Skip to main content

Nanoindentation of Thin Films and Small Volumes of Materials

  • Chapter
  • First Online:
Nanoindentation

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

One of the most popular applications of nanoindentation is the determination of the mechanical properties of thin films. In nanoindentation tests, the properties of the film may be measured without removing the film from the substrate as is done in other types of testing. The spatial distribution of properties, in both lateral and depth dimensions, may be measured, and a wide variety of films are amenable to the technique, from ion-implanted surfaces to optical coatings and polymer films. Apart from testing films in-situ, nanoindentation techniques can also be used for films made as free-standing microbeams or membranes [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, “Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films,” J. Mater. Res. 3 5, 1988, 931–942.

    Article  Google Scholar 

  2. J.L. Hay, M.E. O’Hern, and W.C. Oliver, “The importance of contact radius for substrate-independent property measurement of thin films,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 27–32.

    Article  Google Scholar 

  3. M.G.D. El-Sherbiney and J. Halling, “The Herztian contact of surfaces covered with metallic films,” Wear, 40, 1976, pp. 325–337.

    Article  Google Scholar 

  4. J.A. Ogilvy, “A parametric elastic model for indentation testing of thin films,” J. Phys. D: Appl. Phys. 26, 1993, pp. 2123–2131.

    Article  Google Scholar 

  5. R.B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Struct. 23 12, 1987, pp. 1657–1664.

    Article  MATH  Google Scholar 

  6. M.F. Doerner and W.D. Nix, “A method of interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 1 4, 1986, pp. 601–609.

    Article  Google Scholar 

  7. H. Gao, C-H Chiu, and J. Lee, “Elastic contact versus indentation modeling of multi-layered materials,” Int. J. Solids Struct. 29 20, 1992, pp. 2471–2492.

    Article  Google Scholar 

  8. Y-G Jung, B.R. Lawn, M. Martyniuk, H. Huang and X.Z. Hu, “Evaluation of elastic modulus and hardness of thin films by nanoindentation,” J. Mater. Res. 19 10, 2004, pp. 1–5.

    Article  Google Scholar 

  9. N. Schwarzer, M. Whittling, M. Swain, and F. Richter, “The analytical solution of the contact problem of spherical indenters on layered materials: Application for the investigation of TiN films on silicon,” Thin Solid Films, 270 1-2, 1995, pp. 371–375.

    Article  Google Scholar 

  10. N. Schwarzer, “Coating design due to analytical modelling of mechanical contact problems on multilayer systems,” Surf. Coat. Technol. 133, 2000, pp. 397–402.

    Article  Google Scholar 

  11. T. Chudoba, N. Schwarzer, F. Richter, “Determination of elastic properties of thin films by indentation measurements with a spherical indenter,” Surf. Coat. Technol. 127, 2000, pp. 9–17.

    Article  Google Scholar 

  12. A. Perriot and E. Barthel, “Elastic contact to a coated half-space: Effective elastic modulus and real penetration,” J. Mater. Res. 10 2, 2004, pp. 600–608.

    Article  Google Scholar 

  13. J.Li and T.W. Chou, “Elastic field of a thin film/substrate system under axisymmetric loading,” Int. J. Solids Struct. 34, 1997, pp. 4463–4478.

    Article  MATH  Google Scholar 

  14. H. Bückle, in J.W. Westbrook and H. Conrad, eds. The Science of Hardness Testing and its Applications, American Society for Metals, Metals Park, OH, 1973, pp. 453–491.

    Google Scholar 

  15. B. Jonsson and S. Hogmark, “Hardness measurements of thin films,” Thin Solid Films, 114, 1984, pp. 257–269.

    Article  Google Scholar 

  16. P.J. Burnett and D.S. Rickerby, “The mechanical properties of wear-resistance coatings I: Modelling of hardness behaviour,” Thin Solid Films, 148, 1987, pp. 41–50.

    Article  Google Scholar 

  17. P.J. Burnett and D.S. Rickerby, “The mechanical properties of wear-resistance coatings II: Experimental studies and interpretation of hardness,” Thin Solid Films, 148, 1987, pp. 51–65.

    Article  Google Scholar 

  18. T.Y. Tsui, C.A. Ross, and G.M. Pharr, “A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation,” J. Mater. Res. 18 6, 2003, pp. 1383–1391.

    Article  Google Scholar 

  19. A.K. Bhattacharya and W.D. Nix, “Finite element simulation of indentation experiments,” Int. J. Solids Struct. 24 12, 1988, pp. 1287–1298.

    Article  Google Scholar 

  20. D. Stone, W.R. LaFontaine, P. Alexopolous, T.-W. Wu, and Che-Yu Li, “An investigation of hardness and adhesion of sputter-deposited aluminium on silicon by utilizing a continuous indentation test,” J. Mater. Res. 3 1, 1988, pp. 141–147.

    Article  Google Scholar 

  21. D. Chicot and J. Lesage, “Absolute hardness of films and coatings,” Thin Solid Films, 254, 1995, pp. 123–130.

    Article  Google Scholar 

  22. A.M. Korunsky, M.R. McGurk, S.J. Bull, and T.F. Page, “On the hardness of coated systems, Surf. Coat. Technol. 99, 1998, pp. 171–183.

    Article  Google Scholar 

  23. J.R. Tuck, A.M. Korsunsky, R.I. Davidson, S.J. Bull, and D.M. Elliott, “Modelling of the hardness of electroplated nickel coatings on copper substrates,” Surf. Coat. Technol. 127, 2000, pp. 1–8.

    Article  Google Scholar 

  24. E.S. Puchi-Cabrera, J.A. Berrios, and D.G. Teer, “On the computation of the absolute hardness of thin solid films,” Surf. Coat. Technol. 157, 2002, pp. 185–196.

    Article  Google Scholar 

  25. E.S. Puchi-Cabrera, “A new model for the computation of the composite hardness of coated systems,” Surf. Coat. Technol. 160, 2002, pp. 177–186.

    Article  Google Scholar 

  26. S.J. Bull, “Modelling of the mechanical and tribological properties of coatings and surface treatments,” Mat. Res. Symp. Proc. 750, 2003, pp. Y6.1.1–Y6.1.12.

    Google Scholar 

  27. Wangyang Ni and Yang-Tse Cheng, “Modelling conical indentation in homogenous materials and in hard films on soft substrates,” J. Mater. Res. 20, 2, 2005, pp. 521–528.

    Article  Google Scholar 

  28. G.G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. A9, 1909, pp. 172–175.

    Article  Google Scholar 

  29. D.B. Marshall and A.G. Evans, “Measurement of adherence of residually stressed thin films by indentation mechanics of interface delamination,” J. Appl. Phys. 56 10, 1984, pp. 2632–2638.

    Article  Google Scholar 

  30. L.G. Rosenfeld, J.E. Ritter, T.J. Lardner, and M.R. Lin, “Use of the microindentation technique for determining interfacial fracture energy,” J. Appl. Phys. 67 1990, pp. 3291–3296.

    Article  Google Scholar 

  31. M.D. Thouless, Acta Metall. 36, 1988, pp. 3131

    Google Scholar 

  32. M.V. Swain and J. Mencik, “Mechanical property characterization of thin films using spherical tipped indenters,” Thin Solid Films, 253, 1994, pp. 204–211.

    Article  Google Scholar 

  33. A.J. Whitehead and T.F. Page, “Nanoindentation studies of thin film coated systems,” Thin Solid Films, 220, 1992, pp. 277–283.

    Article  Google Scholar 

  34. M.D. Thouless, “An analysis of spalling in the microscratch test,” Eng. Fract. Mech. 61, 1998, pp. 75–81.

    Article  Google Scholar 

  35. M.D. Kriese, N.R. Moody, and W.W. Gerberich, “Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO2/Si substrates,” Acta Mater. 46, 1998, pp. 6623–6630.

    Article  Google Scholar 

  36. A.A. Volinsky, N.R. Moody, and W.W. Gerberich, “Superlayer residual stress effect on the indentation adhesion measurements,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 383–388.

    Article  Google Scholar 

  37. X.F. Li, “Effects of an elastic substrate on the interfacial adhesion of thin films,” Surface and Coatings Technology, 200 16-17, 2006, pp. 5003–5008.

    Article  Google Scholar 

  38. J. Sekler, P.A. Steinmann, and H.E. Hintermann, “The scratch test: Different critical load determination techniques,” Surface and Coatings Technology, 36, 1988, pp. 519–529.

    Article  Google Scholar 

  39. N. Gane and J. Skinner, “The friction and scratch deformation of metals on a micro scale,” Wear, 24, 1973, pp. 207–217.

    Article  Google Scholar 

  40. P.A. Steinmann, Y. Tardy, and H.E. Hintermann, “Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load,” Thin Solid Films, 154, 1987, pp. 333–349.

    Article  Google Scholar 

  41. V.D. Jardret and W.C. Oliver, “Viscoelastic behaviour of polymer films during scratch test: A quantitative analysis,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 251–256.

    Article  Google Scholar 

  42. S. Enders, P. Grau, and G. Berg, “Mechanical characterization of surfaces by nanotribological measurements of sliding and abrasive terms,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 531–536.

    Article  Google Scholar 

  43. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, Oxford, 1950.

    Google Scholar 

  44. J.W. Leggoe, “Determination of the elastic modulus of microscale ceramic particles via nanoindentation,” J.Mater.Res. 19 8, 2004, pp. 2437–2447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Fischer-Cripps .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2011). Nanoindentation of Thin Films and Small Volumes of Materials. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9872-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9872-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9871-2

  • Online ISBN: 978-1-4419-9872-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics