Skip to main content

Rapid Prototyping of Image Analysis Applications

  • Chapter
  • First Online:
Medical Image Processing

Abstract

When developing a program to automate an image analysis task, one does not start with a blank slate. Far from it. Many useful algorithms have been described in the literature, and implemented countless times. When developing an image analysis program, experience points the programmer to one or several of these algorithms. The programmer then needs to try out various possible combinations of algorithms before finding a satisfactory solution. Having to implement these algorithms just to see if they work for this one particular application does not make much sense. This is the reason programmers and researches build up libraries of routines that they have implemented in the past, and draw on these libraries to be able to quickly string together a few algorithms and see how they work on the current application. Several image analysis packages exist, both commercial and free, and they can be used as a basis for building up such a library. None of these packages will contain all the necessary algorithms, but they should provide at least the most basic ones. This chapter introduces you to one such package, DIPimage, and demonstrates how one can proceed to quickly develop a solution to automate a routine medical task. As an illustrative example we use some of the approaches taken over the years to solve the long-standing classical medical image analysis problem of assessing a Pap smear. To make best use of this chapter, you should have MATLAB and DIPimage running on your computer, and try out the command sequences given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    You can obtain this file from http://www.cb.uu.se/~cris/Images/papsmear.tif

References

  1. Luengo Hendriks, C.L., van Vliet, L.J., Rieger, B., van Ginkel, M., Ligteringen, R.: DIPimage User Manual. Quantitative Imaging Group, Delft University of Technology, Delft, The Netherlands (1999–2010)

    Google Scholar 

  2. Traut, H.F., Papanicolaou, G.N.: Cancer of the uterus: the vaginal smear in its diagnosis. Cal. West. Med. 59(2), 121–122 (1943)

    Google Scholar 

  3. Christopherson, W.M., Parker, J.E., Mendez, W.M., Lundin Jr., F.E.: Cervix cancer death rates and mass cytologic screening. Cancer 26(4), 808–811 (1970)

    Article  Google Scholar 

  4. Bengtsson, E.: Fifty years of attempts to automate screening for cervical cancer. Med. Imaging Technol. 17(3), 203–210 (1999)

    Google Scholar 

  5. Tolles, W.E., Bostrom, R.C.: Automatic screening of cytological smears for cancer: the instrumentation. Ann. N. Y. Acad. Sci. 63, 1211–1218 (1956)

    Article  Google Scholar 

  6. Spencer, C.C., Bostrom, R.C.: Performance of the Cytoanalyzer in recent clinical trials. J. Natl. Cancer Inst. 29, 267–276 (1962)

    Google Scholar 

  7. Prewitt, J.M.S., Mendelsohn, M.L.: The analysis of cell images. Ann. N. Y. Acad. Sci. 128(3), 1035–1053 (1965)

    Article  Google Scholar 

  8. Watanabe, S., the CYBEST group: An automated apparatus for cancer prescreening: CYBEST. Comput. Graph. Image Process. 3(4), 350–358 (1974)

    Article  Google Scholar 

  9. Tanaka, N., Ikeda, H., Ueno, T., Watanabe, S., Imasato, Y.: Fundamental study of automatic cyto-screening for uterine cancer. II. Segmentation of cells and computer simulation. Acta Cytol. 21(1), 79–84 (1977)

    Google Scholar 

  10. Tanaka, N., Ikeda, H., Ueno, T., Takahashi, M., Imasato, Y.: Fundamental study of automatic cyto-screening for uterine cancer. I. Feature evaluation for the pattern recognition system. Acta Cytol. 21(1), 72–78 (1977)

    Google Scholar 

  11. Tanaka, N., Ueno, T., Ikeda, H., Ishikawa, A., Yamauchi, K., Okamoto, Y., Hosoi, S.: CYBEST model 4: automated cytologic screening system for uterine cancer utilizing image analysis processing. Anal. Quant. Cytol. Histol. 9(5), 449–453 (1987)

    Google Scholar 

  12. Burger, G., Jutting, U., Rodenacker, K.: Changes in benign cell populations in cases of cervical cancer and its precursors. Anal. Quant. Cytol. 3(4), 261–271 (1981)

    Google Scholar 

  13. MacAulay, C., Palcic, B.: An edge relocation segmentation algorithm. Anal. Quant. Cytol. Histol. 12(3), 165–171 (1990)

    Google Scholar 

  14. Serra, J.: Image Analysis and Mathematical Morphology. Academic, London (1982)

    MATH  Google Scholar 

  15. Kuhl, F.P., Giardina, C.R.: Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 18(3), 236–258 (1982)

    Article  Google Scholar 

  16. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  17. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  18. MacAulay, C., Palcic, B.: Fractal texture features based on optical density surface area. Use in image analysis of cervical cells. Anal. Quant. Cytol. Histol. 12(6), 394–398 (1990)

    Google Scholar 

  19. Lee, J., Nelson, A., Wilbur, D.C., Patten, S.F.: The development of an automated Papanicolaou smear screening system. Cancer 81, 332–336 (1998)

    Article  Google Scholar 

  20. DeCresce, R.P., Lifshitz, M.S.: PAPNET cytological screening system. Lab Med. 22, 276–280 (1991)

    Google Scholar 

  21. Luck, R.L., Scott, R.: Morphological classification system and method. US Patent 5,257,182, 1993

    Google Scholar 

  22. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  23. Mehnert, A.J.H.: Image Analysis for the Study of Chromatin Distribution in Cell Nuclei. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2003

    Google Scholar 

  24. Bamford, P., Lovell, B.: Unsupervised cell nucleus segmentation with active contours. Signal Process. 71(2), 203–213 (1998)

    Article  MATH  Google Scholar 

  25. Li, B., Acton, S.T.: Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007)

    Article  MathSciNet  Google Scholar 

  26. Hutchinson, M.L., Cassin, C.M., Ball, H.G.: The efficacy of an automated preparation device for cervical cytology. Am. J. Clin. Pathol. 96(3), 300–305 (1991)

    Google Scholar 

  27. Howell, L.P., Davis, R.L., Belk, T.I., Agdigos, R., Lowe, J.: The AutoCyte preparation system for gynaecologic cytology. Acta Cytol. 42(1), 171–177 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris L. Luengo Hendriks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hendriks, C.L.L., Malm, P., Bengtsson, E. (2011). Rapid Prototyping of Image Analysis Applications. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_2

Download citation

Publish with us

Policies and ethics