Skip to main content

Sodium and Potassium MRI in Cerebral Ischemia

  • Chapter
  • First Online:
Metal Ion in Stroke

Abstract

Ischemia can be accompanied by dramatic disturbances in the tissue ion balance. This chapter reviews the mechanisms of brain Na+/K+ imbalance in ischemia, their implications for using magnetic resonance imaging (MRI) for basic understanding, diagnostics, and therapy of stroke, as well as MRI challenges and experimental approaches. Experimental stroke studies demonstrated the potential of 23Na MRI to determine stroke onset time, which is critical for compliance with the time window for thrombolysis. 23Na MRI revealed heterogeneity in the time of the beginning and the rate of increase in the Na+ content within the ischemic core and between cortical and subcortical areas in the rat brain, with the maximum rate of Na+ accumulation at the periphery of the ischemic core. K+ in ischemic rat brain has been assessed by K/Rb substitution and 87Rb MRI. Multiquantum filtering techniques have a capability to discriminate between intra- and extracellular cations. 23Na MRI techniques are directly transferrable to the clinical setting, although one might anticipate a significant heterogeneity of the human stroke progression compared to the animal models. It is expected that estimates of brain Na+ and K+ by MRI could provide an enhanced physiological characterization of ischemic lesion and may be helpful for assessing tissue viability and amenability to therapy and outcome prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen KL, Busza AL, Williams SCR (1994a) A sodium magnetic resonance imaging study of acute cerebral ischaemia in the gerbil. Acta Neurochir Suppl (Wien) 60:220–223

    CAS  Google Scholar 

  • Allen KL, Busza AL, Williams SR, Williams SCR (1994b) Early changes in cerebral sodium distribution following ischaemia monitored by 23Na magnetic resonance imaging. Magn Reson Imaging 12:895–900

    PubMed  CAS  Google Scholar 

  • Allen SP, Morrell GR, Peterson B, Park D, Gold GE, Kaggie JD, Bangerter NK (2011) Phase-sensitive sodium B 1 mapping. Magn Reson Med 65:1125–1130

    PubMed  Google Scholar 

  • Allis JL, Radda GK (1989) Selective detection of intracellular 87Rb+ by double-quantum filtration. J Magn Reson 84:372–375

    CAS  Google Scholar 

  • Allis JL, Snaith CD, Seymour AM, Radda GK (1989) 87Rb NMR studies of the perfused rat heart. FEBS Lett 242:215–217

    PubMed  CAS  Google Scholar 

  • Ames A III, Tsukada Y, Nesbett FB (1967) Intracellular Cl−, Na+, K+, Ca2+, Mg2+, and P in nervous tissue; response to glutamate and to changes in extracellular calcium. J Neurochem 14:145–159

    PubMed  CAS  Google Scholar 

  • Assaf Y, Navon G, Cohen Y (1997) In vivo observation of anisotropic motion of brain water using 2H double quantum filtered NMR spectroscopy. Magn Reson Med 37:197–203

    PubMed  CAS  Google Scholar 

  • Atkinson IC, Lu A, Thulborn KR (2011) Clinically constrained optimization of flexTPI acquisition parameters for the tissue sodium concentration bioscale. Magn Reson Med 66:1089–1099

    Google Scholar 

  • Augath M, Heiler P, Kirsch S, Schad LR (2009) In vivo 39K, 23Na and 1H MR imaging using a triple resonant RF coil setup. J Magn Reson 200:134–136

    PubMed  CAS  Google Scholar 

  • Babsky AM, Zhang H, Hekmatyar SK, Hutchins GD, Bansal N (2007) Monitoring chemotherapeutic response in RIF-1 tumors by single-quantum and triple-quantum-filtered 23Na MRI, 1H diffusion-weighted MRI and PET imaging. Magn Reson Imaging 25:1015–1023

    PubMed  CAS  Google Scholar 

  • Bartha R, Menon RS (2004) Long component time constant of 23Na T*2 relaxation in healthy human brain. Magn Reson Med 52:407–410

    PubMed  Google Scholar 

  • Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622

    PubMed  CAS  Google Scholar 

  • Betz AL, Ennis SR, Schielke GP, Hoff JT (1990) Blood-to-brain sodium transport in ischemic brain edema. Adv Neurol 52:73–80

    PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310

    Google Scholar 

  • Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    PubMed  CAS  Google Scholar 

  • Boada FE, Christensen JD, Huang-Hellinger FR, Reese TG, Thulborn KR (1994) Quantitative in vivo tissue sodium concentration maps: the effects of biexponential relaxation. Magn Reson Med 32:219–223

    PubMed  CAS  Google Scholar 

  • Boada FE, Gillen JS, Noll DC, Shen GX, Chang SY, Thulborn KR (1997a) Data acquisition and postprocessing strategies for fast quantitative sodium imaging. Int J Imaging Syst Technol 8:544–550

    Google Scholar 

  • Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997b) Fast three dimensional sodium imaging. Magn Reson Med 37:706–715

    PubMed  CAS  Google Scholar 

  • Boada FE, LaVerde GC, Jungreis C, Nemoto E, Tanase C, Hancu I (2005) Loss of cell ion homeostasis and cell viability in the brain: what sodium MRI can tell us. In: Ahrens ET (ed) In vivo cellular and molecular imaging. Academic, Philadelphia, pp 77–101

    Google Scholar 

  • Boulanger Y, Fleser A, Amarouche R, Ammann H, Bergeron M, Vinay P (1992) Monitoring of the effects of dysprosium shift reagents on cell suspensions. NMR Biomed 5:1–10

    PubMed  CAS  Google Scholar 

  • Christensen JD, Barrere BJ, Boada FE, Vevea JM, Thulborn KR (1996) Quantitative tissue sodium concentration mapping of normal rat brain. Magn Reson Med 36:83–89

    PubMed  CAS  Google Scholar 

  • Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S (1999) Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset: the ATLANTIS Study: a randomized controlled trial. Alteplase ThromboLysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA 282:2019–2026

    PubMed  CAS  Google Scholar 

  • Del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M, Investigators PROACT (1998) PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 29:4–11

    PubMed  Google Scholar 

  • Del Zoppo GJ, Sharp FR, Heiss WD, Albers GW (2011) Heterogeneity in the penumbra. J Cereb Blood Flow Metab 31:1836–1851

    Google Scholar 

  • Dickinson LD, Betz AL (1992) Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab 12:681–690

    PubMed  CAS  Google Scholar 

  • Dizon JM, Tauskela JS, Wise D, Burkhoff D, Cannon PJ, Katz J (1996) Evaluation of triple-quantum-filtered 23Na NMR in monitoring of intracellular Na content in the perfused rat heart: comparison of intra- and extracellular transverse relaxation and spectral amplitudes. Magn Reson Med 35:336–345

    PubMed  CAS  Google Scholar 

  • Doczi T, Joo F, Szerdahelyi P, Bodosi M (1987) Regulation of brain water and electrolyte contents: the possible involvement of central atrial natriuretic factor. Neurosurgery 21:454–458

    PubMed  CAS  Google Scholar 

  • Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus RI, Brinker G, Dreier JP, Woitzik J, Strong AJ, Graf R (2008) Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. Ann Neurol 63:720–728

    PubMed  Google Scholar 

  • Dowd TL, Gupta RK (1992) Multinuclear NMR studies of intracellular cations in perfused hypertensive rat kidney. J Biol Chem 267:3637–3643

    PubMed  CAS  Google Scholar 

  • Edelstein WA, Hutchison JM, Johnson G, Redpath T (1980) Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 25:751–756

    PubMed  CAS  Google Scholar 

  • Eleff SM, Mclennan IJ, Hart GK, Maruki Y, Traystman RJ, Koehler RC (1993) Shift reagent enhanced concurrent 23Na and 1H magnetic resonance spectroscopic studies of transcellular sodium distribution in the dog brain in vivo. Magn Reson Med 30:11–17

    PubMed  CAS  Google Scholar 

  • Eliav U, Navon G (1994) Analysis of double-quantum-filtered NMR spectra of 23Na in biological tissues. J Magn Reson B 103:19–29

    PubMed  CAS  Google Scholar 

  • Ennis SR, Ren XD, Betz AL (1996) Mechanisms of sodium transport at the blood-brain barrier studied with in situ perfusion of rat brain. J Neurochem 66:756–763

    PubMed  CAS  Google Scholar 

  • Fleysher L, Oesingmann N, Inglese M (2010) B 0 inhomogeneity-insensitive triple-quantum-filtered sodium imaging using a 12-step phase-cycling scheme. NMR Biomed 23:1191–1198

    PubMed  Google Scholar 

  • Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T 2* mapping in human brain at 7 Tesla. Magn Reson Med 62:1338–1341

    PubMed  Google Scholar 

  • Fraser CL, Sarnacki P (1989) Na+-K+-ATPase pump function in rat brain synaptosomes is different in males and females. Am J Physiol 257:E284–E289

    PubMed  CAS  Google Scholar 

  • Fujisawa M, Kawai N, Keep RF (1999) Effect of brain temperature on blood-brain barrier transport during cerebral ischemia. J Cereb Blood Flow Metab 19(Suppl 1):240

    Google Scholar 

  • Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F (1999) Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial. PROlyse in Acute Cerebral Thromboem-bolism. JAMA 282:2003–2011

    PubMed  CAS  Google Scholar 

  • Garcia JH, Liu KF, Ho KL (1995) Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 26:636–642

    PubMed  CAS  Google Scholar 

  • Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J (1994) Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol 145:728–740

    PubMed  CAS  Google Scholar 

  • Geisler BS, Brandhoff F, Fiehler J, Saager C, Speck O, Rother J, Zeumer H, Kucinski T (2006) Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke 37:1778–1784

    PubMed  Google Scholar 

  • Gido G, Kristian T, Siesjo BK (1997) Extracellular potassium in a neocortical core area after transient focal ischemia. Stroke 28:206–210

    PubMed  CAS  Google Scholar 

  • Goodman J, Neil J, Ackerman JJ (2005) Biomedical applications of 133Cs NMR. NMR Biomed 18:125–134

    PubMed  CAS  Google Scholar 

  • Guadagno JV, Donnan GA, Markus R, Gillard JH, Baron JC (2004) Imaging the ischaemic penumbra. Curr Opin Neurol 17:61–67

    PubMed  Google Scholar 

  • Guadagno JV, Warburton EA, Jones PS, Fryer TD, Day DJ, Gillard JH, Carpenter TA, Aigbirhio FI, Price CJ, Baron JC (2005) The diffusion-weighted lesion in acute stroke: heterogeneous patterns of flow/metabolism uncoupling as assessed by quantitative positron emission tomography. Cerebrovasc Dis 19:239–246

    PubMed  Google Scholar 

  • Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S (2004) Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 363:768–774

    PubMed  Google Scholar 

  • Harik SI (1986) Blood–brain barrier sodium/potassium pump: modulation by central noradrenergic innervation. Proc Natl Acad Sci USA 83:4067–4070

    PubMed  CAS  Google Scholar 

  • Hartings JA, Rolli ML, Lu XC, Tortella FC (2003) Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 23:11602–11610

    PubMed  CAS  Google Scholar 

  • Heiler PM, Langhauser FL, Wetterling F, Ansar S, Grudzenski S, Konstandin S, Fatar M, Meairs S, Schad LR (2011) Chemical shift sodium imaging in a mouse model of thromboembolic stroke at 9.4 T. J Magn Reson Imaging 34:935–940

    Google Scholar 

  • Hilal S, Oh C, Mun I, Silver A (1992) Sodium imaging. In: Stark D, Bradley W (eds) Magnetic resonance imaging. Mosby, St. Louis, pp 1091–1110

    Google Scholar 

  • Hilal SK, Maudsley AA, Ra JB, Simon HE, Roschmann P, Wittekoek S, Cho ZH, Mun SK (1985) In vivo NMR imaging of sodium-23 in the human head. J Comput Assist Tomogr 9:1–7

    PubMed  CAS  Google Scholar 

  • Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66:55–62

    PubMed  Google Scholar 

  • Ilzecka J (1996) The structure and function of blood-brain barrier in ischaemic brain stroke process. Ann Univ Mariae Curie Sklodowska Med 51:123–127

    PubMed  CAS  Google Scholar 

  • Ito U, Ohno K, Nakamura R, Suganuma F, Inaba Y (1979) Brain edema during ischemia and after restoration of blood flow: measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10:542–547

    PubMed  CAS  Google Scholar 

  • Jelicks LA, Gupta RK (1993) On the extracellular contribution to multiple quantum filtered 23Na NMR of perfused rat heart. Magn Reson Med 29:130–133

    PubMed  CAS  Google Scholar 

  • Jones SC, Hu W, Wang Y, Perez-Trepichio AD, Yushmanov VE, Kharlamov A, Boada FE (2007) Stability and abrupt fall of brain tissue potassium in rat focal cerebral ischemia and the blood-brain barrier. J Cereb Blood Flow Metab. 27 (suppl S1), doi: 10.1038/jcbfm.2007.100, Presentation BO05-09. Osaka, Japan, May 20–24. Website and CD-ROM

    Google Scholar 

  • Jones SC, Kharlamov A, Yanovski B, Kim DK, Easley KA, Yushmanov VE, Ziolko SK, Boada FE (2006) Stroke onset time using sodium MRI in rat focal cerebral ischemia. Stroke 37:883–888

    PubMed  CAS  Google Scholar 

  • Kato H, Kogure K, Sakamoto N, Watanabe T (1987) Greater disturbance of water and ion homeostasis in the periphery of experimental focal cerebral ischemia. Exp Neurol 96:118–126

    PubMed  CAS  Google Scholar 

  • Katsura K, Minamisawa H, Ekholm A, Folbergrova J, Siesjo BK (1992) Changes of labile metabolites during anoxia in moderately hypo- and hyperthermic rats: correlation to membrane fluxes of K+. Brain Res 590:6–12

    PubMed  CAS  Google Scholar 

  • Kharlamov A, Jones SC, Kim DK (2002) Suramin reduces infarct volume in a model of focal brain ischemia in rats. Exp Brain Res 147:353–359

    PubMed  CAS  Google Scholar 

  • Kharlamov A, Kim DK, Jones SC (2001) Early visual changes in reflected light on non-stained brain sections after focal ischemia mirror the area of ischemic damage. J Neurosci Methods 111:67–73

    PubMed  CAS  Google Scholar 

  • Kharlamov A, Yushmanov VE, Jones SC (2007) Prominent decrease of brain tissue K+, [K+]br, in the peripheral regions of ischemic core evaluated by quantitative histological potassium staining. J Cereb Blood Flow Metab. 27 (suppl S1), doi: 10.1038/jcbfm.2007.100, Presentation BP53-7W. Osaka, Japan, May 20–24. Website and CD-ROM

    Google Scholar 

  • Kidwell CS, Alger JR, Saver JL (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34:2729–2735

    PubMed  Google Scholar 

  • Kirsch S, Augath M, Seiffge D, Schilling L, Schad LR (2010) In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain. NMR Biomed 23:592–600

    PubMed  Google Scholar 

  • Knubovets T, Shinar H, Eliav U, Navon G (1996) A 23Na multiple-quantum-filtered NMR study of the effect of the cytoskeleton conformation on the anisotropic motion of sodium ions in red blood cells. J Magn Reson B 110:16–25

    PubMed  CAS  Google Scholar 

  • Konstandin S, Nagel AM, Heiler PM, Schad LR (2011) Two-dimensional radial acquisition technique with density adaption in sodium MRI. Magn Reson Med 65:1090–1096

    PubMed  Google Scholar 

  • Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059

    PubMed  CAS  Google Scholar 

  • Kupriyanov VV, Gruwel ML (2005) Rubidium-87 magnetic resonance spectroscopy and imaging for analysis of mammalian K+ transport. NMR Biomed 18:111–124

    PubMed  CAS  Google Scholar 

  • Kupriyanov VV, Xiang B, Sun J, Dai G, Jilkina O, Dao V, Deslauriers R (2000) Three-dimensional 87Rb NMR imaging and spectroscopy of K+ fluxes in normal and postischemic pig hearts. Magn Reson Med 44:83–91

    PubMed  CAS  Google Scholar 

  • Kupriyanov VV, Yushmanov VE, Xiang B, Deslauriers R (1998) Kinetics of ATP-sensitive K+ channels in isolated rat hearts assessed by 87Rb NMR spectroscopy. NMR Biomed 11:131–140

    PubMed  CAS  Google Scholar 

  • Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31:17–35

    PubMed  Google Scholar 

  • LaVerde G, Jungreis CA, Nemoto E, Boada FE (2009) Sodium time course using 23Na MRI in reversible focal brain ischemia in the monkey. J Magn Reson Imaging 30:219–223

    PubMed  Google Scholar 

  • LaVerde G, Nemoto E, Jungreis CA, Tanase C, Boada FE (2007) Serial triple quantum sodium MRI during non-human primate focal brain ischemia. Magn Reson Med 57:201–205

    PubMed  CAS  Google Scholar 

  • Lee JM, Vo KD, An H, Celik A, Lee Y, Hsu CY, Lin W (2003) Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 53:227–232

    PubMed  Google Scholar 

  • Lin SP, Song SK, Miller JP, Ackerman JJ, Neil JJ (2001) Direct, longitudinal comparison of 1H and 23Na MRI after transient focal cerebral ischemia. Stroke 32:925–932

    PubMed  CAS  Google Scholar 

  • Lo WD, Betz AL, Schielke GP, Hoff JT (1987) Transport of sodium from blood to brain in ischemic brain edema. Stroke 18:150–157

    PubMed  CAS  Google Scholar 

  • Luo J, Wang Y, Chen H, Kintner DB, Cramer SW, Gerdts JK, Chen X, Shull GE, Philipson KD, Sun D (2008) A concerted role of Na+-K+-Cl− cotransporter and Na+/Ca2+ exchanger in ischemic damage. J Cereb Blood Flow Metab 28:737–746

    PubMed  CAS  Google Scholar 

  • Lyon RC, McLaughlin AC (1994) Double-quantum-filtered 23Na NMR study of intracellular sodium in the perfused liver. Biophys J 67:369–376

    PubMed  CAS  Google Scholar 

  • Lyon RC, Pekar J, Moonen CT, McLaughlin AC (1991) Double-quantum surface-coil NMR studies of sodium and potassium in the rat brain. Magn Reson Med 18:80–92

    PubMed  CAS  Google Scholar 

  • Matthies C, Nagel AM, Schad LR, Bachert P (2010) Reduction of B0 inhomogeneity effects in triple-quantum-filtered sodium imaging. J Magn Reson 202:239–244

    PubMed  CAS  Google Scholar 

  • Meltzer CC, Kinahan PE, Greer PJ, Nichols TE, Comtat C, Cantwell MN, Lin MP, Price JC (1999) Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 40:2053–2065

    PubMed  CAS  Google Scholar 

  • Menzies SA, Betz AL, Hoff JT (1993) Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J Neurosurg 78:257–266

    PubMed  CAS  Google Scholar 

  • Miller SK, Elgavish GA (1992) Shift-reagent-aided 23Na NMR spectroscopy in cellular, tissue, and whole-organ systems. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 11. Plenum, New York, pp 159–240

    Google Scholar 

  • Mori K, Miyazaki M, Iwase H, Maeda M (2002) Temporal profile of changes in brain tissue extracellular space and extracellular ion (Na+, K+) concentrations after cerebral ischemia and the effects of mild cerebral hypothermia. J Neurotrauma 19:1261–1270

    PubMed  Google Scholar 

  • Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573

    PubMed  Google Scholar 

  • Nakao N, Itakura T, Yokote H, Nakai K, Komai N (1990) Effect of atrial natriuretic peptide on ischemic brain edema: changes in brain water and electrolytes. Neurosurgery 27:39–43

    PubMed  CAS  Google Scholar 

  • Naruse S, Takei R, Horikawa Y, Tanaka C, Higuchi T, Ebisu T, Ueda S, Sugahara S, Kondo S, Kiyota T, Hayashi H (1990) Effects of atrial natriuretic peptide on brain oedema: the change of water, sodium, and potassium contents in the brain. Acta Neurochir Suppl (Wien) 51:118–121

    CAS  Google Scholar 

  • Navon G, Eliav U, Demo DE, Blumich B (2007) Study of order and dynamic processes in tendon by NMR and MRI. J Magn Reson Imaging 25:362–380

    PubMed  CAS  Google Scholar 

  • Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG (2004) 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. MAGMA 17:196–200

    PubMed  CAS  Google Scholar 

  • NINDS rt-PA Study Group Investigators (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Google Scholar 

  • O’Donnell ME, Martinez A, Sun D (1995) Cerebral microvascular endothelial cell Na-K-Cl cotransport: regulation by astrocyte-conditioned medium. Am J Physiol Cell Physiol 268:C747–C754

    Google Scholar 

  • O’Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE (2004) Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 24:1046–1056

    PubMed  Google Scholar 

  • Payne GS, Seymour AM, Styles P, Radda GK (1990) Multiple quantum filtered 23Na NMR spectroscopy in the perfused heart. NMR Biomed 3:139–146

    PubMed  CAS  Google Scholar 

  • Pearlman JD, Leavitt M, Newell JB (1990) A priori information in image analysis: assessment of intensity distribution for definition of shape and size of small vessels. IEEE Trans Med Imaging 9:461–465

    PubMed  CAS  Google Scholar 

  • Pekar J, Leigh JS (1986) Detection of biexponential relaxation in Na-23 facilitated by double-quantum filtering. J Magn Reson 69:582–584

    CAS  Google Scholar 

  • Perez-Trepichio AD, Xue M, Ng TC, Majors AW, Furlan AJ, Awad IA, Jones SC (1995) Sensitivity of magnetic resonance diffusion-weighted imaging and regional relationship between the apparent diffusion coefficient and cerebral blood flow in rat focal cerebral ischemia. Stroke 26:667–675

    PubMed  CAS  Google Scholar 

  • Ra JB, Hilal SK, Cho ZH (1986) A method for in vivo MR imaging of the short T 2 component of sodium-23. Magn Reson Med 3:296–302

    PubMed  CAS  Google Scholar 

  • Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439

    PubMed  CAS  Google Scholar 

  • Ringer S (1883) An investigation regarding the action of rubidium and caesium salts compared with the action of potassium salts on the ventricle of the frog’s heart. J Physiol 4:370–378

    Google Scholar 

  • Rivers CS, Wardlaw JM, Armitage PA, Bastin ME, Carpenter TK, Cvoro V, Hand PJ, Dennis MS (2006) Do acute diffusion- and perfusion-weighted MRI lesions identify final infarct volume in ischemic stroke? Stroke 37:98–104

    PubMed  CAS  Google Scholar 

  • Roberts TP, Rowley HA (2003) Diffusion weighted magnetic resonance imaging in stroke. Eur J Radiol 45:185–194

    PubMed  Google Scholar 

  • Rooney WD, Springer CS Jr (1991) The molecular environment of intracellular sodium: 23Na NMR relaxation. NMR Biomed 4:227–245

    PubMed  CAS  Google Scholar 

  • Rubino GJ, Young W (1988) Ischemic cortical lesions after permanent occlusion of individual middle cerebral artery branches in rats. Stroke 19:870–877

    PubMed  CAS  Google Scholar 

  • Salgado AV, Jones SC, Furlan AJ, Korfali E, Marshall SA, Little JR (1989) Bimodal treatment with nimodipine and low-molecular-weight dextran for focal cerebral ischemia in the rat. Ann Neurol 26:621–627

    PubMed  CAS  Google Scholar 

  • Schepkin VD, Bejarano FC, Morgan T, Gower-Winter S, Ozambela M Jr, Levenson CW (2011) In vivo magnetic resonance imaging of sodium and diffusion in rat glioma at 21.1T. Magn Reson Med. doi: 10.1002/mrm.23077 (in press)

    Google Scholar 

  • Schepkin VD, Brey WW, Gor’kov PL, Grant SC (2010) Initial in vivo rodent sodium and proton MR imaging at 21.1 T. Magn Reson Imaging 28:400–407

    PubMed  CAS  Google Scholar 

  • Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    PubMed  CAS  Google Scholar 

  • Schuier FJ, Hossmann KA (1980) Experimental brain infarcts in cats. II. Ischemic brain edema. Stroke 11:593–601

    PubMed  CAS  Google Scholar 

  • Seo Y, Murakami M, Watari H (1990) Measurement of intracellular Na in the rat salivary gland: a 23Na-NMR study using double quantum filtering. Biochim Biophys Acta 1034:142–147

    PubMed  CAS  Google Scholar 

  • Shen GX, Boada FE, Thulborn KR (1997) Dual-frequency, dual-quadrature, birdcage RF coil design with identical B1 pattern for sodium and proton imaging of the human brain at 1.5 T. Magn Reson Med 38:717–725

    PubMed  CAS  Google Scholar 

  • Shibata S, Hodge CP, Pappius HM (1974) Effect of experimental ischemia on cerebral water and electrolytes. J Neurosurg 41:146–159

    PubMed  CAS  Google Scholar 

  • Shigeno T, McCulloch J, Graham DI, Mendelow AD, Teasdale GM (1985) Pure cortical ischemia versus striatal ischemia. Surg Neurol 24:47–51

    PubMed  CAS  Google Scholar 

  • Sick TJ, Feng ZC, Rosenthal M (1998) Spatial stability of extracellular potassium ion and blood flow distribution in rat cerebral cortex after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 18:1114–1120

    PubMed  CAS  Google Scholar 

  • Sobesky J, Zaro WO, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, Heiss WD (2005) Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 36:980–985

    PubMed  Google Scholar 

  • Stobbe R, Beaulieu C (2008) Sodium imaging optimization under specific absorption rate constraint. Magn Reson Med 59:345–355

    PubMed  Google Scholar 

  • Stummer W, Betz AL, Keep RF (1995) Mechanisms of brain ion homeostasis during acute and chronic variations of plasma potassium. J Cereb Blood Flow Metab 15:336–344

    PubMed  CAS  Google Scholar 

  • Sun C, Boutis GS (2010) Investigation of the dynamical properties of water in elastin by deuterium Double Quantum Filtered NMR. J Magn Reson 205:86–92

    PubMed  CAS  Google Scholar 

  • Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27:1129–1136

    PubMed  Google Scholar 

  • Sutter E, Platman SR, Fieve RR (1970) Atomic absorption spectrophotometry of rubidium in biological fluids. Clin Chem 16:602–605

    CAS  Google Scholar 

  • Thulborn KR, Davis D, Adams H, Gindin T, Zhou J (1999a) Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging. Magn Reson Med 41:351–359

    PubMed  CAS  Google Scholar 

  • Thulborn KR, Gindin TS, Davis D, Erb P (1999b) Comprehensive MRI protocol for stroke management: tissue sodium concentration as a measure of tissue viability in non-human primate studies and in clinical studies. Radiology 213:156–166

    PubMed  CAS  Google Scholar 

  • Tomita M, Gotoh F (1992) Cascade of cell swelling: thermodynamic potential discharge of brain cells after membrane injury. Am J Physiol Heart Circ Physiol 262:H603–H610

    CAS  Google Scholar 

  • Tsang A, Stobbe RW, Asdaghi N, Hussain MS, Bhagat YA, Beaulieu C, Emery D, Butcher KS (2011) Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging 33:41–47

    PubMed  Google Scholar 

  • Vigne P, Champigny G, Marsault R, Barbry P, Frelin C, Lazdunski M (1989) A new type of amiloride-sensitive cationic channel in endothelial cells of brain microvessels. J Biol Chem 264:7663–7668

    PubMed  CAS  Google Scholar 

  • Wang Y, Hu W, Perez-Trepichio AD, Ng TC, Furlan AJ, Majors AW, Jones SC (2000) Brain tissue sodium is a ticking clock telling time after arterial occlusion in rat focal cerebral ischemia. Stroke 31:1386–1392

    PubMed  CAS  Google Scholar 

  • Wetterling F, Gallagher L, Macrae IM, Junge S, Fagan AJ (2011) Regional and temporal variations in tissue sodium concentration during the acute stroke phase. Magn Reson Med. doi: 10.1002/mrm.23031 (in press)

    Google Scholar 

  • Wetterling F, Tabbert M, Junge S, Gallagher L, Macrae IM, Fagan AJ (2010) A double-tuned 1H/23Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI. Phys Med Biol 55:7681–7695

    PubMed  Google Scholar 

  • Yamaguchi T (1986) Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil. Bull Tokyo Med Dent Univ 33:1–8

    PubMed  CAS  Google Scholar 

  • Yan Y, Dempsey RJ, Flemmer A, Forbush B, Sun D (2003) Inhibition of Na+-K+-Cl− cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res 961:22–31

    PubMed  CAS  Google Scholar 

  • Young W, Rappaport ZH, Chalif DJ, Flamm ES (1987) Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 18:751–759

    PubMed  CAS  Google Scholar 

  • Yushmanov VE, Kharlamov A, Boada FE, Jones SC (2007) Monitoring of brain potassium with rubidium flame photometry and MRI. Magn Reson Med 57:494–500

    PubMed  CAS  Google Scholar 

  • Yushmanov VE, Kharlamov A, Boada FE, Jones SC (2009a) Transient blood-brain barrier disruption and changes in brain electrolytes at the edge of the ischemic core. Proc Intl Soc Mag Reson Med 17:3280

    Google Scholar 

  • Yushmanov VE, Kharlamov A, Ibrahim TS, Zhao T, Boada FE, Jones SC (2011) K+ dynamics in ischemic rat brain in vivo by 87Rb MRI at 7 T. NMR Biomed 24:778–783

    PubMed  CAS  Google Scholar 

  • Yushmanov VE, Kharlamov A, Simplaceanu E, Williams DS, Jones SC (2006) Differences between arterial occlusive and thrombotic stroke models with magnetic resonance imaging and microtubule-associated protein-2 immunoreactivity. Magn Reson Imaging 24:1087–1093

    PubMed  CAS  Google Scholar 

  • Yushmanov VE, Kharlamov A, Yanovski B, LaVerde G, Boada FE, Jones SC (2009b) Inhomogeneous sodium accumulation in the ischemic core in rat focal cerebral ischemia by 23Na MRI. J Magn Reson Imaging 30:18–24

    PubMed  Google Scholar 

  • Yushmanov VE, Kharlamov A, Yanovski B, LaVerde G, Boada FE, Jones SC (2009c) Spatial match of maximum changes of sodium and potassium in ischemic rat brain. J Cereb Blood Flow Metab 29(Suppl S1):S252, Abstract #791. (abstract)

    Google Scholar 

  • Yushmanov VE, Wang L, Liachenko S, Tang P, Xu Y (2002) ADC characterization of region-specific response to cerebral perfusion deficit in rats by MRI at 9.4 T. Magn Reson Med 47:562–570

    PubMed  Google Scholar 

  • Yushmanov VE, Yanovski B, Kharlamov A, LaVerde G, Boada FE, Jones SC (2009d) Sodium mapping in focal cerebral ischemia in the rat by quantitative 23Na MRI. J Magn Reson Imaging 29:962–966

    PubMed  Google Scholar 

  • Zhao T, Qian Y, Hue Y-K, Ibrahim T, Boada FE (2009) Implementation of a 3D isotropic ultra-short TE (UTE) sequence. Proc Intl Soc Mag Reson Med 17:2662

    Google Scholar 

Download references

Acknowledgment

Grant sponsor: National Institutes of Health; Grants number NS30839 and NS66292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor E. Yushmanov PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yushmanov, V.E., Kharlamov, A., Boada, F.E., Jones, S.C. (2012). Sodium and Potassium MRI in Cerebral Ischemia. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_16

Download citation

Publish with us

Policies and ethics