Skip to main content

Calcium Dyshomeostasis in Astrocytes After Ischemia

  • Chapter
  • First Online:
Metal Ion in Stroke

Abstract

Astrocytes play significant roles in the demise of brain tissue after ­cerebral ischemia. Dysfunction in the Ca2+ homeostasis process has the potential to contribute to cellular damage in ischemia through loss of astrocytic normal functions or through gain of detrimental effects. In this chapter, we summarize the role of astrocyte Ca2+ signaling in physiology and pathophysiolgy of brain ischemia, their different modes of initiation, and their functional significance for astrocytes and astrocyte–neuron communication. In particular, we review current knowledge about the independent intrinsic Ca2+ activity of astrocytes and how these cells respond with Ca2+ elevations in their cytosol to synaptic activity. Both forms of astrocyte Ca2+ increases are produced predominantly by Ca2+ release from IP3 receptor-mediated intracellular stores. Astrocyte Ca2+ elevations are coupled to regulated release of gliotransmitters, including glutamate, adenosine 5′ triphosphate (ATP), or d-serine, which modulate synaptic activity in adjacent neurons. In turn, astrocytes release vasoactive compounds that regulate cerebrovasculature. Changes in astrocytic Ca2+ signaling during ischemia and reperfusion may contribute to aberrant astrocyte metabolism and release of gliotransmitters, which may result in brain edema and altered activity of gap junctions. Modulating astrocytic Ca2+ signaling may help to develop new therapeutic means to diminish brain damage after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates ­correlated network properties of spontaneous Ca2+ transients in astrocytes in situ. J Neurosci 22:9430–9444

    PubMed  CAS  Google Scholar 

  • Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte Ca2+ in neurophysiology? Neuron 59:932–946

    PubMed  CAS  Google Scholar 

  • Allen NJ, Attwell D (2004) The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus. J Physiol 561:485–498

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Xue R, Haug FM, Neely JD, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori S, Ottersen OP (2004) Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J 18:542–544

    PubMed  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998a) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    PubMed  CAS  Google Scholar 

  • Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998b) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    PubMed  CAS  Google Scholar 

  • Araque A, Martín ED, Perea G, Arellano JI, Buño W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    PubMed  CAS  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99:9840–9845

    PubMed  CAS  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    PubMed  CAS  Google Scholar 

  • Backus KH, Berger T (1995) Developmental variation of the permeability to Ca2+ of AMPA receptors in presumed hilar glial precursor cells. Pflugers Arch 431:244–252

    PubMed  CAS  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation and clinical implications. Neurobiol Dis 16:1–13

    PubMed  CAS  Google Scholar 

  • Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    PubMed  Google Scholar 

  • Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361:315–325

    PubMed  CAS  Google Scholar 

  • Berridge MJ (2005) Unlocking the secrets of cell signalling. Annu Rev Physiol 67:1–21

    PubMed  CAS  Google Scholar 

  • Bezprovanny I, Ehrlich BE (1995) The inositol 1,4,5-triphosphate receptors. J Membr Biol 145:205–216

    Google Scholar 

  • Bezprozvanny I (2005) The inositol 1,4,5-triphosphate receptors. Cell Calcium 38:261–272

    PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    PubMed  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    PubMed  CAS  Google Scholar 

  • Blanc EM, Bruce-Keller AJ, Mattson MP (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J Neurochem 70:958–970

    PubMed  CAS  Google Scholar 

  • Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–295

    PubMed  CAS  Google Scholar 

  • Boitier E, Rea R, Duchen M (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145:795–808

    PubMed  CAS  Google Scholar 

  • Bondarenko A, Svichar N, Chesler M (2005) Role of Na+-H+and Na+-Ca2+ exchange in hypoxia-related acute astrocyte death. Glia 49:143–152

    PubMed  Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    PubMed  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 ­stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocutes domains during postnatal hippocamplar development. Int J Dev Neurosci 22:73–86

    PubMed  Google Scholar 

  • Charles KJ, Deuchars J, Davies CH, Pangalos MN (2003) GABA B receptor subunit expression in glia. Mol Cell Neurosci 24:214–223

    PubMed  CAS  Google Scholar 

  • Chen M, Simard JM (2001) Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci 21:6512–6521

    PubMed  CAS  Google Scholar 

  • Chen M, Dong Y, Simard JM (2003) Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 23:8568–8577

    PubMed  CAS  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    PubMed  CAS  Google Scholar 

  • Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of ­connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 47:290–303

    PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    PubMed  CAS  Google Scholar 

  • Cotrina M, Nedergaard M (2005) Intracellular calcium control mechanisms in glia. In: Kettenmann H, Ramson B (eds) Neuroglia. Oxford University Press, New York

    Google Scholar 

  • Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M (1998a) Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18:2520–2537

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998b) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95:15735–15740

    PubMed  CAS  Google Scholar 

  • Dallas M, Boycott HE, Atkinson L, Miller A, Boyle JP, Pearson HA, Peers C (2007) Hypoxia ­suppresses glutamate transport in astrocytes. J Neurosci 27:3946–3955

    PubMed  CAS  Google Scholar 

  • Deitmer JW, Verkhratsky A, Lohr C (1998) Calcium signalling in glial cells. Cell Calcium 24:405–416

    PubMed  CAS  Google Scholar 

  • Deitmer JW, Singaravelu K, Lohr C (2009) Calcium ion signalling in astrocytes. In: Parpura V, Haydon PG (eds) Astrocytes in (patho)physiology of the nervous system. Springer, New York

    Google Scholar 

  • Ding S, Wang T, Cui W, Haydon PG (2009) Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57:767–776

    PubMed  Google Scholar 

  • Doengi M, Deitmer JW, Lohr C (2008) New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes. FASEB J 22:2368–2378

    PubMed  CAS  Google Scholar 

  • Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281:30684–30696

    PubMed  CAS  Google Scholar 

  • Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58:730–740

    PubMed  Google Scholar 

  • Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  • Duffy S, MacVicar BA (1996) In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci 16:71–81

    PubMed  CAS  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    PubMed  CAS  Google Scholar 

  • Fern R (1998) Intracellular calcium and cell death during ischemia in neonatal rat white matter astrocytes in situ. J Neurosci 18:7232–7243

    PubMed  CAS  Google Scholar 

  • Feustel PJ, Jin Y, Kimelberg HK (2004) Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35:1164–1168

    PubMed  CAS  Google Scholar 

  • Figiel M, Allritz C, Lehmann C, Engele J (2007) Gap junctional control of glial glutamate transporter expression. Mol Cell Neurosci 35:130–137

    PubMed  CAS  Google Scholar 

  • Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-triphosphate-induced calcium release. Science 252:443–446

    PubMed  CAS  Google Scholar 

  • García-Barcina JM, Matute C (1996) Expression of kainate-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Eur J Neurosci 8:2379–2387

    PubMed  Google Scholar 

  • García-Barcina JM, Matute C (1998) AMPA-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Brain Res Mol Brain Res 53:270–276

    PubMed  Google Scholar 

  • Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24:50–64

    PubMed  CAS  Google Scholar 

  • Giffard RG, Swanson RA (2005) Ischemia-induced programmed cell death in astrocytes. Glia 50:299–306

    PubMed  Google Scholar 

  • Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335

    PubMed  CAS  Google Scholar 

  • Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism ­dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  • Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    PubMed  CAS  Google Scholar 

  • Hamilton SL (2005) Ryanodine receptors. Cell Calcium 38:253–260

    PubMed  CAS  Google Scholar 

  • Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci U S A 93:13268–13273

    PubMed  CAS  Google Scholar 

  • Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:E96

    PubMed  Google Scholar 

  • Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29:7092–7097

    PubMed  CAS  Google Scholar 

  • Inagaki N, Fukui H, Ito S, Yamatodani A, Wada H (1991) Single type-2 astrocytes show multiple independent sites of Ca2+ signaling in response to histamine. Proc Natl Acad Sci U S A 88:4215–4219

    PubMed  CAS  Google Scholar 

  • Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during ­calcium signaling in cultured astrocytes. J Neurosci 20:1800–1808

    PubMed  CAS  Google Scholar 

  • Jabs R, Kirchhoff F, Kettenmann H, Steinhäuser C (1994) Kainate activates Ca(2+)-permeable glutamate receptors and blocks voltage-gated K  +  currents in glial cells of mouse hippocampal slices. Pflugers Arch 426:310–319

    PubMed  CAS  Google Scholar 

  • James G, Butt AM (2001) P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. Cell Calcium 30:251–259

    PubMed  CAS  Google Scholar 

  • Jayakumar AR, Norenberg MD (2010) The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis 25:31–38

    PubMed  CAS  Google Scholar 

  • Jensen AM, Chiu SY (1991) Differential intracellular calcium responses to glutamate in type 1 and type 2 cultured brain astrocytes. J Neurosci 11:1674–1684

    PubMed  CAS  Google Scholar 

  • Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-­dependent glutamate release from cultured astrocytes. J Neurochem 77:664–675

    PubMed  CAS  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    PubMed  CAS  Google Scholar 

  • Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Macvicar BA, Sontheimer H (2006) Anion channels in astrocytes: biophysics, pharmacology, and function. Glia 54:747–757

    PubMed  Google Scholar 

  • Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A (1999) Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience 92:1051–1059

    PubMed  CAS  Google Scholar 

  • Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683

    PubMed  CAS  Google Scholar 

  • Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473–5480

    PubMed  CAS  Google Scholar 

  • Latour I, Gee CE, Robitaille R, Lacaille JC (2001) Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Hippocampus 11:132–145

    PubMed  CAS  Google Scholar 

  • Lee A, Lingwood BE, Bjorkman ST, Miller SM, Poronnik P, Barnett NL, Colditz P, Pow DV (2010) Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: implications for excitotoxicity. J Chem Neuroanat 39:211–220

    PubMed  CAS  Google Scholar 

  • Lenart B, Kintner DB, Shull GE, Sun D (2004) Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J Neurosci 24:9585–9597

    PubMed  CAS  Google Scholar 

  • Liang D, Bhatta S, Gerzanich V, Simard JM (2007) Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 22:E2

    PubMed  Google Scholar 

  • Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ, Hansen TW, Goldman S, Nedergaard M (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500

    PubMed  CAS  Google Scholar 

  • Lin JH, Yang J, Liu S, Takano T, Wang X, Gao Q, Willecke K, Nedergaard M (2003) Connexin mediates gap junction-independent resistance to cellular injury. J Neurosci 23:430–441

    PubMed  CAS  Google Scholar 

  • Lo AC, Chen AY, Hung VK, Yaw LP, Fung MK, Ho MC, Tsang MC, Chung SS, Chung SK (2005) Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet. J Cereb Blood Flow Metab 25:998–1011

    PubMed  CAS  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    PubMed  CAS  Google Scholar 

  • Matthias K, Kirchhoff F, Seifert G, Hüttmann K, Matyash M, Kettenmann H, Steinhäuser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758

    PubMed  CAS  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    PubMed  CAS  Google Scholar 

  • Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 102:5606–5611

    PubMed  CAS  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    PubMed  CAS  Google Scholar 

  • Nakase T, Fushiki S, Naus CC (2003) Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34:1987–1993

    PubMed  Google Scholar 

  • Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893

    PubMed  CAS  Google Scholar 

  • Neary JT, van Breemen C, Forster E, Norenberg LO, Norenberg MD (1988) ATP stimulates ­calcium influx in primary astrocyte cultures. Biochem Biophys Res Commun 157:1410–1416

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    PubMed  CAS  Google Scholar 

  • Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87:528–537

    PubMed  Google Scholar 

  • Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847

    PubMed  CAS  Google Scholar 

  • Newman EA, Zahs KR (1998) Modulation of neuronal activity by glial cells in the retina. J Neurosci 18:4022–4028

    PubMed  CAS  Google Scholar 

  • Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468

    PubMed  Google Scholar 

  • Nilsson M, Eriksson PS, Rönnbäck L, Hansson E (1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54:605–614

    PubMed  CAS  Google Scholar 

  • O’Donnell ME, Lam TI, Tran LQ, Foroutan S, Anderson SE (2006) Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 26:1234–1249

    PubMed  Google Scholar 

  • Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse ­hippocampus. Neuroscience 113:221–233

    PubMed  CAS  Google Scholar 

  • Orellana JA, Hernández DE, Ezan P, Velarde V, Bennett MV, Giaume C, Sáez JC (2010) Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels. Glia 58:329–343

    PubMed  Google Scholar 

  • Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27:4253–4260

    PubMed  CAS  Google Scholar 

  • Paco S, Margelí MA, Olkkonen VM, Imai A, Blasi J, Fischer-Colbrie R, Aguado F (2009) Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in ­astrocytes. J Neurochem 110:143–156

    PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    PubMed  CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812

    PubMed  CAS  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    PubMed  CAS  Google Scholar 

  • Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal ­synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    PubMed  CAS  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    PubMed  CAS  Google Scholar 

  • Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci 23:9888–9896

    PubMed  CAS  Google Scholar 

  • Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798:294–303

    PubMed  CAS  Google Scholar 

  • Pond BB, Berglund K, Kuner T, Feng G, Augustine GJ, Schwartz-Bloom RD (2006) The chloride transporter Na(+)-K(+)-Cl-cotransporter isoform-1 contributes to intracellular chloride increases after in vitro ischemia. J Neurosci 26:1396–1406

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995a) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+] i . Glia 13:101–112

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995b) Adenosine receptors modulate [Ca2+] i in hippocampal astrocytes in situ. J Neurochem 65:1515–1523

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    PubMed  CAS  Google Scholar 

  • Privat A, Giménez-Ribotta M, Ridet J-C (1995) Morphology of astrocytes. In: Ransom BR, Kettenmann H (eds) Neuroglia. Oxford University Press, New York, pp 3–22

    Google Scholar 

  • Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074

    PubMed  CAS  Google Scholar 

  • Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ (2001) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21:1876–1883

    PubMed  CAS  Google Scholar 

  • Rawanduzy A, Hansen A, Hansen TW, Nedergaard M (1997) Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg 87:916–920

    PubMed  CAS  Google Scholar 

  • Romera C, Hurtado O, Mallolas J, Pereira MP, Morales JR, Romera A, Serena J, Vivancos J, Nombela F, Lorenzo P, Lizasoain I, Moro MA (2007) Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection. J Cereb Blood Flow Metab 27:1327–1338

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    PubMed  CAS  Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    PubMed  CAS  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    PubMed  CAS  Google Scholar 

  • Saito R, Graf R, Hübel K, Fujita T, Rosner G, Heiss WD (1997) Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab 17:857–864

    PubMed  CAS  Google Scholar 

  • Salm AK, McCarthy KD (1990) Norepinephrine-evoked calcium transients in cultured cerebral type 1 astroglia. Glia 3:529–538

    PubMed  CAS  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    PubMed  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952

    PubMed  CAS  Google Scholar 

  • Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-d-aspartate receptors. FASEB J 15:1270–1272

    PubMed  CAS  Google Scholar 

  • Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16:255–257

    PubMed  CAS  Google Scholar 

  • Seifert G, Rehn L, Weber M, Steinhäuser C (1997a) AMPA receptor subunits expressed by single astrocytes in the juvenile mouse hippocampus. Brain Res Mol Brain Res 47:286–294

    PubMed  CAS  Google Scholar 

  • Seifert G, Zhou M, Steinhäuser C (1997b) Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes. J Neurophysiol 78:2916–2923

    PubMed  CAS  Google Scholar 

  • Seifert G, Weber M, Schramm J, Steinhäuser C (2003) Changes in splice variant expression and subunit assembly of AMPA receptors during maturation of hippocampal astrocytes. Mol Cell Neurosci 22:248–258

    PubMed  CAS  Google Scholar 

  • Shao Y, McCarthy KD (1993) Quantitative relationship between alpha 1-adrenergic receptor density and the receptor-mediated calcium response in individual astroglial cells. Mol Pharmacol 44:247–254

    PubMed  CAS  Google Scholar 

  • Shao Y, McCarthy KD (1995) Receptor-mediated calcium signals in astroglia: multiple receptors, common stores and all-or-nothing responses. Cell Calcium 17:187–196

    PubMed  CAS  Google Scholar 

  • Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 98:4148–4153

    PubMed  CAS  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative ­diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    PubMed  CAS  Google Scholar 

  • Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74:555–563

    PubMed  CAS  Google Scholar 

  • Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523

    PubMed  CAS  Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    PubMed  CAS  Google Scholar 

  • Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V (2006) Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 12:433–440

    PubMed  CAS  Google Scholar 

  • Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, Gerzanich V (2009) Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab 29:317–330

    PubMed  CAS  Google Scholar 

  • Simpson PB, Mehotra S, Langley D, Sheppard CA, Russell JT (1998) Specialized distributions of mitochondria and endoplasmic reticulum proteins define Ca2+ wave amplification sites in cultured astrocytes. J Neurosci Res 52:672–683

    PubMed  CAS  Google Scholar 

  • Siushansian R, Bechberger JF, Cechetto DF, Hachinski VC, Naus CC (2001) Connexin43 null mutation increases infarct size after stroke. J Comp Neurol 440:387–394

    PubMed  CAS  Google Scholar 

  • Stout C, Charles A (2003) Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43:265–273

    PubMed  Google Scholar 

  • Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E (2004) Gap junction ­channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 48:217–229

    PubMed  CAS  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    PubMed  CAS  Google Scholar 

  • Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    PubMed  CAS  Google Scholar 

  • Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    PubMed  CAS  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    PubMed  CAS  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    PubMed  CAS  Google Scholar 

  • Thrane AS, Rappold PM, Fujita T, Torres A, Bekar LK, Takano T, Peng W, Wang F, Thrane VR, Enger R, Haj-Yasein NN, Skare Ø, Holen T, Klungland A, Ottersen OP, Nedergaard M, Nagelhus EA (2011) Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci U S A 108:846–851

    PubMed  CAS  Google Scholar 

  • Venance L, Stella N, Glowinski J, Giaume C (1997) Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci 17:1981–1992

    PubMed  CAS  Google Scholar 

  • Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum in neurons. Physiol Rev 85:201–279

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Butt A (2007) Glial neurobiology. A textbook. Wiley, Chichester

    Google Scholar 

  • Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:28–37

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Parpura V (2010) Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin 31:1044–1054

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Steinhäuser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Orkland RK, Kettenmann H (1998) Glial calcium: homeostasis and signalling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Anderova M, Chvatal A (2009) Differential calcium signalling in neuronal-glial networks. Front Biosci 14:2004–2016

    PubMed  CAS  Google Scholar 

  • Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38:12–18

    PubMed  CAS  Google Scholar 

  • Wang Z, Tymianski M, Jones OT, Nedergaard M (1997) Impact of cytoplasmic calcium buffering on the spatial and temporal characteristics of intercellular calcium signals in astrocytes. J Neurosci 17:7359–7371

    PubMed  CAS  Google Scholar 

  • Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823

    PubMed  CAS  Google Scholar 

  • Warr O, Takahashi M, Attwell D (1999) Modulation of extracellular glutamate concentration in rat brain slices by cystine-glutamate exchange. J Physiol 514:783–793

    PubMed  CAS  Google Scholar 

  • Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    PubMed  CAS  Google Scholar 

  • Xu G, Wang W, Kimelberg HK, Zhou M (2010) Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 58:481–493

    PubMed  Google Scholar 

  • Yamada T, Kawahara K, Kosugi T, Tanaka M (2006) Nitric oxide produced during sublethal ischemia is crucial for the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem Res 31:49–56

    PubMed  CAS  Google Scholar 

  • Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19:10767–10777

    PubMed  CAS  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  • Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004a) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441–9446

    PubMed  CAS  Google Scholar 

  • Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004b) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733

    PubMed  CAS  Google Scholar 

  • Zhang Y, Jin Y, Behr MJ, Feustel PJ, Morrison JP, Kimelberg HK (2005) Behavioral and histological neuroprotection by tamoxifen after reversible focal cerebral ischemia. Exp Neurol 196:41–46

    PubMed  CAS  Google Scholar 

  • Zhang L, Deng T, Sun Y, Liu K, Yang Y, Zheng X (2008) Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation. J Neurosci Res 86:2281–2291

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    PubMed  CAS  Google Scholar 

  • Zur Nieden R, Deitmer JW (2006) The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ. Cereb Cortex 16:676–687

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Matute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alberdi, E., Domercq, M., Matute, C. (2012). Calcium Dyshomeostasis in Astrocytes After Ischemia. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_5

Download citation

Publish with us

Policies and ethics