Skip to main content

The Physics of Aerosol Droplet and Particle Generation from Inhalers

  • Chapter
  • First Online:
Controlled Pulmonary Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

The three major aerosolization systems comprised of nebulizers, ­propellant based systems, and dry powder inhalers, each has unique physical ­principles. A good understanding of these physical principles is required for the successful development. Therefore, in this chapter, several important empirical and scientific principles that include the particle generation, the formulation implication, and drug aerosolization mechanisms of each aerosolization systems are highlighted. Examples of particle engineering to achieve aerodynamically favorable dry powder aerosols are briefly discussed. Next generation inhaler products will be expedited if these physical mechanisms are understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hickey AJ (1996) Inhalation aerosols: physical and biological basis for therapy. Marcel Dekker, New York

    Google Scholar 

  2. O’Callaghan C, Nerbrink O, Vidgren M (2001) in: Drug delivery to the lung, vol 162, 1st edn. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  3. Wright P (2004) in: Pharmaceutical preformulation and formulation: a practical guide from candidate drug selection to commercial dosage form, 1st edn. Taylor & Francis Group/CRC Press, Boca Raton, pp 355–378

    Google Scholar 

  4. Niven RW, Hickey AJ (2007) in: Inhalation aerosols: physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare USA, New York, pp 253–283

    Google Scholar 

  5. Leong KH (2004) in: Pharmaceutical inhalation aerosol technology, vol 134, 2nd edn. Marcel Dekker, New York, pp 253–278

    Google Scholar 

  6. Hickey AJ, Evans RM (1996) in: Inhalation aerosols: physical and biological basis for therapy, vol 94, 1st edn. Marcel Dekker, New York, pp 417–439

    Google Scholar 

  7. Partridge MR, Woodcock AA (2001) in: Drug delivery to the lung, vol 162, 1st edn. Marcel Dekker, New York, pp 371–388

    Google Scholar 

  8. Bell JH, Hartley PS, Cox JS (1971) Dry powder aerosols. I. a new powder inhalation device. J Pharm Sci 60:1559–1564

    PubMed  CAS  Google Scholar 

  9. Hickey AJ, Crowder TM (2007) in: Inhalation aerosols: physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare USA, New York, pp 445–460

    Google Scholar 

  10. Crowder TM, Hickey AJ, Louey MD, Orr N (2003) A guide to pharmaceutical particulate science, Interpharm Press/CRC, Boca Raton

    Google Scholar 

  11. Louey MD, VanOort M, Hickey AJ (2006) Standardized entrainment tubes for the evaluation of pharmaceutical dry powder dispersion. J Aerosol Sci 37:1520–1533

    CAS  Google Scholar 

  12. Nennis JH, Nerbrink O (2001) in: Drug delivery to the lung, vol 162, 1st edn. Marcel Dekker, New York, pp 303–336

    Google Scholar 

  13. Wu L, Peguin RPS, Selvam P, Chokshi U, da Rocha SRP (2007) in: Inhalation aerosols: physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare USA, New York, pp 373–398

    Google Scholar 

  14. Chan HK (2003) Inhalation drug delivery devices and emerging technologies. Expert Opin on Ther Patents 13:1333–1343

    CAS  Google Scholar 

  15. Weers JG, Tarara TE, Clark AR (2007) Design of fine particles for pulmonary drug delivery. Expert Opin Drug Deliv 4:297–313

    PubMed  CAS  Google Scholar 

  16. Hickey AJ, Mansour HM (2009) in: Modern pharmaceutics, vol 2, 5th edn. Informa Healthcare USA, New York, pp 191–219

    Google Scholar 

  17. Hickey AJ, Ganderton D (2001) Pharmaceutical process engineering. Marcel Dekker, New York

    Google Scholar 

  18. Van Oort M, Sacchetti M (2007) in: Inhalation aerosols: physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare, New York, pp 307–346

    Google Scholar 

  19. Fisher ES (2007) in: Encyclopedia of pharmaceutical technology, vol 4, 3rd edn. Informa Healthcare, USA, New York, pp 2339–2351

    Google Scholar 

  20. Rasenack N, Muller BW (2004) Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol 9:1–13

    PubMed  CAS  Google Scholar 

  21. Chan HK, Chew NY (2003) Novel alternative methods for the delivery of drugs for the treatment of asthma. Adv Drug Deliv Rev 55:793–805

    PubMed  CAS  Google Scholar 

  22. Seville PC, Li HY, Learoyd TP (2007) Spray-dried powders for pulmonary drug delivery. Crit Rev Ther Drug Carrier Syst 24:307–360

    PubMed  CAS  Google Scholar 

  23. Cal K, Sollohub K (2010) Spray drying technique. I: hardware and process parameters. J Pharm Sci 99:575–586

    PubMed  CAS  Google Scholar 

  24. Sollohub K, Cal K (2010) Spray drying technique: II. current applications in pharmaceutical technology. J Pharm Sci 99:587–597

    PubMed  CAS  Google Scholar 

  25. Dunbar CA, Concessio NM, Hickey AJ (1998) Evaluation of atomizer performance in production of respirable spray-dried particles. Pharm Dev Technol 3:433–441

    PubMed  CAS  Google Scholar 

  26. Chan HK, Clark AR, Feeley JC, Kuo MC, Lehrman SR, Pikal-Cleland K, Miller DP, Vehring R, Lechuga-Ballesteros D (2004) Physical stability of salmon calcitonin spray-dried powders for inhalation. J Pharm Sci 93:792–804

    PubMed  CAS  Google Scholar 

  27. van Drooge DJ, Hinrichs WL, Dickhoff BH, Elli MN, Visser MR, Zijlstra GS, Frijlink HW (2005) Spray freeze drying to produce a stable Delta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. Eur J Pharm Sci 26:231–240

    PubMed  CAS  Google Scholar 

  28. Maa YF, Ameri M, Shu C, Payne LG, Chen D (2004) Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. J Pharm Sci 93:1912–1923

    PubMed  CAS  Google Scholar 

  29. Maa YF, Nguyen PA, Sweeney T, Shire SJ, Hsu CC (1999) Protein inhalation powders: spray drying vs. spray freeze drying. Pharm Res 16:249–254

    PubMed  CAS  Google Scholar 

  30. Steckel H, Rasenack N, Muller BW (2003) In-situ-micronization of disodium cromoglycate for pulmonary delivery. Eur J Pharm Biopharm 55:173–180

    PubMed  CAS  Google Scholar 

  31. Westmeier R, Steckel H (2008) Combination particles containing salmeterol xinafoate and fluticasone propionate: formulation and aerodynamic assessment. J Pharm Sci 97:2299–2310

    PubMed  CAS  Google Scholar 

  32. York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2:430–440

    PubMed  CAS  Google Scholar 

  33. Rehman M, Shekunov BY, York P, Lechuga-Ballesteros D, Miller DP, Tan T, Colthorpe P (2004) Optimisation of powders for pulmonary delivery using supercritical fluid technology. Eur J Pharm Sci 22:1–17

    PubMed  CAS  Google Scholar 

  34. Cameron D, Clay M, Silverman M (1990) Evaluation of nebulizers for use in neonatal ventilator circuits. Crit Care Med 18:866–870

    PubMed  CAS  Google Scholar 

  35. Niven RW (1995) Delivery of biotherapeutics by inhalation aerosol. Crit Rev Ther Drug Carrier Syst 12:151–231

    PubMed  CAS  Google Scholar 

  36. Niven RW, Carvajal TM, Schreier H (1992) Nebulization of liposomes. III. The effects of operating conditions and local environment. Pharm Res 9:515–520

    PubMed  CAS  Google Scholar 

  37. Niven RW, Schreier H (1990) Nebulization of liposomes. I. Effects of lipid composition. Pharm Res 7:1127–1133

    PubMed  CAS  Google Scholar 

  38. Niven RW, Speer M, Schreier H (1991) Nebulization of liposomes. II. The effects of size and modeling of solute release profiles. Pharm Res 8:217–221

    PubMed  CAS  Google Scholar 

  39. Smyth HDC, Garcia-Contreras L, Cooney DJ, Garmise RJ, Jones LD, Hickey AJ (2005) in: Aerosols handbook: measurement, dosimetry, and health effects, 1st edn. CRC Press, Boca Raton, pp 313–341

    Google Scholar 

  40. Smyth H (2006) in: Excipient development for pharmaceutical, biotechnology, and drug delivery systems, 1st edn. Informa Healthcare USA, New York, pp 225–249

    Google Scholar 

  41. Bernstein JA, Amin H, Smith SJ (2007) in: Inhalation aerosols: physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare USA, New York, pp 219–252

    Google Scholar 

  42. Taylor KMG, McCallion O (2007) in: Encyclopedia of pharmaceutical technology, vol 6, 3rd edn. Informa Healthcare USA, New York, pp 3854–3861

    Google Scholar 

  43. Purewal TS, Grant DJ (1997) in: Metered dose inhaler technology, 1st edn. Informa Healthcare USA, New York

    Google Scholar 

  44. The Montreal Protocol on substances that deplete the ozone layer (1987) UNEP, Nairobi, Kenya, Federal Register 1994, 59FR5627656298

    Google Scholar 

  45. U.S. Food and Drug Administration (2008) Use of ozone-depleting substances; removal of essential use designation. http://federalregister.gov/a/E8-27436

  46. Hickey AJ (2005) in: Drug delivery: principles and applications, 1st edn. Wiley, New Jersey, pp 341–361

    Google Scholar 

  47. Hindle M (2008) in: Pharmaceutical manufacturing handbook: production and processes, 1st edn. Wiley, New Jersey, pp 683–727

    Google Scholar 

  48. Johnson KA (2007) in: Inhalation Aerosols: Physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare USA, Inc., NY, pp 347–371

    Google Scholar 

  49. Stefely JD, Duan DC, Myrdal PB, Ross DL, Schultz DW, Leach CL (2000) Respiratory drug delivery VII, vol 1. Serentec Press, Raleigh, pp 83–90

    Google Scholar 

  50. Tzou TZ (1999) Aerodynamic particle size of metered-dose inhalers determined by the quartz crystal microbalance and the Andersen cascade impactor. Int J Pharm 186:71–79

    PubMed  CAS  Google Scholar 

  51. Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols: an introduction. Academic Press, London, UK

    Google Scholar 

  52. Greenspan BJ (2007) in: Inhalation aerosols: physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare USA, NY, pp 285–306

    Google Scholar 

  53. Dhand R (2002) Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol. Respir Care 47:1406–16; discussion 1416–1418

    PubMed  Google Scholar 

  54. Lass JS, Sant A, Knoch M (2006) New advances in aerosolised drug delivery: vibrating membrane nebuliser technology. Expert Opin Drug Deliv 3:693–702

    PubMed  CAS  Google Scholar 

  55. Lang RJ (1962) Ultrasonic atomization of liquids. J Acoust Soc Am 36:6–8

    Google Scholar 

  56. Peskin RL, Raco RJ (1963) Ultrasonic atomization of liquids. J Acoust Soc Am 35:1378–1381

    Google Scholar 

  57. Mercer TT (1981) Production of therapeutic aerosols; principles and techniques. Chest 80:813–818

    PubMed  CAS  Google Scholar 

  58. Berglund RN, Liu BY (1973) Generation of monodisperse aerosol standards. Environ Sci Technol 7:147–153

    CAS  Google Scholar 

  59. Ghazanfari T, Elhissi AM, Ding Z, Taylor KM (2007) The influence of fluid physicochemical properties on vibrating-mesh nebulization. Int J Pharm 339:103–111

    PubMed  CAS  Google Scholar 

  60. Placke ME, Ding J, Zimlich WC (2007) in: Encyclopedia of pharmaceutical technology, vol 3, 3rd edn. Informa Healthcare USA, New York, pp 2092–2118

    Google Scholar 

  61. Shraiber AA, Podvysotsky AM, Dubrovsky VV (1996) Deformation and breakup of drops by aerodynamic forces. Atomization Sprays 6:667–692

    Google Scholar 

  62. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New York

    Google Scholar 

  63. Smaldone GC, Lesouef PN (2001) in: Drug delivery to the lung, vol 162, 1st edn. Marcel Dekker, New York, pp 269–302

    Google Scholar 

  64. Smyth HDC, Evans RM, Hickey AJ (2007) in: Inhalation aerosols: physical and biological basis for therapy, vol 221, 2nd edn. Informa Healthcare USA, New York, pp 399–416

    Google Scholar 

  65. Dunbar CA, Watkins AP, Miller JF (1997) Theoretical investigation of the spray from a pressureized metered-dose inhaler. Atomization Sprays 7:417–436

    CAS  Google Scholar 

  66. Munro SJM, Cripps AL (2007) in: Encyclopedia of pharmaceutical technology, vol 4, 3rd edn. Informa Healthcare USA, New York, pp 2269–2285

    Google Scholar 

  67. Hickey AJ (2004) in: Pharmaceutical inhalation aerosol technology, vol 134, 2nd edn. Marcel Dekker, New York, pp 385–422

    Google Scholar 

  68. Callingham MA (1980) A statistical model for predicting the particle distribution of an atomized powder in liquid mixture. Int J Cosmet Sci 2:107–126

    PubMed  CAS  Google Scholar 

  69. Gonda I, Khalik AFAE (1985) On the calculation of aerodynamic diameters of fibers. Aerosol Sci Tech 4:233–238

    Google Scholar 

  70. Chan HK, Gonda I (1988) Development of a systematic theory of suspension inhalation aerosols. II. aggregates of monodisperse particles nebulized in polydisperse droplets. Int J Pharm 41:147–157

    CAS  Google Scholar 

  71. Gonda I, Chan HK (1985. Suppl.) Model of aerodynamic behaviour of aggregates formed on nebulization of suspensions. J Pharm Pharmacol 37:56P

    Google Scholar 

  72. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Elsevier, London, UK

    Google Scholar 

  73. Erbil HY (2006) Surface chemistry: solid and liquid interfaces. Blackwell, Malden

    Google Scholar 

  74. Zeng XM, Martin GP, Marriott C (2001) Particulate interactions in dry powder formulations for inhalation. Taylor & Francis, New York

    Google Scholar 

  75. Dunbar CA, Hickey AJ and Holzner P (1998) Dispersion and characterization of pharmaceutical dry powder aerosols. Kona 16:7–45

    CAS  Google Scholar 

  76. Weiler C, Egen M, Trunk M and Langguth P (2010) Force control and powder dispersibility of spray dried particles for inhalation. J Pharm Sci 99:303–316

    PubMed  CAS  Google Scholar 

  77. Elajnaf A, Carter P and Rowley G (2007) The effect of relative humidity on electrostatic charge decay of drugs and excipient used in dry powder inhaler formulation. Drug Dev Ind Pharm 33:967–974

    PubMed  CAS  Google Scholar 

  78. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc London A 324:301–313

    CAS  Google Scholar 

  79. Derjaguin BV, Muller BW, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–325

    CAS  Google Scholar 

  80. Hickey AJ, Ganderton D (2007) in: Encyclopedia of pharmaceutical technology, vol 6, 3rd edn. Informa Healthcare USA, New York, pp 3862–3907

    Google Scholar 

  81. Miyanami K (2006) in: Powder technology handbook, 3rd edn. Taylor & Francis, Boca Raton, pp 577–589

    Google Scholar 

  82. Muzzio FJ, Robinson P, Wightman C, Brone D (1997) Sampling practices in powder blending. Int J Pharm 155:153–178

    CAS  Google Scholar 

  83. Berman J (2001) The compliance and science of blend uniformity analysis. PDA J Pharm Sci Technol 55:209–222

    PubMed  CAS  Google Scholar 

  84. Berman J, Elinski DE, Gonzales CR, Hofer JD, Jimenez PJ, Planchard JA, Tlachac RJ, Vogel PF (1997) Blend uniformity analysis: validation and in-process testing. PDA J Pharm Sci Technol 51(Suppl 3):i–iii; S1–S99

    Google Scholar 

  85. Boehm G, Clark J, Dietrick J, Foust L, Garcia T, Gavini M, Gelber L, Geoffroy JM, Hoblitzell J, Jimenez P, Mergen G, Muzzio F, Planchard J, Prescott J, Timmermans J, Takiar N (2003) The use of stratefied sampling of blend and dosage units to demonstrate adequacy of mix for powder blends. PDA J Pharm Sci Technol 57:64–74

    PubMed  Google Scholar 

  86. Howard-Sparks M, Gawlikowski A (2004) Evaluation of blend uniformity and content uniformity based on 2003 stratified sampling guidance and 1999 blend uniformity analysis guidance: product A. PDA J Pharm Sci Technol 58:222–230

    PubMed  Google Scholar 

  87. Hersey JA (1975) Ordered mixing: a new concept in powder mixing practice. Powder Technol 11:41–44

    Google Scholar 

  88. Verraes J, Kinget R (1979) Ordered mixing. J Pharm Belg 34:297–307

    PubMed  CAS  Google Scholar 

  89. Shinohara K (2006) in: Powder technology handbook, 3st edn. Taylor & Francis, Boca Raton, pp 371–382

    Google Scholar 

  90. Venables HJ, Wells JI (2001) Powder mixing. Drug Dev Ind Pharm 27:599–612

    PubMed  CAS  Google Scholar 

  91. Cartillier LG, Moes AJ (1989) Effect od drug agglomerates upon the kinetcs of mixing of low dosage cohesive powders. Drug Dev Ind Pharm 15:1911–1931

    Google Scholar 

  92. Staniforth JN, Rees JE (1981) Powder mixing by triboelectrification. Powder Technol 30:255–256

    CAS  Google Scholar 

  93. Pu Y, Mazumder M, Cooney C (2009) Effects of electrostatic charging on pharmaceutical powder blending homogeneity. J Pharm Sci 98:2412–2421

    PubMed  CAS  Google Scholar 

  94. Shekunov BY, Feeley JC, Chow AH, Tong HH, York P (2003) Aerosolization behavior of micronized and supercritically-processed powders. J Aerosol Sci 34:553–568

    CAS  Google Scholar 

  95. de Boer AH, Hagedoorn P, Gjaltema D, Goede J, Frijlink HW (2003) Air classifier technology (ACT) in dry powder inhalation. Part 1. Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures. Int J Pharm 260:187–200

    PubMed  CAS  Google Scholar 

  96. Nichols SC and Wynn E (2008) New approaches to optimizing dispersion in dry powder inhalers-dispersion force mapping and adhesion measurements. Respiratory drug delivery vol 1, pp 175–184

    Google Scholar 

  97. Podczeck F (1998) The relationship between physical properties of lactose monohydrate and the aerodynamic behaviour of adhered drug particles. Int J Pharm 160:119–130

    CAS  Google Scholar 

  98. Wang C (2005) in: Inhaled particles, vol 5, 1st edn. Elsevier, London, pp 31–54

    Google Scholar 

  99. Gonda I (2004) in: Pharmaceutical inhalation aerosol technology, vol 134, 2nd Edn. Marcel Dekkar, New York, pp 65–88

    Google Scholar 

  100. Wang C (2005) in: Inhaled particles, vol 5, 1st edn. Elsevier, London, pp 55–78

    Google Scholar 

  101. Duddu SP, Sisk SA, Walter YH, Tarara TE, Trimble KR, Clark AR, Eldon MA, Elton RC, Pickford M, Hirst PH, Newman SP, Weers JG (2002) Improved lung delivery from a passive dry powder inhaler using an engineered PulmoSphere powder. Pharm Res 19:689–695

    PubMed  CAS  Google Scholar 

  102. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, Mintzes J, Deaver D, Lotan N, Langer R (1997) Large porous particles for pulmonary drug delivery. Science 276:1868–71

    PubMed  CAS  Google Scholar 

  103. Newhouse MT, Hirst PH, Duddu SP, Walter YH, Tarara TE, Clark AR, Weers JG (2003) Inhalation of a dry powder tobramycin PulmoSphere formulation in healthy volunteers. Chest 124:360–366

    PubMed  CAS  Google Scholar 

  104. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, Gill H, Weers JG (2000) Hollow porous particles in metered dose inhalers. Pharm Res 17:168–174

    PubMed  CAS  Google Scholar 

  105. Tarara TE, Hartman MS, Gill H, Kennedy AA, Weers JG (2004) Characterization of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a. Pharm Res 21:1607–1614

    PubMed  CAS  Google Scholar 

  106. Crowder TM, Rosati JA, Schroeter JD, Hickey AJ, Martonen TB (2002) Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm Res 19:239–245

    PubMed  CAS  Google Scholar 

  107. Ikegami K, Kawashima Y, Takeuchi H, Yamamoto H, Isshiki N, Momose D, Ouchi K (2002) Improved inhalation behavior of steroid KSR-592 in vitro with Jethaler by polymorphic transformation to needle-like crystals (beta-form). Pharm Res 19:1439–1445

    PubMed  CAS  Google Scholar 

  108. Chan HK, Gonda I (1989) Respirable form of crystals of cromoglycic acid. J Pharm Sci 78:176–180

    PubMed  CAS  Google Scholar 

  109. Chan HK, Gonda I (1995) Physicochemical characterization of a new respirable form of nedocromil. J Pharm Sci 84:692–696

    PubMed  CAS  Google Scholar 

  110. Ikegami K, Kawashima Y, Takeuchi H, Yamamoto H, Mimura K, Momose D, Ouchi K (2003) A new agglomerated KSR-592 beta-form crystal system for dry powder inhalation formulation to improve inhalation performance in vitro and in vivo. J Control Release 88:23–33

    PubMed  CAS  Google Scholar 

  111. Zeng XM, Martin AP, Marriott C, Pritchard J (2000) The influence of carrier morphology on drug delivery by dry powder inhalers. Int J Pharm 200:93–106

    PubMed  CAS  Google Scholar 

  112. Larhrib H, Martin GP, Marriott C, Prime D (2003) The influence of carrier and drug morphology on drug delivery from dry powder formulations, Int J Pharm 257:283–296

    PubMed  CAS  Google Scholar 

  113. Chan HK (2008) What is the role of particle morphology in pharmaceutical powder aerosols?. Expert Opin Drug Deliv 5:909–914

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Xu, Z., Hickey, A.J. (2011). The Physics of Aerosol Droplet and Particle Generation from Inhalers. In: Smyth, H., Hickey, A. (eds) Controlled Pulmonary Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9745-6_4

Download citation

Publish with us

Policies and ethics