Skip to main content

Diamondoid Mechanosynthesis for Tip-Based Nanofabrication

  • Chapter
  • First Online:
Tip-Based Nanofabrication

Abstract

Diamond mechanosynthesis (DMS), or molecular positional fabrication, is the formation of covalent chemical bonds using precisely applied mechanical forces to build nanoscale diamondoid structures via manipulation of positionally controlled tooltips, most likely in a UHV working environment.  DMS may be automated via computer control, enabling programmable molecular positional fabrication. The Nanofactory Collaboration is coordinating a combined experimental and theoretical effort involving direct collaborations among dozens of researchers at institutions in multiple countries to explore the feasibility of positionally controlled mechanosynthesis of diamondoid structures using simple molecular feedstocks, the first step along a direct pathway to developing working nanofactories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscope

CPU:

Central processing unit

CVD:

Chemical vapor deposition

DFT:

Density functional theory

DMS:

Diamond mechanosynthesis

DNA:

Deoxyribonucleic acid

MEMS:

Microelectromechanical systems

NIST:

National Institute of Standards and Technology (U.S.)

NMAB:

National Materials Advisory Board (U.S.)

NNI:

National Nanotechnology Initiative (U.S.)

NRC:

National Research Council of the National Academies (U.S.)

ONR:

Office of Naval Research (U.S.)

SEM:

Scanning electron microscopy

SPM:

Scanning probe microscope

UHV:

Ultra-high vacuum

References

  1. R.A. Freitas Jr., Exploratory design in medical nanotechnology: a mechanical artificial red cell, Artif. Cells Blood Subst. Immobil. Biotech., 26, 411–430 (1998); http://www.foresight.org/Nanomedicine/Respirocytes.html

  2. R.A. Freitas Jr., Nanodentistry, J. Amer. Dent. Assoc., 131, 1559–1566 (2000); http://www.rfreitas.com/Nano/Nanodentistry.htm

  3. R.A. Freitas Jr., Clottocytes: artificial mechanical platelets, IMM Report, 18, 9–11 (2000); http://www.imm.org/Reports/Rep018.html

  4. R.A. Freitas Jr., Microbivores: artificial mechanical phagocytes using digest and discharge protocol, J. Evol. Technol., 14, 1–52 (2005); http://jetpress.org/volume14/Microbivores.pdf

    Google Scholar 

  5. R.A. Freitas Jr., Pharmacytes: an ideal vehicle for targeted drug delivery, J. Nanosci. Nanotechnol., 6, 2769–2775 (2006); http://www.nanomedicine.com/Papers/JNNPharm06.pdf

    Google Scholar 

  6. R.A. Freitas Jr., The ideal gene delivery vector: chromallocytes, cell repair nanorobots for chromosome replacement therapy, J. Evol. Technol., 16, 1–97 (2007); http://jetpress.org/v16/freitas.pdf

    Google Scholar 

  7. Committee to Review the NNI (National Nanotechnology Initiative), National Materials Advisory Board (NMAB), National Research Council (NRC), A Matter of Size: Triennial Review of the National Nanotechnology Initiative, The National Academies Press, Washington, DC (2006); http://www.nap.edu/catalog/11752.html#toc

  8. T. Kenny, Tip-Based Nanofabrication (TBN), Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office (MTO), Broad Agency Announcement BAA 07-59 (2007); http://www.fbo.gov/spg/ODA/DARPA/CMO/BAA07-59/listing.html

  9. Nanofactory Collaboration Website (2010); http://www.MolecularAssembler.com/Nanofactory

  10. J.D. Cohen, J.P. Sadowski, P.B. Dervan, Addressing single molecules on DNA nanostructures, Angew. Chem. Int. Ed., 46, 7956–7959 (2007).

    Article  Google Scholar 

  11. J.H. Lee, D.P. Wernette, M.V. Yigit, J. Liu, Z. Wang, Y. Lu, Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener, Angew. Chem. Int. Ed. Engl., 46, 9006–9010 (2007).

    Article  Google Scholar 

  12. R.A. Freitas Jr., Current status of nanomedicine and medical nanorobotics, J. Comput. Theor. Nanosci., 2, 1–25 (2005); http://www.nanomedicine.com/Papers/NMRevMar05.pdf

    Google Scholar 

  13. K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, Wiley, New York (1992).

    Google Scholar 

  14. R.C. Merkle, A proposed ‘metabolism’ for a hydrocarbon assembler, Nanotechnology, 8, 149–162 (1997); http://www.zyvex.com/nanotech/hydroCarbonMetabolism.html

  15. R.C. Merkle, R.A. Freitas Jr., Theoretical analysis of a carbon-carbon dimer placement tool for diamond mechanosynthesis, J. Nanosci. Nanotechnol., 3, 319–324 (2003); http://www.rfreitas.com/Nano/JNNDimerTool.pdf

  16. J. Peng, R.A. Freitas Jr., R.C. Merkle, Theoretical analysis of diamond mechanosynthesis. Part I. Stability of C2 mediated growth of nanocrystalline diamond C(110) surface, J. Comput. Theor. Nanosci., 1, 62–70 (2004); http://www.molecularassembler.com/Papers/JCTNPengMar04.pdf

  17. D.J. Mann, J. Peng, R.A. Freitas Jr., R.C. Merkle, Theoretical analysis of diamond mechanosynthesis. Part II. C2 mediated growth of diamond C(110) surface via Si/Ge-triadamantane dimer placement tools, J. Comput. Theor. Nanosci., 1, 71–80 (2004); http://www.MolecularAssembler.com/JCTNMannMar04.pdf

  18. D.G. Allis, K.E. Drexler, Design and analysis of a molecular tool for carbon transfer in mechanosynthesis,” J. Comput. Theor. Nanosci., 2, 45–55 (2005); http://e-drexler.com/d/05/00/DC10C-mechanosynthesis.pdf

  19. R.A. Freitas Jr., A simple tool for positional diamond mechanosynthesis, and its method of manufacture. U.S. Provisional Patent Application No. 60/543,802, filed 11 February 2004; U.S. Patent Pending, 11 February 2005; U.S. Patent No. 7,687,146, issued 30 March 2010; http://www.freepatentsonline.com/7687146.pdf

  20. J. Peng, R.A. Freitas Jr., R.C. Merkle, J.R. von Ehr, J.N. Randall, G.D. Skidmore, Theoretical analysis of diamond mechanosynthesis. Part III. Positional C2 deposition on diamond C(110) surface using Si/Ge/Sn-based dimer placement tools, J. Comput. Theor. Nanosci., 3, 28–41 (2006); http://www.MolecularAssembler.com/Papers/JCTNPengFeb06.pdf

    Google Scholar 

  21. B. Temelso, C.D. Sherrill, R.C. Merkle, R.A. Freitas Jr., High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems, J. Phys. Chem. A, 110, 11160–11173 (2006); http://www.MolecularAssembler.com/Papers/TemelsoHAbst.pdf

    Google Scholar 

  22. R.A. Freitas Jr., D.G. Allis, R.C. Merkle, Horizontal Ge-substituted polymantane-based C2 dimer placement tooltip motifs for diamond mechanosynthesis, J. Comput. Theor. Nanosci., 4, 433–442 (2007); http://www.MolecularAssembler.com/Papers/DPTMotifs.pdf

    Google Scholar 

  23. B. Temelso, C.D. Sherrill, R.C. Merkle, R.A. Freitas Jr., Ab initio thermochemistry of the hydrogenation of hydrocarbon radicals using silicon, germanium, tin and lead substituted methane and isobutane, J. Phys. Chem. A, 111, 8677–8688 (2007); http://www.MolecularAssembler.com/Papers/TemelsoHDon.pdf

    Google Scholar 

  24. R.A. Freitas Jr., R.C. Merkle, A minimal toolset for positional diamond mechanosynthesis, J. Comput. Theor. Nanosci., 5, 760–861 (2008).

    Google Scholar 

  25. D. Tarasov, N. Akberova, E. Izotova, D. Alisheva, M. Astafiev, R.A. Freitas Jr., Optimal tooltip trajectories in a hydrogen abstraction tool recharge reaction sequence for positionally controlled diamond mechanosynthesis, J. Comput. Theor. Nanosci., 7, 325–353 (2010).

    Article  Google Scholar 

  26. H.J. Lee, W. Ho, Single bond formation and characterization with a scanning tunneling microscope, Science, 286, 1719–1722 (1999); http://www.physics.uci.edu/%7Ewilsonho/stm-iets.html

  27. N. Oyabu, O. Custance, I. Yi, Y. Sugawara, S. Morita, Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy, Phys. Rev. Lett., 90, 176102 (2003); http://link.aps.org/abstract/PRL/v90/e176102

  28. N. Oyabu, O. Custance, M. Abe, S. Moritabe, Mechanical vertical manipulation of single atoms on the Ge(111)-c(2x8) surface by noncontact atomic force microscopy, Abstracts of Seventh International Conference on Non-Contact Atomic Force Microscopy, Seattle, Washington, DC, 12–15 September, 2004, p. 34; http://www.engr.washington.edu/epp/afm/abstracts/15Oyabu2.pdf

  29. Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez, S. Morita, Complex patterning by vertical interchange atom manipulation using atomic force microscopy, Science, 322, 413–417 (2008); http://www.sciencemag.org/cgi/content/full/322/5900/413

  30. Nanofactory Collaboration, Nanofactory Collaboration Colleague Awarded $3 M to Conduct First Diamond Mechanosynthesis Experiments, Nanofactory Collaboration press release, 11 August 2008; http://www.MolecularAssembler.com/Nanofactory/Media/PressReleaseAug08.htm

  31. D. Tarasov, E. Izotova, D. Alisheva, N. Akberova, R.A. Freitas Jr., Structural stability of clean, passivated, and partially dehydrogenated cuboid and octahedral nanodiamonds up to 2 nanometers in size, J. Comput. Theor. Nanosci., 8, 147–167 (2011).

    Google Scholar 

  32. R.E. Tuzun, D.W. Noid, B.G. Sumpter, An internal coordinate quantum Monte Carlo method for calculating vibrational ground state energies and wave functions of large molecules: A quantum geometric statement function approach, J. Chem. Phys., 105, 5494–5502 (1996).

    Article  Google Scholar 

  33. K. Sohlberg, R.E. Tuzun, B.G. Sumpter, D.W. Noid, Application of rigid-body dynamics and semiclassical mechanics to molecular bearings, Nanotechnology, 8, 103–111 (1997).

    Article  Google Scholar 

  34. D.W. Noid, R.E. Tuzun, B.G. Sumpter, On the importance of quantum mechanics for nanotechnology, Nanotechnology, 8, 119–125 (1997).

    Article  Google Scholar 

  35. D.H. Robertson, B.I. Dunlap, D.W. Brenner, J.W. Mintmire, C.T. White, Molecular dynamics simulations of fullerene-based nanoscale gears, in Novel Forms of Carbon II, C.L. Renschler, D.M. Cox, J.J. Pouch, Y. Achiba (Eds.), MRS Symposium Proceedings Series, Volume 349, pp. 283–288 (1994).

    Google Scholar 

  36. J. Han, A. Globus, R.L. Jaffe, G. Deardorff, Molecular dynamics simulations of carbon nanotube-based gears, Nanotechnology, 8, 95–102 (1997).

    Article  Google Scholar 

  37. A. Globus, C.W. Bauschlicher Jr., J. Han, R.L. Jaffe, C. Levit, D. Srivastava, Machine phase fullerene nanotechnology, Nanotechnology, 9, 192–199 (1998).

    Article  Google Scholar 

  38. R.E. Tuzun, D.W. Noid, B.G. Sumpter, Dynamics of a laser driven molecular motor, Nanotechnology, 6, 52–63 (1995).

    Article  Google Scholar 

  39. O.A. Shenderova, D. Areshkin, D.W. Brenner, Carbon based nanostructures: diamond clusters structured with nanotubes, Mater. Res., 6, 11–17 (2003); http://www.scielo.br/scielo.php?pid=S1516-14392003000100004&script=sci_arttext&tlng=en

  40. T. Cagin, A. Jaramillo-Botero, G. Gao, W.A. Goddard III, Molecular mechanics and molecular dynamics analysis of Drexler-Merkle gears and neon pump, Nanotechnology, 9, 143–152 (1998).

    Article  Google Scholar 

  41. G. Leach, Advances in molecular CAD, Nanotechnology, 7, 197–203 (1996).

    Article  Google Scholar 

  42. M. Sims, Molecular modeling in CAD, Machine Design, 78, 108–113 (2006).

    Google Scholar 

  43. NIST, Autonomous Atom Assembly (2004); http://cnst.nist.gov/epg/Projects/STM/aaa_proj.html

  44. E.C. Heeres, A.J. Katan, M.H. van Es, A.F. Beker, M. Hesselberth, D.J. van der Zalm, T.H. Oosterkamp, A compact multipurpose nanomanipulator for use inside a scanning electron microscope, Rev. Sci. Instrum., 81, 023704 (2010).

    Article  Google Scholar 

  45. M.-F. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X.K. Lu, K.D. Ausman, J. von Ehr, R.S. Ruoff, 3-Dimensional manipulation of carbon nanotubes under a scanning electron microscope, Sixth Foresight Nanotechnology Conference, November 1998; http://www.foresight.org/Conferences/MNT6/Papers/Yu/index.html

  46. C.R. Taylor, K.K. Leang, Design and Fabrication of a Multifunctional Scanning Probe with Integrated Tip Changer for Fully Automated Nanofabrication, Paper 2617, ASPE Annual Meeting, 2008; http://www.leang.com/academics/pubs/LeangKK_2008_ASPE.pdf

  47. K.K. Leang, C.R. Taylor, A novel multifunctional SPM probe with modular quick-change tips for fully automated probe-based nanofabrication, Proceedings of the 2009 NSF Engineering Research and Innovation Conference, Honolulu, HI, 22–25 June 2009.

    Google Scholar 

  48. K. Tsui, A.A. Geisberger, M. Ellis, G.D. Skidmore, Micromachined end-effector and techniques for directed MEMS assembly, J. Micromech. Microeng., 14, 542–549 (2004); http://dx.doi.org/10.1088/0960-1317/14/4/015

    Google Scholar 

  49. D.O. Popa, H.E. Stephanou, Micro- and meso-scale robotic assembly, SME J. Manuf. Proc., 6, 52–71 (2004).

    Article  Google Scholar 

  50. R.A. Freitas Jr., R.C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX (2004); http://www.MolecularAssembler.com/KSRM.htm

  51. R.A. Freitas Jr., R.C. Merkle, Remaining technical challenges for achieving positional diamondoid molecular manufacturing and diamondoid nanofactories, Nanofactory Collaboration Website (2010); http://www.MolecularAssembler.com/Nanofactory/Challenges.htm

Download references

Acknowledgments

The author acknowledges private grant support for this work from the Life Extension Foundation, the Kurzweil Foundation, and the Institute for Molecular Manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Freitas Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Freitas, R.A. (2011). Diamondoid Mechanosynthesis for Tip-Based Nanofabrication. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics