Microscopy, 212, 217–237 (2003).

    MathSciNet  Google Scholar 

  157. M.A.K. Williams, A. Marshall, R.G. Haverkamp, K.I. Draget, Stretching single polysaccharide molecules using AFM: A potential method for the investigation of the intermolecular uronate distribution of alginate? Food Hydrocolloids, 22, 18–23 (2008).

    Google Scholar 

  158. H. Li, M. Rief, F. Oesterhelt, H.E. Gaub, Single-molecule force spectroscopy on xanthan by AFM, Adv Mater, 3, 316–319 (1998).

    Google Scholar 

  159. H. Li, M. Rief, F. Oesterhelt, H.E. Gaub, X. Zhang, J. Shen, Single-molecule force spectroscopy on polysaccharides by AFM -nanomechanical fingerprint of α-(1,4)-linked polysaccharides, Chem Phys Lett, 305, 197–201 (1999).

    Google Scholar 

  160. M. Rief, F. Oesterhelt, B. Heymann, H.E. Gaub, Single molecule force spectroscopy on polysaccharides by atomic force microscopy, Science, 275, 1295–1297 (1997).

    Google Scholar 

  161. P.E. Marszalek, A.F. Oberhauser, Y.-P. Pang, J.M. Fernandez, Polysaccharide elasticity governed by chair±boat transitions of the glucopyranose ring, Nature, 396, 661–664 (1998).

    Google Scholar 

  162. P.E. Marszalek, H. Li, J.M. Fernandez, Fingerprinting polysaccharides with singlemolecule atomic force microscopy, Nat Biotech, 19, 258–262 (2001).

    Google Scholar 

  163. G. Francius, S. Lebeer, D. Alsteens, L. Wildling, H.J. Gruber, P. Hols, S.D. Keersmaecker, J. Vanderleyden, Y.F. Dufrene, Detection, localization and conformational analysis of single polysaccharide molecules on live bacteria, ACS Nano, 2, 1921–1929 (2008).

    Google Scholar 

  164. D. Alsteens, V. Dupres, K.M. Evoy, L. Wildling, H.J. Gruber, Y.F. Dufrene, Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM, Nanotech, 19, 384005 (2008).

    Google Scholar 

  165. S. Qamar, P.M. Williams, S.M. Lindsay, Can an atomic force microscope sequence DNA using a nanopore? Biophys J, 94, 1233–1240 (2008).

    Google Scholar 

Download references

Acknowledgements

The author thanks the NIH for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, G. (2011). Nanomanipulation of Biological Macromolecules by AFM. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics