Skip to main content

Digital Processing of Diffusion-Tensor Images of Avascular Tissues

  • Chapter
  • First Online:
Medical Image Processing

Abstract

Diffusion is the process that leads to the mixing of substances as a result of spontaneous and random thermal motion of individual atoms and molecules. It was first detected by the English botanist Robert Brown in 1827, and the phenomenon became known as ‘Brownian motion’. More specifically, the motion observed by Brown was translational diffusion – thermal motion resulting in random variations of the position of a molecule. This type of motion was given a correct theoretical interpretation in 1905 by Albert Einstein, who derived the relationship between temperature, the viscosity of the medium, the size of the diffusing molecule, and its diffusion coefficient [1]. It is translational diffusion that is indirectly observed in MR diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the physical basis for using translational diffusion to probe the microscopic environment surrounding the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein, A.: Zur allgemeinen molekularen Theorie der Wärme. Annalen der Physik 14(S1), 154–163 (2005)

    Google Scholar 

  2. Tanner, J.E.: Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J. Chem. Phys. 69(4), 1748–1754 (1978)

    Google Scholar 

  3. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)

    Article  Google Scholar 

  4. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed. 15(7–8), 456–467 (2002)

    Article  Google Scholar 

  5. Jones, D.K.: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study. Magn. Reson. Med. 51(4), 807–815 (2004)

    Article  Google Scholar 

  6. Mukherjee, P., Chung, S.W., Berman, J.I., Hess, C.P., Henry, R.G.: Diffusion tensor MR imaging and fiber tractography: Technical considerations. Am. J. Neuroradiol. 29(5), 843–852 (2008)

    Article  Google Scholar 

  7. Moffat, B.A., Pope, J.M.: Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging. Exp. Eye. Res. 74(6), 677–687 (2002)

    Article  Google Scholar 

  8. Papadakis, N.G., Xing, D., Huang, C.L.H., Hall, L.D., Carpenter, T.A.: A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J. Magn. Reson. 137(1), 67–82 (1999)

    Article  Google Scholar 

  9. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999)

    Article  Google Scholar 

  10. Batchelor, P.G.: Optimisation of Direction Schemes for Diffusion Tensor Imaging. St Malo, France (2002)

    Google Scholar 

  11. Batchelor, P.G., Atkinson, D., Hill, D.L.G., Calamante, F., Connelly, A.: Anisotropic noise propagation in diffusion tensor MRI sampling schemes. Magn. Reson. Med. 49(6), 1143–1151 (2003)

    Article  Google Scholar 

  12. Hasan, K.M., Parker, D.L., Alexander, A.L.: Comparison of gradient encoding schemes for diffusion-tensor MRI. J. Magn. Reson. Imaging. 13(5), 769–780 (2001)

    Article  Google Scholar 

  13. Papadakis, N.G., Xing, D., Houston, G.C., Smith, J.M., Smith, M.I., James, M.F., Parsons, A.A., Huang, C.L.H., Hall, L.D., Carpenter, T.A.: A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn. Reson. Imaging. 17(6), 881–892 (1999)

    Article  Google Scholar 

  14. Chang, L.C., Koay, C.G., Pierpaoli, C., Basser, P.J.: Variance of estimated DTI-derived parameters via first-order perturbation methods. Magn. Reson. Med. 57(1), 141–149 (2007)

    Article  Google Scholar 

  15. Skare, S., Hedehus, M., Moseley, M.E., Li, T.Q.: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J. Magn. Reson. 147(2), 340–352 (2000)

    Article  Google Scholar 

  16. Poupon, C., Mangin, J.F., Clark, C.A., Frouin, V., Regis, J., Le Bihan, D., Bloch, I.: Towards inference of human brain connectivity from MR diffusion tensor data. Med. Image. Anal. 5(1), 1–15 (2001)

    Article  Google Scholar 

  17. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

    Article  Google Scholar 

  18. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. USA 96(18), 10422–10427 (1999)

    Article  Google Scholar 

  19. Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies - a technical review. NMR Biomed. 15(7–8), 468–480 (2002)

    Article  Google Scholar 

  20. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  21. Tuch, D.S.: Q-Ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  22. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  23. Tournier, J.D., Yeh, C.H., Calamante, F., Cho, K.H., Connelly, A., Lin, C.P.: Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. Neuroimage 42(2), 617–625 (2008)

    Article  Google Scholar 

  24. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin-echo. J. Magn. Reson. B 103(3), 247–254 (1994)

    Article  Google Scholar 

  25. Momot, K.I., Kuchel, P.W.: PFG NMR diffusion experiments for complex systems. Concepts Magn. Reson. 28A, 249–269 (2006)

    Article  Google Scholar 

  26. Momot, K.I., Kuchel, P.W.: Convection-compensating diffusion experiments with phase-sensitive double-quantum filtering. J. Magn. Reson. 174(2), 229–236 (2005)

    Article  Google Scholar 

  27. Coremans, J., Luypaert, R., Verhelle, F., Stadnik, T., Osteaux, M.: A method for myelin fiber orientation mapping using diffusion-weighted MR-images. Magn. Reson. Imaging 12(3), 443–454 (1994)

    Article  Google Scholar 

  28. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  29. Lenglet, C., Campbell, J.S.W., Descoteaux, M., Haro, G., Savadjiev, P., Wassermann, D., Anwander, A., Deriche, R., Pike, G.B., Sapiro, G., Siddiqi, K., Thompson, P.M.: Mathematical methods for diffusion MRI processing. Neuroimage 45(1), S111–S122 (2009)

    Article  Google Scholar 

  30. Basser, P.J., Pajevic, S.: Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn. Reson. Med. 44(1), 41–50 (2000)

    Article  Google Scholar 

  31. Meder, R., de Visser, S.K., Bowden, J.C., Bostrom, T., Pope, J.M.: Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthr. Cartilage. 14, 875–881 (2006)

    Article  Google Scholar 

  32. de Visser, S.K., Crawford, R.W., Pope, J.M.: Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging. Osteoarthr. Cartilage. 16(1), 83–89 (2008)

    Article  Google Scholar 

  33. de Visser, S.K., Bowden, J.C., Wentrup-Byrne, E., Rintoul, L., Bostrom, T., Pope, J.M., Momot, K.I.: Anisotropy of collagen fibre alignment in bovine cartilage: Comparison of polarised light microscopy and spatially-resolved diffusion-tensor measurements. Osteoarthr. Cartilage. 16(6), 689–697 (2008)

    Article  Google Scholar 

  34. Momot, K.I.: Diffusion tensor of water in model articular cartilage. Eur. Biophys. J. 40(1), 81–91 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported under Australian Research Council’s Discovery Projects funding scheme (project number DP0880346). We thank the University of Queensland node of the National Instrumentation Facility for access to the 16.4 T microMRI spectrometer and Dr Gary Cowin for assistance with data acquisition. We thank Mr Garth Brooks and Mrs Stacey Manson (Teys Bros Pty. Ltd., Beenleigh, Australia) for providing samples of bovine patellar cartilage. We thank Prof Ross Crawford for providing human cartilage samples and Mrs Sally de Visser for acquiring the DTI data sets used to generate Figs. 15.1515.18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin I. Momot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Momot, K.I., Pope, J.M., Wellard, R.M. (2011). Digital Processing of Diffusion-Tensor Images of Avascular Tissues. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9779-1_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9769-2

  • Online ISBN: 978-1-4419-9779-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics