Skip to main content

Synaptic Signaling in Ischemic Tolerance

  • Chapter
  • First Online:
Innate Tolerance in the CNS

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 933 Accesses

Abstract

While a role of glutamate receptors in mediating the harmful effects of stroke was reported over 20 years ago, the role of the synapse in mediating ischemia and ischemic tolerance have been relatively less well studied. In this chapter, I will discuss the role of the major excitatory and inhibitory systems in the brain in mediating either the induction of tolerance following preconditioning or the effect of tolerance, i.e., neuroprotection. Finally, we will review exciting new work which highlights the dynamic nature of the synapse and rapid remodeling events in the synapse that may identify novel approaches for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298(5594):846–850

    Article  PubMed  CAS  Google Scholar 

  • Alsbo CW, Wrang ML, Nielsen M, Diemer NH (2000a) Ischemic tolerance affects the adenylation state of GluR2 mRNA. Neuroreport 11(14):3279–3282

    Article  PubMed  CAS  Google Scholar 

  • Alsbo CW, Wrang ML, Johansen FF, Diemer NH (2000b) Quantitative PCR analysis of AMPA receptor composition in two paradigms of global ischemia. Neuroreport 11(2):311–315

    Article  PubMed  CAS  Google Scholar 

  • Andrade AL, Rossi DJ (2010) Simulated ischaemia induces Ca2+−independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus. J Physiol 588(Pt 9):1499–1514

    Article  PubMed  CAS  Google Scholar 

  • Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X et al (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29(9):1937–1950, discussion 50–1

    Article  PubMed  CAS  Google Scholar 

  • Berg M, Bruhn T, Johansen FF, Diemer NH (1993) Kainic acid-induced seizures and brain damage in the rat: different effects of NMDA- and AMPA receptor antagonists. Pharmacol Toxicol 73(5):262–268

    Article  PubMed  CAS  Google Scholar 

  • Biegon A, Fry PA, Paden CM, Alexandrovich A, Tsenter J, Shohami E (2004) Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice: implications for treatment of neurological and cognitive deficits. Proc Natl Acad Sci USA 101(14):5117–5122

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Plamondon H, Richelme C, Heurteaux C, Lazdunski M (2000) K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100(3):465–474

    Article  PubMed  CAS  Google Scholar 

  • Bond A, Lodge D, Hicks CA, Ward MA, O’Neill MJ (1999) NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischaemic tolerance in the gerbil hippocampus. Eur J Pharmacol 380(2–3):91–99

    Article  PubMed  CAS  Google Scholar 

  • Buchan AM, Pulsinelli WA (1990) Septo-hippocampal deafferentation protects CA1 neurons against ischemic injury. Brain Res 512(1):7–14

    Article  PubMed  CAS  Google Scholar 

  • Calderone A, Jover T, Noh KM, Tanaka H, Yokota H, Lin Y et al (2003) Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 23(6):2112–2121

    PubMed  CAS  Google Scholar 

  • Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53(3):362–368

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY et al (2008) Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke 39(11):3042–3048

    Article  PubMed  CAS  Google Scholar 

  • Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK et al (2003) Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40(3):595–607

    Article  PubMed  CAS  Google Scholar 

  • Corbett D, Giles T, Evans S, McLean J, Biernaskie J (2006) Dynamic changes in CA1 dendritic spines associated with ischemic tolerance. Exp Neurol 202(1):133–138

    Article  PubMed  CAS  Google Scholar 

  • Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I et al (2005) Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res 82(5):665–673

    Article  PubMed  CAS  Google Scholar 

  • DeFazio RA, Raval AP, Lin HW, Dave KR, Della-Morte D, Perez-Pinzon MA (2009) GABA synapses mediate neuroprotection after ischemic and epsilonPKC preconditioning in rat hippocampal slice cultures. J Cereb Blood Flow Metab 29(2):375–384

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Upadhya SC, Ding L, Smith TK, Hegde AN (2008) Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn Mem 15(5):335–347

    Article  PubMed  CAS  Google Scholar 

  • Duszczyk M, Gadamski R, Ziembowicz A, Danysz W, Lazarewicz JW (2005) NMDA receptor antagonism does not inhibit induction of ischemic tolerance in gerbil brain in vivo. Neurotox Res 7(4):283–292

    Article  PubMed  CAS  Google Scholar 

  • Duszczyk M, Gadamski R, Ziembowicz A, Lazarewicz JW (2006) Antagonists of group I metabotropic glutamate receptors do not inhibit induction of ischemic tolerance in gerbil hippocampus. Neurochem Int 48(6–7):478–484

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6(3):231–242

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom von Lubitz DK, Diemer NH (1982) Complete cerebral ischaemia in the rat: an ultrastructural and stereological analysis of the distal stratum radiatum in the hippocampal CA-1 region. Neuropathol Appl Neurobiol 8(3):197–215

    Article  PubMed  CAS  Google Scholar 

  • Fix AS, Horn JW, Wightman KA, Johnson CA, Long GG, Storts RW et al (1993) Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 123(2):204–215

    Article  PubMed  CAS  Google Scholar 

  • Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV (2006) A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52(2):239–245

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Zulueta M, Feldman AB, Klesse LJ, Kalb RG, Dillman JF, Parada LF et al (2000) Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc Natl Acad Sci USA 97(1):436–441

    Article  PubMed  CAS  Google Scholar 

  • Grabb MC, Choi DW (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 19(5):1657–1662

    PubMed  CAS  Google Scholar 

  • Grabb MC, Lobner D, Turetsky DM, Choi DW (2002) Preconditioned resistance to oxygen-glucose deprivation-induced cortical neuronal death: alterations in vesicular GABA and glutamate release. Neuroscience 115(1):173–183

    Article  PubMed  CAS  Google Scholar 

  • Graber S, Maiti S, Halpain S (2004) Cathepsin B-like proteolysis and MARCKS degradation in sub-lethal NMDA-induced collapse of dendritic spines. Neuropharmacology 47(5):706–713

    Article  PubMed  CAS  Google Scholar 

  • Graham SH, Chen J, Lan JQ, Simon RP (1996) A dose-response study of neuroprotection using the AMPA antagonist NBQX in rat focal cerebral ischemia. J Pharmacol Exp Ther 276(1):1–4

    PubMed  CAS  Google Scholar 

  • Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L et al (2006) NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA 103(49):18769–18774

    Article  PubMed  CAS  Google Scholar 

  • Groc L, Bard L, Choquet D (2009) Surface trafficking of N-methyl-D-aspartate receptors: physiological and pathological perspectives. Neuroscience 158(1):4–18

    Article  PubMed  CAS  Google Scholar 

  • Haghir H, Kovac S, Speckmann EJ, Zilles K, Gorji A (2009) Patterns of neurotransmitter receptor distributions following cortical spreading depression. Neuroscience 163(4):1340–1352

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2002) Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. Biochim Biophys Acta 1600(1–2):148–153

    PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414

    PubMed  CAS  Google Scholar 

  • Harris AZ, Pettit DL (2007) Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol 584(Pt 2):509–519

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A (1992) MARCKS is an actin filament cross-linking protein regulated by protein kinase C and calcium-calmodulin. Nature 356(6370):618–622

    Article  PubMed  CAS  Google Scholar 

  • Hasbani MJ, Schlief ML, Fisher DA, Goldberg MP (2001a) Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J Neurosci 21(7):2393–2403

    PubMed  CAS  Google Scholar 

  • Hasbani MJ, Viquez NM, Goldberg MP (2001b) NMDA receptors mediate hypoxic spine loss in cultured neurons. Neuroreport 12(12):2731–2735

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 92(10):4666–4670

    Article  PubMed  CAS  Google Scholar 

  • Hills CP (1964) The ultrastructure of anoxic-ischaemic lesions in the cerebral cortex of the adult rat brain. Guys Hosp Rep 113:333–348

    PubMed  CAS  Google Scholar 

  • Hogins J, Crawford DC, Jiang X, Mennerick S (2011) Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiol Dis 43(2):516–525

    Article  PubMed  CAS  Google Scholar 

  • Hoyte L, Barber PA, Buchan AM, Hill MD (2004) The rise and fall of NMDA antagonists for ischemic stroke. Curr Mol Med 4(2):131–136

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Li W, Li B, Zou F (2006) Activation of ATP-sensitive K channels protects hippocampal CA1 neurons from hypoxia by suppressing p53 expression. Neurosci Lett 398(1–2):34–38

    Article  PubMed  CAS  Google Scholar 

  • Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28(5):730–738

    Article  PubMed  CAS  Google Scholar 

  • Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9(6):536–542

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya Y, Kim JA, Baba M, Iwatsubo T, Nishiyama N, Matsuki N (2001) Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. J Cell Sci 114(Pt 22):4083–4093

    PubMed  CAS  Google Scholar 

  • Iwabuchi S, Kawahara K (2009) Possible involvement of extracellular ATP-P2Y purinoceptor signaling in ischemia-induced tolerance of astrocytes in culture. Neurochem Res 34(9):1542–1554

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Liu Y, Araki T, Kogure K (1992) MK-801, but not anisomycin, inhibits the induction of tolerance to ischemia in the gerbil hippocampus. Neurosci Lett 139(1):118–121

    Article  PubMed  CAS  Google Scholar 

  • Kawahara N, Ide T, Saito N, Kawai K, Kirino T (1998) Propentofylline potentiates induced ischemic tolerance in gerbil hippocampal neurons via adenosine receptor. J Cereb Blood Flow Metab 18(5):472–475

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Nakagomi T, Kirino T, Tamura A, Kawai N (1998) Preconditioning in vivo ischemia inhibits anoxic long-term potentiation and functionally protects CA1 neurons in the gerbil. J Cereb Blood Flow Metab 18(3):288–296

    Article  PubMed  CAS  Google Scholar 

  • Khazaei MR, Bunk EC, Hillje AL, Jahn HM, Riegler EM, Knoblich JA et al (2011) The E3-ubiquitin ligase TRIM2 regulates neuronal polarization. J Neurochem 117(1):29–37

    Article  PubMed  CAS  Google Scholar 

  • Kjoller C, Diemer NH (2000) GluR2 protein synthesis and metabolism in rat hippocampus following transient ischemia and ischemic tolerance induction. Neurochem Int 37(1):7–15

    Article  PubMed  CAS  Google Scholar 

  • Kulinskii VI, Sufianova GZ, Usov LA (1996) The biological range and characteristics of the importance of adenosine receptors for the resistance of the brain to total ischemia. Eksp Klin Farmakol 59(4):25–27

    PubMed  CAS  Google Scholar 

  • Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2004) Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab 24(6):636–645

    Article  PubMed  CAS  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542

    Article  PubMed  CAS  Google Scholar 

  • Lester RA, Quarum ML, Parker JD, Weber E, Jahr CE (1989) Interaction of 6-cyano-7-nitroquinoxaline-2,3-dione with the N-methyl-D-aspartate receptor-associated glycine binding site. Mol Pharmacol 35(5):565–570

    PubMed  CAS  Google Scholar 

  • Liu CL, Martone ME, Hu BR (2004) Protein ubiquitination in postsynaptic densities after transient cerebral ischemia. J Cereb Blood Flow Metab 24(11):1219–1225

    Article  PubMed  Google Scholar 

  • Liu C, Chen S, Kamme F, Hu BR (2005) Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience 134(1):69–80

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Liao M, Mielke JG, Ning K, Chen Y, Li L et al (2006) Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 26(20):5309–5319

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27(11):2846–2857

    Article  PubMed  CAS  Google Scholar 

  • Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z et al (2001) Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 21(23):9204–9213

    PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS, Saboureau M, Pevet P (2006) Rapid and reversible changes in intrahippocampal connectivity during the course of hibernation in European hamsters. Proc Natl Acad Sci USA 103(49):18775–18780

    Article  PubMed  CAS  Google Scholar 

  • Martel MA, Soriano FX, Baxter P, Rickman C, Duncan R, Wyllie DJ et al (2009) Inhibiting pro-death NMDA receptor signaling dependent on the NR2 PDZ ligand may not affect synaptic function or synaptic NMDA receptor signaling to gene expression. Channels (Austin) 3(1):12–15

    Article  CAS  Google Scholar 

  • Meldrum BS (1993) Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol 3(4):405–412

    Article  PubMed  CAS  Google Scholar 

  • Meller R (2009) The role of the ubiquitin proteasome system in ischemia and ischemic tolerance. Neuroscientist 15(3):243–260

    Article  PubMed  CAS  Google Scholar 

  • Meller R, Cameron JA, Torrey DJ, Clayton CE, Ordonez AN, Henshall DC et al (2006) Rapid degradation of Bim by the ubiquitin-proteasome pathway mediates short-term ischemic tolerance in cultured neurons. J Biol Chem 281(11):7429–7436

    Article  PubMed  CAS  Google Scholar 

  • Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V et al (2008) Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. J Neurosci 28(1):50–59

    Article  PubMed  CAS  Google Scholar 

  • Miao B, Yin XH, Pei DS, Zhang QG, Zhang GY (2005) Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation. J Biol Chem 280(23):21693–21699

    Article  PubMed  CAS  Google Scholar 

  • Minakina LN, Kulinskii VI, Usov LA (2007) The role of hypothermia in brain protection by adenosine receptor agonists. Eksp Klin Farmakol 70(3):20–24

    PubMed  CAS  Google Scholar 

  • Miwa H, Fukaya M, Watabe AM, Watanabe M, Manabe T (2008) Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS. J Physiol 586(10):2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Giffard RG, Hartley DM, Dugan LL, Goldberg MP, Choi DW (1992) Oxygen or glucose deprivation-induced neuronal injury in cortical cell cultures is reduced by tetanus toxin. Neuron 8(5):967–973

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Nakakimura K, Matsumoto M, Sakabe T (2002) Rapid tolerance to focal cerebral ischemia in rats is attenuated by adenosine A1 receptor antagonist. J Cereb Blood Flow Metab 22(2):161–170

    Article  PubMed  CAS  Google Scholar 

  • Nakata N, Kato H, Kogure K (1994) Ischemic tolerance and extracellular amino acid concentrations in gerbil hippocampus measured by intracerebral microdialysis. Brain Res Bull 35(3):247–251

    Article  PubMed  CAS  Google Scholar 

  • Nilsson GE, Lutz PL (1991) Release of inhibitory neurotransmitters in response to anoxia in turtle brain. Am J Physiol 261(1 Pt 2):R32–R37

    PubMed  CAS  Google Scholar 

  • Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV (2005) Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 102(34):12230–12235

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164(880):719–721

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 30(1):75–90

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monosodium glutamate. Science 166(903):386–388

    Article  PubMed  CAS  Google Scholar 

  • Ordonez AN, Jessick VJ, Clayton CE, Ashley MD, Thompson SJ, Simon RP et al (2010) Rapid ischemic tolerance induced by adenosine preconditioning results in Bcl-2 interacting mediator of cell death (Bim) degradation by the proteasome. Int J Physiol Pathophysiol Pharmacol 2(1):36–44

    PubMed  CAS  Google Scholar 

  • Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N et al (2008) The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J 409(1):43–52

    Article  PubMed  CAS  Google Scholar 

  • Palmer GC (2001) Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr Drug Targets 2(3):241–271

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Bateman MC, Goldberg MP (1996) Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol Dis 3(3):215–227

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Liu F, Brethorst S, Jeftinija K, Jeftinija S, Haydon PG (1995) Alpha-latrotoxin stimulates glutamate release from cortical astrocytes in cell culture. FEBS Lett 360(3):266–270

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pinzon MA, Born JG (1999) Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience 89(2):453–459

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pinzon MA, Mumford PL, Rosenthal M, Sick TJ (1996) Anoxic preconditioning in hippocampal slices: role of adenosine. Neuroscience 75(3):687–694

    Article  PubMed  CAS  Google Scholar 

  • Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130(Pt 1):151–158

    PubMed  Google Scholar 

  • Popov VI, Bocharova LS (1992) Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 48(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Rehni AK, Singh TG, Behl N, Arora S (2010) Possible involvement of ubiquitin proteasome system and other proteases in acute and delayed aspects of ischemic preconditioning of brain in mice. Biol Pharm Bull 33(12):1953–1957

    Article  PubMed  CAS  Google Scholar 

  • Renshaw GM, Wise G, Dodd PR (2010) Ecophysiology of neuronal metabolism in transiently oxygen-depleted environments: evidence that GABA is accumulated pre-synaptically in the cerebellum. Comp Biochem Physiol A Mol Integr Physiol 155(4):486–492

    Article  PubMed  CAS  Google Scholar 

  • Reshef A, Sperling O, Zoref-Shani E (2000a) Role of K(ATP) channels in the induction of ischemic tolerance by the ‘adenosine mechanism’ in neuronal cultures. Adv Exp Med Biol 486:217–221

    Article  PubMed  CAS  Google Scholar 

  • Reshef A, Sperling O, Zoref-Shani E (2000b) Opening of K(ATP) channels is mandatory for acquisition of ischemic tolerance by adenosine. Neuroreport 11(3):463–465

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Westbrook GL (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10(5):805–814

    Article  PubMed  CAS  Google Scholar 

  • Ross AP, Christian SL, Zhao HW, Drew KL (2006) Persistent tolerance to oxygen and nutrient deprivation and N-methyl-D-aspartate in cultured hippocampal slices from hibernating Arctic ground squirrel. J Cereb Blood Flow Metab 26(9):1148–1156

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321

    Article  PubMed  CAS  Google Scholar 

  • Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4(7):1884–1891

    PubMed  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu WY, MacDonald JF, Tymianski M (2000) Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci 20(1):22–33

    PubMed  CAS  Google Scholar 

  • Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM, Ventureyra EC et al (2007) Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res 1168:129–138

    Article  PubMed  CAS  Google Scholar 

  • Shamloo M, Wieloch T (1999) Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. J Cereb Blood Flow Metab 19(2):173–183

    Article  PubMed  CAS  Google Scholar 

  • Shen HY, Lusardi TA, Williams-Karnesky RL, Lan JQ, Poulsen DJ, Boison D (2011) Adenosine kinase determines the degree of brain injury after ischemic stroke in mice. J Cereb Blood Flow Metab 31(7):1648–1659

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Shiraishi K (1990) N-methyl-D-aspartate antagonist reduces stroke size and regional glucose metabolism. Ann Neurol 27(6):606–611

    Article  PubMed  CAS  Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226(4676):850–852

    Article  PubMed  CAS  Google Scholar 

  • Sommer C, Kiessling M (2002) Ischemia and ischemic tolerance induction differentially regulate protein expression of GluR1, GluR2, and AMPA receptor binding protein in the gerbil hippocampus: GluR2 (GluR-B) reduction does not predict neuronal death. Stroke 33(4):1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Sommer C, Roth SU, Kuhn R, Kiessling M (2000) Metabotropic glutamate receptor subtypes are differentially expressed after transient cerebral ischemia without, during and after tolerance induction in the gerbil hippocampus. Brain Res 872(1–2):172–180

    Article  PubMed  CAS  Google Scholar 

  • Soriano FX, Papadia S, Hofmann F, Hardingham NR, Bading H, Hardingham GE (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26(17):4509–4518

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi T, Nowak TS Jr (2004) Pharmacological manipulations of ATP-dependent potassium channels and adenosine A1 receptors do not impact hippocampal ischemic preconditioning in vivo: evidence in a highly quantitative gerbil model. J Cereb Blood Flow Metab 24(5):556–563

    Article  PubMed  CAS  Google Scholar 

  • Stapels M, Piper C, Yang T, Li M, Stowell C, Xiong ZG et al (2010) Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal 3(111):ra15

    Article  PubMed  CAS  Google Scholar 

  • Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M et al (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362(9389):1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Sundaram M, Cook HW, Byers DM (2004) The MARCKS family of phospholipid binding proteins: regulation of phospholipase D and other cellular components. Biochem Cell Biol 82(1):191–200

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Graham SH, Simon RP (1996) The role of excitatory neurotransmitters in seizure-induced neuronal injury in rats. Brain Res 737(1–2):59–63

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Calderone A, Jover T, Grooms SY, Yokota H, Zukin RS et al (2002) Ischemic preconditioning acts upstream of GluR2 down-regulation to afford neuroprotection in the hippocampal CA1. Proc Natl Acad Sci USA 99(4):2362–2367

    PubMed  CAS  Google Scholar 

  • Tauskela JS, Comas T, Hewitt K, Monette R, Paris J, Hogan M et al (2001) Cross-tolerance to otherwise lethal N-methyl-D-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures. Neuroscience 107(4):571–584

    Article  PubMed  CAS  Google Scholar 

  • Tauskela JS, Brunette E, Monette R, Comas T, Morley P (2003) Preconditioning of cortical neurons by oxygen-glucose deprivation: tolerance induction through abbreviated neurotoxic signaling. Am J Physiol Cell Physiol 285(4):C899–C911

    PubMed  CAS  Google Scholar 

  • Tauskela JS, Fang H, Hewitt M, Brunette E, Ahuja T, Thivierge JP et al (2008) Elevated synaptic activity preconditions neurons against an in vitro model of ischemia. J Biol Chem 283(50):34667–34676

    Article  PubMed  CAS  Google Scholar 

  • Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95(3):1727–1734

    Article  PubMed  CAS  Google Scholar 

  • Thompson S, Pearson AN, Ashley MD, Jessick V, Murphy B, Gafken P et al (2011) Identification of a novel BIM (BCL-2 interacting mediator of cell death) E3-ligase, tri-partite motif containing protein 2 (TRIM2), and its role in rapid ischemic tolerance-induced neuroprotection. J Biol Chem 286(22):19331–19339

    Article  PubMed  CAS  Google Scholar 

  • Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19(10):4180–4188

    PubMed  CAS  Google Scholar 

  • von Arnim CA, Timmler M, Ludolph AC, Riepe MW (2000) Adenosine receptor up-regulation: initiated upon preconditioning but not upheld. Neuroreport 11(6):1223–1226

    Article  Google Scholar 

  • von der Ohe CG, Darian-Smith C, Garner CC, Heller HC (2006) Ubiquitous and temperature-dependent neural plasticity in hibernators. J Neurosci 26(41):10590–10598

    Article  PubMed  CAS  Google Scholar 

  • von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Kohr G, Seeburg PH et al (2007) Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology 53(1):10–17

    Article  CAS  Google Scholar 

  • Waataja JJ, Kim HJ, Roloff AM, Thayer SA (2008) Excitotoxic loss of post-synaptic sites is distinct temporally and mechanistically from neuronal death. J Neurochem 104(2):364–375

    PubMed  CAS  Google Scholar 

  • Wang RM, Yang F, Zhang YX (2006) Preconditioning-induced activation of ERK5 is dependent on moderate Ca2+ influx via NMDA receptors and contributes to ischemic tolerance in the hippocampal CA1 region of rats. Life Sci 79(19):1839–1846

    Article  PubMed  CAS  Google Scholar 

  • Werner CG, Scartabelli T, Pancani T, Landucci E, Moroni F, Pellegrini-Giampietro DE (2007) Differential role of mGlu1 and mGlu5 receptors in rat hippocampal slice models of ischemic tolerance. Eur J Neurosci 25(12):3597–3604

    Article  PubMed  Google Scholar 

  • Williams V, Grossman RG (1970) Ultrastructure of cortical synapses after failure of presynaptic activity in ischemia. Anat Rec 166(2):131–141

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, Hale SL, Moffett JR, Dave JR, Elliott PJ, Adams J et al (2003) Delayed treatment with MLN519 reduces infarction and associated neurologic deficit caused by focal ischemic brain injury in rats via antiinflammatory mechanisms involving nuclear factor-kappaB activation, gliosis, and leukocyte infiltration. J Cereb Blood Flow Metab 23(1):75–87

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, Berti R, Dave JR, Elliot PJ, Adams J, Tortella FC (2004) Delayed treatment of ischemia/reperfusion brain injury: extended therapeutic window with the proteasome inhibitor MLN519. Stroke 35(5):1186–1191

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, Dave JR, Tortella FC (2006) Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury: relation to nuclear factor kappaB (NF-kappaB), inflammatory gene expression, and leukocyte infiltration. Neurochem Int 49(2):106–112

    Article  PubMed  CAS  Google Scholar 

  • Williams-Karnesky RL, Stenzel-Poore MP (2009) Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr Neuropharmacol 7(3):217–227

    Article  PubMed  CAS  Google Scholar 

  • Wojcik C, Di Napoli M (2004) Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke 35(6):1506–1518

    Article  PubMed  CAS  Google Scholar 

  • Wood PL, Hawkinson JE (1997) N-methyl-D-aspartate antagonists for stroke and head trauma. Expert Opin Investig Drugs 6(4):389–397

    Article  PubMed  CAS  Google Scholar 

  • Wrang ML, Diemer NH (2004) MK-801 does not prevent development of ischemic tolerance in rat brain. Neuroreport 15(7):1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Yamaguchi F, Miyamoto O, Hatase O, Tokuda M (1999) The reversible change of GluR2 RNA editing in gerbil hippocampus in course of ischemic tolerance. J Cereb Blood Flow Metab 19(4):370–375

    Article  PubMed  CAS  Google Scholar 

  • Zhang WL, Lu GW (1999) Changes of adenosine and its A(1) receptor in hypoxic preconditioning. Biol Signals Recept 8(4–5):275–280

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Boyd J, Delaney K, Murphy TH (2005) Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 25(22):5333–5338

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C et al (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5(8):e1000604

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ, Buchthal B, Lau D, Hayer S, Dick O, Schwaninger M et al (2011) A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 31(13):4978–4990

    Article  PubMed  CAS  Google Scholar 

  • Zhao HW, Christian SL, Castillo MR, Bult-Ito A, Drew KL (2006) Distribution of NMDA receptor subunit NR1 in arctic ground squirrel central nervous system. J Chem Neuroanat 32(2–4):196–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Robert Meller is currently funded by the NIH (NS59588). Institutional support at the Neuroscience Institute at Morehouse School of Medicine was provided by NIH/NCRR/RCMI grants G12-RR03034, U54 NS060659, and S21MD000101–10. Previous funding support provided by NIH grants NS050669 and NS054023 (Meller), NS024728 (Roger Simon), and the American Heart Association 0465430Z (Meller). Dr. Meller would like to thank collaborators and colleagues both past and present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Meller D.Phil. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meller, R. (2013). Synaptic Signaling in Ischemic Tolerance. In: Gidday, J., Perez-Pinzon, M., Zhang, J. (eds) Innate Tolerance in the CNS. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9695-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9695-4_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9694-7

  • Online ISBN: 978-1-4419-9695-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics