Skip to main content

Ultra-Wideband Technology for RF Tags: Concepts, Implementations, and Regulations

  • Chapter
  • First Online:
Ultra-Wideband Radio Frequency Identification Systems
  • 1097 Accesses

Abstract

UWB RF tag is an ­important technology for non-LOS identification of objects in harsh EM environments. Currently, there is a significant degree of activity in the UWB RF research community to develop UWB tags with robust operational characteristics, features not available with other conventional RF tags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ISM is defined as Industrial, Scientific, Medical band. Radio devices are allowed to operate in ISM band without any license, provided that they are certified by the regulatory organizations for following the rules and conditions defined for this band.

  2. 2.

    EIRP is defined as the effective isotropic radiated power which is equal to transmitted signal power from an ideal omni-directional (isotropic) antenna.

  3. 3.

    FCC Specification per MHz bandwidth is –41.3 dBm = 500 microvolts at a distance of 3 m. The radiated power density (PEIRP) can be calculated from the following equations:

    $$\frac{1}{2}\left|E\times {H}^{*}\right|=\frac{|E{|}^{2}}{2h}=\frac{{P}_{Tx}{G}_{Tx}}{4p{R}^{2}}=\frac{{p}_{EIRP}}{4p{R}^{2}}$$
    $$ {P}_{EIRP}=\frac{|E{|}^{2}}{377}\times 4p{R}^{2}$$

    Where E represents electric field, H* is the conjugate magnetic field, n is the free space impedance, P TX is the transmit power, G TX is the transmit antenna gain, and R is the distance from transmitter.

References

  1. Daniel M. Dobkin, The RF in RFID: passive UHF RFID in practice, Oxford, UK: Elsevier, 2008.ISBN: 978-0-7506-8209-1.

    Google Scholar 

  2. Kalus Finkenzeller, “The RFID Handbook,”

    Google Scholar 

  3. Joshua Griffin’s tutorial articles on “The Fundamentals of Backscatter radio and RFID Systems,”

    Google Scholar 

  4. Jari-Pascal Curty, Michel Declercq, Catherine Dehollain, Norbet Joehl, “Design and Optimization of Passive UHF RFID System,” Springer, ISBN 9780387352749, 2007.

    Google Scholar 

  5. http://en.wikipedia.org/wiki/Wireless_energy_transfer.

  6. Hewlett-Packard Application Note 918, “Pulse and Waveform Generation with Step recovery Diodes.”

    Google Scholar 

  7. Thomas Buchegger and Alexander Reisenzahn’s presentation, “UWB Pulse Based Test-Beds for Communication and Radar.”)

    Google Scholar 

  8. “A 47pJ/pulse 3.1 to 5 GHz All-Digital UWB Transmitter in 90 nm CMOS,” David D. Wentzloff and Anantha P. Chandrakasan, Massachusetts Institute of Technology, Cambridge, MA, ISSCC 2007.

    Google Scholar 

  9. “Ultra-wideband Transmitter Research,”,Agee, F. J. Baum, C. E. Prather, W. D. Lehr, J. M. O’Loughlin, J. P. Burger, J. W. Schoenberg, J. S. H. Scholfield, D. W. Torres, R. J. Hull, J. P., IEEE TRANSACTIONS ON PLASMA SCIENCE PSI, 1998, VOL 26; NUMBER 3, pages 860–873.

    Google Scholar 

  10. “Sampling Oscilloscope Models and Calibrations,” by K. A. Ramley and D. F. Williams, 2003 IEEE-MTS Digest, pp. 1507–1510.

    Google Scholar 

  11. [Nikitin, P. V. and K. V. S. Rao, Theory and measurement of backscattering from RFID tags, IEEE Antennas and Propagation Magazine, vol. 48, no. 6, pp. 212–218, December 2006].

    Google Scholar 

  12. “Advanced RFID Measurements: Basic Theory to Protocol Conformance Test,” Available on the web: ftp://ftp.ni.com/pub/devzone/pdf/tut_6645.pdf.

  13. FCC, First Report and Order 02–48. February 2002.

    Google Scholar 

  14. FCC Part 15. Courtesy unofficial copy available: http://www.fcc.gov/oet/info/rules/.

  15. FCC 02–48, “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems”, First Report & Order, Washington DC, Adopted 14 Feb 2002, Released 22 April 2002.

    Google Scholar 

  16. http://www.fcc.gov/oet/ea/presentations/files/may05/UWB.

Bibliography

  • T.A. Scharfeld, “An Analysis of the Fundamental Constraints onn Low Cost Passive Radio-Frequency Identification System Design”, Master’s thesis, Massachusetts Institute of Technology, August 2001.

    Google Scholar 

  • G.S. Gill, H.F. Chiang, and J. Hall, “Waveform Synthesis for Ultra Wideband Radar,” Radar Conference 1994., Record of the 1994 IEEE National, pp. 29–31 March 1994.

    Google Scholar 

  • J. S. Lee and C. Nguyen, “Novel Low-Cost Ultra-Wideband, Ultra-Short-Pulse Transmitter with MESFET Impulse-Shaping Circuitry for Reduced Distortion and Improved Pulse Repetition Rate,” IEEE Microwave and Wireless Components Letters., vol. 11, no. 5, pp. 208–210, May 2001.

    Article  Google Scholar 

  • J. Musicer, An Analysis of MOS Current Mode Logic for Low Power and High Performance Digital Logic, M.Sc. Thesis, University of California, Berkeley, 2000.

    Google Scholar 

  • Weste, Neil H. E. and Eshraghian, Kamran. Principles of CMOS VLSI Design: A System Perspective. Reading, Mass: Addison-Wesley, 1994.

    Google Scholar 

  • Y. Bachelet et al., Fully integrated CMOS UWB pulse generator. Electron. Lett. 42(22), 1277–1278 (2006).

    Article  Google Scholar 

  • S. Bagga et al., Codesign of an impulse generator and miniaturized antennas for IR-UWB. IEEE Trans. Microwave Theory Tech. 54(4), 1556–1566 (2006).

    Article  Google Scholar 

  • D. Barras et al., Low-power ultra-wideband wavelets generator with fast start-up circuit. IEEE Trans. Microwave Theory Tech. 54(5), 2138–2145 (2006).

    Article  Google Scholar 

  • C. Buccella et al., Pulse-shaping numerical procedures for ultrawide bandwidth systems. IEEE Trans. Magn. 43(4), 1549–1552 (2007).

    Article  Google Scholar 

  • J.R. Fernandes et al., A pulse generator for UWB-IR based on a relaxation oscillator. IEEE Trans. Circuits Syst. II: Express Briefs 55(3), 239–243 (2008).

    Article  Google Scholar 

  • H. Kim et al., All-digital low-power CMOS pulse generator for UWB system. Electron. Lett. 40(24), 1534–1535 (2004).

    Article  Google Scholar 

  • H. Kim et al., Digitally controllable bi-phase CMOS UWB pulse generator, in IEEE 2005 International Conference on Ultra-Wideband, Sept. 2005, pp. 109–112.

    Google Scholar 

  • J. Lee et al., System-on-package ultra-wideband transmitter using CMOS impulse generator. IEEE Trans. Microwave Theory Tech. 54(4), 1667–1674 (2006).

    Article  Google Scholar 

  • G. Lu et al., Antenna and pulse designs for meeting UWB spectrum density requirements, in IEEE Conference on Ultra Wideband Systems and Technologies, 16–19 Nov. 2003, pp. 162–166.

    Google Scholar 

  • P.P. Mercier et al., Ultra-low-power UWB for sensor network applications, in IEEE International Symposium on Circuits and Systems, 18–21 May 2008, pp. 2562–2565.

    Google Scholar 

  • O. Mi-Kyung et al., Digitally-controlled UWB pulse generator for IEEE 802.1 5.4a systems, in International Conference on Consumer Electronics, 10–14 Jan. 2007.

    Google Scholar 

  • T. Norimatsu et al., A UWB-IR transmitter with digitally controlled pulse generator. IEEE J. Solid-State Circuits 42(6), 1300–1309 (2007).

    Article  Google Scholar 

  • L. Smaini et al., Single-chip CMOS pulse generator for UWB systems. IEEE J. Solid-State Circuits 41(7), 1551–1561 (2006).

    Article  Google Scholar 

  • D.D. Wentzloff, A.P. Chandrakasan, Gaussian pulse generators for subbanded ultra-wideband transmitters. IEEE Trans. Microwave Theory Tech. 54(4), 1647–1655 (2006).

    Article  Google Scholar 

  • D.D. Wentzloff et al., A 47 pJ/pulse 3.1-to-5 GHz all-digital UWB transmitter in 90 nm CMOS, in IEEE International Solid-State Circuits Conference, 11–15 Feb. 2007, pp. 118–591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faranak Nekoogar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nekoogar, F., Dowla, F. (2011). Ultra-Wideband Technology for RF Tags: Concepts, Implementations, and Regulations. In: Ultra-Wideband Radio Frequency Identification Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9701-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9701-2_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9700-5

  • Online ISBN: 978-1-4419-9701-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics