Skip to main content

Car and Pedestrian Collisions: Causes and Avoidance Techniques

  • Chapter
  • First Online:
Wireless Vehicular Networks for Car Collision Avoidance

Abstract

Pedestrian safety is of vital importance and of increasing interest worldwide. New legislation passed to heighten pedestrian safety as well as car manufacturers’ own ethical goals have precipitated the search for viable solutions as to how to best protect pedestrians. In order to fulfill these legal requirements, car manufacturers and various research groups employ different technologies to develop passive and active pedestrian protection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naci H, Chisholm D, Baker TD (2009) Distribution of road traffic deaths by road user group: a global comparison. Injury Prevention 15(1):55–59. BMJ Journals Department, London

    Google Scholar 

  2. Statistisches Bundesamt (2011) Verkehrsunfälle—Jahresergebnisse—FS 8 R. 7 2010

    Google Scholar 

  3. German In Depth Accident Study (2006) , online available: www.gidas.org

  4. Flach A, David A (2009) A physical analysis of an accident scenario between cars and pedestrians. In: Proceedings of the IEEE VTC 2009, Anchorage

    Google Scholar 

  5. Burckhardt M (1985) Reaktionszeiten bei Notbremsvorgängen. Verlag, TÜV Rheinland, Köln

    Google Scholar 

  6. Hugemann W (2002) Driver reaction times in road traffic. European Association for accident research and analysis, Annual Convention, Portorož, Slovenia

    Google Scholar 

  7. The ADAC website (2011) http://www.adac.de/infotestrat/tests/auto-test/

  8. Nayar S, Branzoi V (2003) Adaptive dynamic range imaging: optical control of pixel exposures over space and time. Proc Int’l Conf Comput Vis 2:1168–1175

    Google Scholar 

  9. Bertozzi M, Broggi A, Carletti M, Fascioli A, Graf A, Grisleri P, Meinecke M-M (2003) IR Pedestrian detection for advanced driver assistance systems. In: Proceedings of the pattern recognition symposium, pp 582–590

    Google Scholar 

  10. Broggi A, Grisleri P, Graf T, Meinecke M-M (2005) A software video stabilization system for automotive oriented applications. Proc Veh Technol Conf 5:2760–2764

    Google Scholar 

  11. Bombini L, Cerri P, Grisleri P, Scaffardi S, Zani P (2006) An evaluation of Monocular Image stabilization algorithms for automotive applications. In: Proceedings of the IEEE international conference on intelligent transportation systems, pp 1562–1567

    Google Scholar 

  12. Labayrade R, Aubert D, Tarel J (2002) Real time obstacle detection in stereovision on non flat road geometry through ‘v-Disparity’ representation. Proc IEEE Intel Veh Symp 2:17–21

    Google Scholar 

  13. Hu Z, Uchimura K (2005) U-V-Disparity: an efficient algorithm for stereovision based scene analysis. In: Proceedings of the IEEE intelligent vehicles symposium, pp 48–54

    Google Scholar 

  14. Sappa A, Dornaika F, Ponsa D, Geronimo D, Lopez A (2008) An efficient approach to onboard stereo vision system pose estimation. IEEE Trans Intell Transp Syst 9(3):476–490

    Article  Google Scholar 

  15. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Proc IEEE Conf Comput Vis Pattern Recogn 1:886–893

    Google Scholar 

  16. Papageorgiou C, Poggio T (2000) A trainable system for object detection. Int J Comput Vis 38(1):15–33

    Article  MATH  Google Scholar 

  17. Miau F, Papageorgiou C, Itti L (2001) Neuromorphic algorithms for computer vision and attention. In: Proceedings of the international symposium optical science and technology, pp 12–23

    Google Scholar 

  18. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  19. Broggi A, Fascioli A, Fedriga I, Tibaldi A, Rose MD (2003) Stereo-based preprocessing for human shape localization in unstructured environments. In: Proceedings of the IEEE intelligent vehicle symposium, pp 410–415

    Google Scholar 

  20. Broggi A, Bertozzi M, Fascioli A, Sechi M (2000) Shape-based pedestrian detection. In: Proceedings of the IEEE intelligent vehicles symposium, pp 215–220

    Google Scholar 

  21. Bertozzi M, Broggi A, Chapuis R, Chausse F, Fascioli A, Tibaldi A (2003) Shape-based pedestrian detection and localization. In: Proceedings of the IEEE international conference on intelligent transportation systems, pp. 328–333

    Google Scholar 

  22. Bertozzi M, Broggi A, Fascioli A, Tibaldi A, Chapuis R, Chausse F (2004) Pedestrian localization and tracking system with Kalman filtering. In: Proceedings of the IEEE intelligent vehicles symposium, pp 584–589

    Google Scholar 

  23. Franke U, Kutzbach I (1996) Fast stereo based object detection for stop & go traffic. In: Proceedings of the IEEE intelligent vehicles symposium, pp 339–344

    Google Scholar 

  24. Franke U, Gavrila D, Görzig S, Lindner F, Paetzold F, Wöhler C (1999) Autonomous driving goes downtown. IEEE Intell Syst 13(6):40–48

    Article  Google Scholar 

  25. Grubb C, Zelinsky A, Nilsson L, Rilbe M (2004) 3D vision sensing for improved pedestrian safety. In: Proceedings of the IEEE intelligent vehicles symposium, pp 19–24

    Google Scholar 

  26. Krotosky S, Trivedi MM (2007) On color-, infrared-, and multimodal-stereo approaches to pedestrian detection. IEEE Trans Intell Transp Syst 8(4):619–629

    Article  Google Scholar 

  27. Gavrila D, Giebel J, Munder S (2004) Vision-based pedestrian detection: the PROTECTOR system. In: Proceedings of the IEEE intelligent vehicles symposium, pp 13–18. doi: 10.1109/IVS.2004.1336348

  28. Gavrila D (2000) Pedestrian detection from a moving vehicle. Proc Eur Conf Comput Vis 2:37–49

    Google Scholar 

  29. Gavrila D, Munder S (2007) Multi-cue pedestrian detection and tracking from a moving vehicle. Int J Comput Vis 73(1):41–59

    Article  Google Scholar 

  30. Nanda H, Davis L (2002) Probabilistic template based pedestrian detection in infrared videos. In: Proceedings of the IEEE intelligent vehicles symposium, pp 15–20

    Google Scholar 

  31. Munder S, Gavrila D (2006) An experimental study on pedestrian classification. IEEE Trans Pattern Anal Mach Intell 28(11):1863–1868

    Article  Google Scholar 

  32. Viola P, Jones M, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. Proc Int Conf Comput Vis 2:734–741

    Google Scholar 

  33. Jones M, Snow D (2008) Pedestrian detection using boosted features over many frames. In: Proceedings of the 19th international conference on pattern recognition, pp 1–4

    Google Scholar 

  34. Levi K, Weiss Y (2004) Learning object detection from a small number of examples: the importance of good features. Proc IEEE Conf Comput Vis Pattern Recogn 2:53–60

    Google Scholar 

  35. Tian Q, Sun H, Luo Y, Hu D (2005) Nighttime Pedestrian Detection with a Normal Camera Using SVM Classifier. In: Proceedings of the international symposium on neural networks, pp 189–194

    Google Scholar 

  36. Kidono K, Miyasaka T, Watanabe A, Naito T, Miura J (2011) Pedestrian recognition using high-definition LIDAR. IEEE intelligent vehicles Symposium (IV), Baden-Baden, Germany, pp 405–410

    Google Scholar 

  37. Oliveira L, Nunes U (2010) Context-aware pedestrian detection using LIDAR. IEEE intelligent vehicles symposium, University of California, San Diego, CA, USA, pp 773–778

    Google Scholar 

  38. Rohling H, Heuel S, Ritter H (2010) Pedestrian detection procedure integrated into an 24 GHz automotive radar. In: Proceedings of the Radar conference, Washington, DC, pp 1229–1232

    Google Scholar 

  39. Gandhi T, Trivedi MM (2007) Pedestrian protection systems: issues, survey and challenges. IEEE Trans Intell Transp Syst 8(3):413–430

    Article  Google Scholar 

  40. Rasshofer RH, Schwarz D, Biebl E, Morhart C, Scherf O, Zecha S, Grünert R, Frühauf H (2007) Pedestrian protection systems using cooperative sensor technology. In: Proceedings of the advanced microsystems for automotive applications AMMA, 2. Springer, New York, pp 135–145

    Google Scholar 

  41. Sugimoto C, Nakamura Y, Hashimoto T (2008) Prototype of pedestrian-to-vehicle communication system for the prevention of pedestrian accidents using both 3G wireless and WLAN communication. In: Proceedings of the international symposium on wireless pervasive computing, pp 764–767

    Google Scholar 

  42. Abramson Y, Steux B (2004) Hardware-friendly pedestrian detection and impact prediction. In: Proceedings of the IEEE intelligent vehicles symposium, pp 590–595. doi: 10.1109/IVS.2004.1336450

  43. Zecha S, Scherf O, Bauer W, Bauer S (2008) Optimaler Fußgängerschutz durch situationsgerechte Einschätzung der Fußgängerbewegung. 24. VDI/VW Gemeinschaftstagung Integrierte Sicherheit und Fahrerassistenzsysteme, VDI Wissensforum GmbH

    Google Scholar 

  44. Gavrilla D, Kunert M, Lages U (2001) A multi-sensor approach for the protection of vulnerable traffic participants—the PROTECTOR project. IEEE instrumentation and measurement technology conference, vol 3, Budapest, Hungary, pp 2044–2048. doi: 10.1109/IMTC.2001.929557

  45. SAVE-U Project (2011) online available: http://www.save-u.org/. Last checked 11 July 2011

  46. PreVENT Project online available: http://www.prevent-ip.org/. Last checked 11 July 2011

  47. SAFESPOT Project online available: http://www.safespot-eu.org/. Last checked 11 July 2011

  48. WATCH-OVER Project online available: http://www.watchover-eu.org/. Last checked 11 July 2011

  49. AMULETT Project online available: http://www.projekt-amulett.de. Last checked 11 July 2011

  50. Ko-TAG Project online available: http://www.kofas.de/ko-tag.html. Last checked 11 July 2011

  51. Aktiv Project online available: http://www.aktiv-online.org/. Last checked 11 July 2011

  52. SKY Project online available: http://www.nissan-global.com/EN/ENVIRONMENT/SOCIAL/ITS/. Last checked 11 July 2011

  53. http://www.daimler.com/dccom/0-5-1210218-49-1210320-1-0-0-210228-0-0-135-7165-0-0-0-0-0-0-0.htm, online available. Last checked 11 July 2011

  54. https://www.toyota-global.com/innovation/safety_technology_ quality/safety_technology/technology_file/active/night_view.html, online available, last checked 11 July 2011

  55. http://www.bmw.de/de/de/newvehicles/7series/sedan/2010/showroom/ safety/night_vision.html, online available. Last checked 11 July 2011

  56. http://www.audi.co.uk/new-cars/a8/a8/driver-assistants/night vision.html, online available. Last checked 11 July 2011

  57. http://world.honda.com/HDTV/IntelligentNightVision/200408/, online available. Last checked 11 July 2011

  58. http://www.volvocars.com/at/explore/Pages/pedestriandetection.aspx, online available. Last checked 11 July 2011

  59. David K, Flach A (2010) CAR-2-X and pedestrian safety. IEEE Vehicular Technology Magazine 5(1):70–76

    Google Scholar 

  60. Flach A, David K (2010) Combining Radio transmission with filters for pedestrian safety: experiments and simulations. IEEE Vehicular Technology Conference Fall 2010, Ottawa, Canada, pp 1–5

    Google Scholar 

  61. Flach A, Memon QA, Lau SL, David K (2011) Pedestrian movement recognition for radio based collision avoidance: a performance analysis. IEEE Vehicular Technology Conference Spring 2011, Budapest, pp 1–5

    Google Scholar 

Download references

Acknowledgments

We would like to thank the IEEE organization for permission to use the sources [4, 5961] on which this chapter is based, i.e., several figures and parts of text have been reused.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Flach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flach, A., David, K. (2013). Car and Pedestrian Collisions: Causes and Avoidance Techniques. In: Naja, R. (eds) Wireless Vehicular Networks for Car Collision Avoidance. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9563-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9563-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9562-9

  • Online ISBN: 978-1-4419-9563-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics