Skip to main content

Multivariate and Multistage Survival Data Modeling

  • Chapter
  • First Online:
Modern Issues and Methods in Biostatistics

Part of the book series: Statistics for Biology and Health ((SBH))

  • 3327 Accesses

Abstract

Survival analysis or time-to-event analysis is a branch of statistics dealing with death (failure) or degradation in biological organisms, mechanical or electronic systems, or other areas. This topic is called reliability theory or reliability analysis in engineering, and duration analysis or duration modeling in economics or sociology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Readings and References

  • Aalen, O.O.: Modeling heterogeneity in survival analysis by the compound Poisson distribution. Ann. Appl. Probab. 4(2), 951–972 (1992)

    Article  MathSciNet  Google Scholar 

  • Aalen, O.O., Gjessing, H.K.: Survival models based on the Ornstein–Uhlenbeck process. Lifetime Data Anal. 10, 407–423 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Aalen, O., Borgan, O., Gjessing, H.: Survival and Event History Analysis. Springer, New York (2010)

    Google Scholar 

  • Alonso, A., Molenberghs, G., Geys, H., Buyse, M., Vangeneugden, T.: A unifying approach for surrogate marker validation based on Prentice’s criteria. Stat. Med. 25, 205–221 (2006)

    Article  MathSciNet  Google Scholar 

  • Branson, M., Whitehead, W.: Estimating a treatment effect in survival studies in which patients switch treatment. Stat. Med. 21, 2449–2463 (2002)

    Article  Google Scholar 

  • Bronshtein, I.N., Semendyayev, K.A, Musiol, G., Muehlig, H., Mühlig, H.: Handbook of Mathematics. Springer, New Nork (2004)

    Google Scholar 

  • Chang, M.: Adaptive Design Theory and Implementation Using SAS and R. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  • Chen, B.E., Kramer, J.L., Greene, M.H., Rosenberg, P.S.: Competing risks analysis of correlated failure time data. Biometrics 64, 172–179 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Clayton, D.G.: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65, 141–151 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. B 34, 187–220 (1972)

    MATH  Google Scholar 

  • Crowder, M.J.: Classical Competing Risks. Chapman & Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  • Genest, C., Rivest, L.P.: Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88, 1034–1043 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • De Gruttola, V.G., Clax, P., DeMets, D.L., Downing, G.J., Ellenberg, S.S., Friedman, L., Gail, M.H., Prentice, R., Wittes, J., Zeger, S.L.: Considerations in the evaluation of surrogate endpoints in clinical trials: Summary of a National Institutes of Health workshop. Control. Clin. Trials 22, 485–502 (2001)

    Article  Google Scholar 

  • dos Santos, D.M., Davies, R.B., Francis, B.: Nonparametric hazard versus nonparametric frailty distribution in modelling recurrence of breast cancer. J. Stat. Plan. Infer. 47, 111–127 (1995)

    Article  MATH  Google Scholar 

  • Duchateau, L., Janssen, P.: The Frailty Model. Springer, New York (2008)

    MATH  Google Scholar 

  • Hosmer, D.W., Lemeshow, S., May, S.: Applied Survival Analysis: Regression Modeling of Time to Event Data. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  • Hougaard, P.: Survival models for heterogeneous populations derived from stable distributions. Biometrika 73, 671–678 (1986)

    MATH  MathSciNet  Google Scholar 

  • Hougaard, P.: Analysis of multivariate survival data. Springer, New York (2000)

    Book  MATH  Google Scholar 

  • Lawless, J., Crowder, M.: Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Anal. 10, 213–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, M.L.T., DeGruttola, V., Schoenfeld, D.: A model for markers and latent health status. J. R. Stat. Soc. Ser. B 62, 747–762 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, M.L.T., Chang, M., Whitmore, G.A.: A Threshold regression mixture model for assessing treatment efficacy in a multiple myeloma clinical trial. J. Biopharm. Stat. 18, 1136–1149 (2008)

    Article  MathSciNet  Google Scholar 

  • Lee, M.L.T., Whitmore, G.A.: Threshold regression for survival analysis: Modeling event times by a stochastic process reaching a boundary. Stat. Sci. 21(4), 501–513 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Manatunga, A.K., Oakes, D.: Parametric analysis of matched pair survival data. Lifetime Data Anal. 5, 371–387 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Marubini, E., Valsecchi, M.G.: Analysing Survival Data from Clinical Trials and Observational Studies. Wiley-Interscience, New York (2004)

    MATH  Google Scholar 

  • McGilchrist, C.A., Aisbett, C.W.: Regression with frailty in survival analysis. Biometrics 47, 461–466 (1991)

    Article  Google Scholar 

  • Molenberghs, G., Buyse, M., Burzykowski, T.: The history of surrogate endpoint validation. In: Burzykowski, T., Molenberghs, G., Buyse M. (eds.) The Evaluation of Surrogate Endpoint. Springer, New York (2005)

    Google Scholar 

  • Newey, W.K., McFadden, D.: Large sample estimation and hypothesis testing. In: Engle, R., McFadden, D. (eds.) Handbook of Econometrics, vol. IV, Chap. 36, pp. 2111–2245. Elsevier Science, Amsterdam (1994)

    Google Scholar 

  • Peace, K.E. (ed.): Design and Analysis of Clinical Trials with Time-to-Event Endpoints. Chapman and Hall/CRC, Boca Raton (2009)

    Google Scholar 

  • Ricciardi, M., Sato, S.: First-passage-time density and moments of the Ornstein–Uhlenbeck process. J. Appl. Probab. 25, 43–57 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Shao, J., Chang, M., Chow, S.C.: Statistical inference for cancer trials with treatment switching. Stat. Med. 24, 1783–1790 (2005)

    Article  MathSciNet  Google Scholar 

  • Shen, Y., Thall, P.: Parametric likelihoods for multiple non-fatal competing risks and death. Stat. Med. 17 999–1015 (1998)

    Article  Google Scholar 

  • Singpurwalla, N.D.: Survival in dynamic environments. Stat. Sci. 10, 86–103 (1995)

    MATH  Google Scholar 

  • Singpurwalla, N.D.: Reliability and Risk, a Bayesian Perspective. Wiley, West Sussex (2006)

    MATH  Google Scholar 

  • Tsiatis, A.A., Degruttola, V., Wulfsohn, M.S.: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. J. Am. Stat. Assoc. 90, 27–41 (1995)

    Google Scholar 

  • Van Der Laan, M.J., Robins, J.M.: Unified Methods for Censored Longitudinal Data and Causality. Springer, New York (2003)

    MATH  Google Scholar 

  • Vaupel, J.W., Manton, K.G., Stallard, E.: The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16, 439–454 (1979)

    Article  Google Scholar 

  • Weir, C.J., Walley, R.J.: Statistical evaluation of biomarkers as surrogate endpoints: A literature review. Stat. Med. 25, 183–203 (2006)

    Article  MathSciNet  Google Scholar 

  • Whitmore, G.A.: First-passage-time models for duration data: Regression structures and competing risks. The Statistician 35, 207–219 (1986)

    Article  MathSciNet  Google Scholar 

  • Whitmore, G.A., Crowder, M.J., Lawkess, J.F.: Failure inference from a marker process based on a bivariate Wiener model. Lifetime Data Anal. 4, 229–251 (1998)

    Article  MATH  Google Scholar 

  • Wienke, A.: Frailty Models in Survival Analysis. Chapman and Hall/CRC, Boca Raton (2010)

    Book  Google Scholar 

  • Wienke, A., Holm, N., Skytthe, A., Yashin, A.I.: The heritability of mortality due to heart diseases: A correlated frailty model applied to Danish twins. Twin Res. 4, 266–274 (2001)

    Article  Google Scholar 

  • Williamson, P.R., Kolamunnage-Dona, R., Philipson, P., Marson, A.G.: Joint modeling of longitudinal and competing risks data. Stat. Med. 27, 6426–6438 (2008)

    Article  MathSciNet  Google Scholar 

  • Yashin, A.I., Iachine, I.A.: Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins. Genet. Epidemiol. 12, 529–538 (1995)

    Article  Google Scholar 

  • Zdravkovic, S., Wienke, A., Pedersen, N.L., Marenberg, M.E., Yashin, A.I., de Faire, U.: Heritability of death from coronary heart disease: A 36-year follow-up of 20,966 Swedish twins. J. Intern. Med. 252, 247–254 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, M. (2011). Multivariate and Multistage Survival Data Modeling. In: Modern Issues and Methods in Biostatistics. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9842-2_6

Download citation

Publish with us

Policies and ethics