Skip to main content

Double Layer Local Anodic Oxidation Using Atomic Force Microscopy

  • Chapter
  • First Online:
Tip-Based Nanofabrication

Abstract

Double-layer local anodic oxidation is a powerful method for fabricating complex semiconductor nanostructures. Here we review the application of this technique to Ga[Al]As heterostructures with titanium top gate electrodes. After short historical remarks, the details of the experimental oxidation setup, and the most relevant physical aspects of the involved materials are described. The experimental procedures and the influence of the key parameters are discussed for both the direct oxidation of Ga[Al]As and the oxidation of titanium. The power of the technique is corroborated by an overview over fabricated devices ranging from a single few-electron quantum dot to a complex quantum circuit comprising an Aharonov-Bohm ring with two embedded mutually coupled quantum dots, and an integrated charge read-out coupled capacitively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2DEG:

Two-dimensional electron gas

AC:

Alternating current

AFM:

Atomic force microscope

DC:

Direct current

DQD:

Double quantum dot

FWHM:

Full width at half maximum

HEMT:

High-electron-mobility transistor

LAO:

Local anodic oxidation

MBE:

Molecular beam epitaxy

MOSFET:

Metal-oxide-semiconductor field-effect transistor

PMMA:

Poly(methyl methacrylate)

QD:

Quantum dot

QPC:

Quantum point contact

SFM:

Scanning force microscope

SPM:

Scanning probe microscope

STM:

Scanning tunneling microscope

References

  1. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air, Applied Physics Letters 56, 2001–2003 (1990).

    Article  Google Scholar 

  2. R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Atomic-scale conversion of clean Si(111):H-1x1 to Si(111)-2x1 by electron-stimulated desorption, Physical Review Letters 65, 1917 (1990).

    Article  Google Scholar 

  3. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, Nanometer-scale lithography using the atomic force microscope, Applied Physics Letters 61, 2293–2295 (1992).

    Article  Google Scholar 

  4. H. C. Day, and D. R. Allee, Selective area oxidation of silicon with a scanning force microscope, Applied Physics Letters 62, 2691–2693 (1993).

    Article  Google Scholar 

  5. M. Yasutake, Y. Ejiri, and T. Hattori, Modification of silicon surface using atomic force microscope with conducting probe, Japanese Journal of Applied Physics 32, L1021 (1994).

    Article  Google Scholar 

  6. E. S. Snow, and P. M. Campbell, Fabrication of Si nanostructures with an atomic force microscope, Applied Physics Letters 64, 1932–1934 (1994).

    Article  Google Scholar 

  7. T. Hattori, Y. Ejiri, K. Saito, and M. Yasutake, Fabrication of nanometer-scale structures using atomic force microscope with conducting probe, Journal of Vacuum Science & Technology A 12, 2586–2590 (1994).

    Article  Google Scholar 

  8. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, Mechanisms of surface anodization produced by scanning probe microscopes, Journal of Vacuum Science & Technology B 13, 2805–2808 (1995).

    Article  Google Scholar 

  9. T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope: doping dependence and kinetics, Applied Physics Letters 67, 3144–3146 (1995).

    Article  Google Scholar 

  10. S. C. Minne, H. T. Soh, P. Flueckiger, and C. F. Quate, Fabrication of 0.1 mu m metal oxide semiconductor field-effect transistors with the atomic force microscope, Applied Physics Letters 66, 703–705 (1995).

    Article  Google Scholar 

  11. H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, Nanofabrication of titanium surface by tip-induced anodization in scanning tunneling microscopy, Japanese Journal of Applied Physics 32, L553 (1993).

    Article  Google Scholar 

  12. H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: a humidity effect on nanolithography, Applied Physics Letters 63, 1288–1290 (1993).

    Article  Google Scholar 

  13. H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, Scanning tunneling microscope tip-induced anodization for nanofabrication of titanium, The Journal of Physical Chemistry 98, 4352–4357 (1994).

    Article  Google Scholar 

  14. K. Matsumoto, S. Takahashi, M. Ishii, M. Hoshi, A. Kurokawa, S. Ichimura, and A. Ando, Application of STM nanometer-size oxidation process to planar-type MIM diode, Japanese Journal of Applied Physics 34, 1387 (1995).

    Article  Google Scholar 

  15. D. Wang, L. Tsau, K. L. Wang, and P. Chow, Nanofabrication of thin chromium film deposited on Si(100) surfaces by tip induced anodization in atomic force microscopy, Applied Physics Letters 67, 1295–1297 (1995).

    Article  Google Scholar 

  16. E. S. Snow, and P. M. Campbell, AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties, Science 270, 1639–1641 (1995).

    Article  Google Scholar 

  17. E. S. Snow, D. Park, and P. M. Campbell, Single-atom point contact devices fabricated with an atomic force microscope, Applied Physics Letters 69, 269–271 (1996).

    Article  Google Scholar 

  18. B. Irmer, M. Kehrle, H. Lorenz, and J. P. Kotthaus, Fabrication of Ti/TiOx tunneling barriers by tapping mode atomic force microscopy induced local oxidation, Applied Physics Letters 71, 1733–1735 (1997).

    Article  Google Scholar 

  19. M. K. B. Irmer, H. Lorenz, and J. P. Kotthaus, Nanolithography by non-contact AFM-induced local oxidation: fabrication of tunnelling barriers suitable for single-electron devices, Semiconductor Science and Technology 13, A79 (1998).

    Article  Google Scholar 

  20. P. Avouris, R. Martel, T. Hertel, and R. Sandstrom, AFM-tip-induced and current-induced local oxidation of silicon and metals, Applied Physics A: Materials Science & Processing 66, S659-S667 (1998).

    Article  Google Scholar 

  21. R. Held, T. Heinzel, P. Studerus, K. Ensslin, and M. Holland, Semiconductor quantum point contact fabricated by lithography with an atomic force microscope, Applied Physics Letters 71, 2689–2691 (1997).

    Article  Google Scholar 

  22. J. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, Single-electron charging effects in Nb/Nb oxide-based single-electron transistors at room temperature, Applied Physics Letters 72, 1893–1895 (1998).

    Article  Google Scholar 

  23. X. N. Xie, H. J. Chung, C. H. Sow, and A. T. S. Wee, Nanoscale materials patterning and engineering by atomic force microscopy nanolithography, Materials Science and Engineering: R: Reports 54, 1–48 (2006).

    Article  Google Scholar 

  24. B. Bhushan, Scanning Probe Microscopy in Nanoscience and Nanotechnology, Springer, Berlin, 2010.

    Book  Google Scholar 

  25. M. Ishii, and K. Matsumoto, Control of current in 2DEG channel by oxide wire formed using AFM, Japanese Journal of Applied Physics 34, 1329 (1995).

    Article  Google Scholar 

  26. R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland, and W. Wegscheider, In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope, Applied Physics Letters 73, 262–264 (1998).

    Article  Google Scholar 

  27. R. Held, S. Luscher, T. Heinzel, K. Ensslin, and W. Wegscheider, Fabricating tunable semiconductor devices with an atomic force microscope, Applied Physics Letters 75, 1134–1136 (1999).

    Article  Google Scholar 

  28. S. Luscher, A. Fuhrer, R. Held, T. Heinzel, K. Ensslin, and W. Wegscheider, In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography, Applied Physics Letters 75, 2452–2454 (1999).

    Article  Google Scholar 

  29. M. Sigrist, A. Fuhrer, T. Ihn, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Multiple layer local oxidation for fabricating semiconductor nanostructures, Applied Physics Letters 85, 3558–3560 (2004).

    Article  Google Scholar 

  30. X. N. Xie, H. J. Chung, C. H. Sow, and A. T. S. Wee, Microdroplet and atomic force microscopy probe assisted formation of acidic thin layers for silicon nanostructuring, Advanced Functional Materials 17, 919 (2007).

    Article  Google Scholar 

  31. J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, Role of space charge in scanned probe oxidation, Journal of Applied Physics 84, 6891–6900 (1998).

    Article  Google Scholar 

  32. D. Graf, M. Frommenwiler, P. Studerus, T. Ihn, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Local oxidation of Ga[Al]As heterostructures with modulated tip-sample voltages, Journal of Applied Physics 99, 053707–053707 (2006).

    Article  Google Scholar 

  33. A. Fuhrer, A. Dorn, S. Luscher, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Electronic properties of nanostructures defined in Ga[Al]As heterostructures by local oxidation, Superlattices and Microstructures 31, 19–42 (2002).

    Article  Google Scholar 

  34. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  35. T. Heinzel, Mesoscopic Electronics in Solid State Nanostructures, Wiley, Weinheim, 2003.

    Google Scholar 

  36. S. K. Ghandhi, VLSI Fabrication Principles, Wiley, New York, 1994.

    Google Scholar 

  37. S. R. Morrison, The Chemical Physics of Surfaces, Plenum Press, New York, 1977.

    Google Scholar 

  38. Y. Okada, Y. Iuchi, M. Kawabe, and J. J. S. Harris, Basic properties of GaAs oxide generated by scanning probe microscope tip-induced nano-oxidation process, Journal of Applied Physics 88, 1136–1140 (2000).

    Article  Google Scholar 

  39. U. F. Keyser, H. W. Schumacher, U. Zeitler, R. J. Haug, and K. Eberl, Fabrication of a single-electron transistor by current-controlled local oxidation of a two-dimensional electron system, Applied Physics Letters 76, 457–459 (2000).

    Article  Google Scholar 

  40. N. J. Curson, R. Nemutudi, N. J. Appleyard, M. Pepper, D. A. Ritchie, and G. A. C. Jones, Ballistic transport in a GaAs/AlxGa1-xAs one-dimensional channel fabricated using an atomic force microscope, Applied Physics Letters 78, 3466–3468 (2001).

    Article  Google Scholar 

  41. C. W. J. Beenakker, H. van Houten, E. Henry, and T. David, Quantum transport in semiconductor nanostructures, Solid State Physics 44, 1–228 (1991).

    Article  Google Scholar 

  42. C. Fricke, J. Regul, F. Hohls, D. Reuter, A. D. Wieck, and R. J. Haug, Transport spectroscopy of a quantum point contact created by an atomic force microscope, Physica E: Low-dimensional Systems and Nanostructures 34, 519–521 (2006).

    Article  Google Scholar 

  43. R. Schleser, E. Ruh, T. Ihn, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Time-resolved detection of individual electrons in a quantum dot, Applied Physics Letters 85, 2005–2007 (2004).

    Article  Google Scholar 

  44. Y. Aharonov, and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Physical Review 115, 485 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Fuhrer, S. Luscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Energy spectra of quantum rings, Nature 413, 822–825 (2001).

    Article  Google Scholar 

  46. U. F. Keyser, et al., Aharonov-Bohm oscillations of a tuneable quantum ring, Semiconductor Science and Technology 17, L22 (2002).

    Article  Google Scholar 

  47. T. Ihn, S. Gustavsson, U. Gasser, B. Küng, T. Müller, R. Schleser, M. Sigrist, I. Shorubalko, R. Leturcq, and K. Ensslin, Quantum dots investigated with charge detection techniques, Solid State Communications 149, 1419–1426 (2009).

    Article  Google Scholar 

  48. D. Loss, and D. P. DiVincenzo, Quantum computation with quantum dots, Physical Review A 57, 120 (1998).

    Article  Google Scholar 

  49. S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot, Physical Review Letters 77, 3613 (1996).

    Article  Google Scholar 

  50. J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Few-electron quantum dot circuit with integrated charge read out, Physical Review B 67, 161308 (2003).

    Article  Google Scholar 

  51. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-electron quantum dots, Reviews of Modern Physics 79, 1217–1249 (2007).

    Article  Google Scholar 

  52. R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. W. van Beveren, J. M. Elzerman, and L. P. Kouwenhoven, Zeeman energy and spin relaxation in a one-electron quantum dot, Physical Review Letters 91, 196802 (2003).

    Article  Google Scholar 

  53. S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto, S. Tarucha, and L. P. Kouwenhoven, Kondo effect in an integer-spin quantum dot, Nature 405, 764–767 (2000).

    Article  Google Scholar 

  54. T. Otsuka, E. Abe, S. Katsumoto, Y. Iye, G. L. Khym, and K. Kang, Fano effect in a few-electron quantum dot, Journal of the Physical Society of Japan 76, 084706 (2007).

    Article  Google Scholar 

  55. S. De Franceschi, S. Sasaki, J. M. Elzerman, W. G. van der Wiel, S. Tarucha, and L. P. Kouwenhoven, Electron cotunneling in a semiconductor quantum dot, Physical Review Letters 86, 878 (2001).

    Article  Google Scholar 

  56. M. Sigrist, S. Gustavsson, T. Ihn, K. Ensslin, D. Driscoll, A. Gossard, M. Reinwald, and W. Wegscheider, Few-electron quantum dot fabricated with layered scanning force microscope lithography, Physica E: Low-dimensional Systems and Nanostructures 32, 5–8 (2006).

    Article  Google Scholar 

  57. M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Measurements of Coulomb blockade with a noninvasive voltage probe, Physical Review Letters 70, 1311 (1993).

    Article  Google Scholar 

  58. C. Livermore, The Coulomb blockade in coupled quantum dots, Science 274, 1332 (1996).

    Article  Google Scholar 

  59. R. H. Blick, R. J. Haug, J. Weis, D. Pfannkuche, K. v. Klitzing, and K. Eberl, Single-electron tunneling through a double quantum dot: the artificial molecule, Physical Review B 53, 7899 (1996).

    Article  Google Scholar 

  60. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Electron transport through double quantum dots, Reviews of Modern Physics 75, 1 (2002).

    Article  Google Scholar 

  61. U. Gasser, S. Gustavsson, uuml, B. ng, K. Ensslin, T. Ihn, D. C. Driscoll, and A. C. Gossard, Statistical electron excitation in a double quantum dot induced by two independent quantum point contacts, Physical Review B 79, 035303 (2009).

    Article  Google Scholar 

  62. M. Sigrist, T. Ihn, K. Ensslin, M. Reinwald, and W. Wegscheider, Phase coherence in the cotunneling regime of a coupled double quantum dot, Physica E: Low-dimensional Systems and Nanostructures 34, 497–499 (2006).

    Article  Google Scholar 

  63. M. Sigrist, Phase-coherent transport in quantum circuits containing dots and rings, ETH Zurich, Zurich (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ihn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gasser, U., Sigrist, M., Gustavsson, S., Ensslin, K., Ihn, T. (2011). Double Layer Local Anodic Oxidation Using Atomic Force Microscopy. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics