Skip to main content

Stroke Preconditioning to Identify Endogenous Protective or Regenerative Mechanisms

  • Chapter
  • First Online:
Translational Stroke Research

Abstract

Many neuroprotectants have shown effectiveness by reducing infarction and improving neurologic functions in animal models of stroke, but few of these neuroprotectants have been successful in clinical scenario. In clinical trials, pharmacological agents have shown to be either ineffective or have potential adverse effects. Consequently, efforts have been directed toward understanding and enhancing the endogenous protective mechanisms by which the brain protects itself against noxious stimuli in an attempt to recover from the damage encountered. Preconditioning-induced ischemic tolerance is an effective approach to understand how the brain protects itself. In this chapter, we summarize the development of preconditioning followed by discussion of various stimuli that can induce brain preconditioning and the downstream signaling pathways involved in preconditioning-induced protection. Specifically, we discuss the potential clinical application of preconditioning for brain injuries such as stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoyte L, Kaur J, Buchan AM. Lost in translation: taking neuroprotection from animal models to clinical trials. Exp Neurol. 2004;188:200–4.

    Article  PubMed  CAS  Google Scholar 

  2. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7: 437–48.

    Google Scholar 

  3. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross Jr J, Braunwald E. Factors influencing infarct size following experimental coronary artery occlusio. Circulation. 1971;43:67–82.

    Article  PubMed  CAS  Google Scholar 

  4. Chien GL, Wolff RA, Davis RF, Vanwinkle DM. “Normothermic-range” temperature affects myocardial infarct size. Cardiovasc Res. 1994;28:1014–7.

    Article  PubMed  CAS  Google Scholar 

  5. Ytrehus K, Liu Y, Tsuchida A, Miura T, Liu GS, Yang X-M, Herbert D, Cohen MV, Downey JM. Rat and rabbit heart infarction: effects of anesthesia, perfusate, risk zone, and method of infarct sizing. Am J Physiol Heart Circ Physiol. 1994;267:H2383–90.

    CAS  Google Scholar 

  6. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979;40:633–44.

    PubMed  CAS  Google Scholar 

  7. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    Article  PubMed  CAS  Google Scholar 

  8. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K. “Ischemic tolerance” phenomenon found in the brain. Brain Res. 1990;528:21–4.

    Article  PubMed  CAS  Google Scholar 

  9. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83:1113–51.

    PubMed  CAS  Google Scholar 

  10. Perez-Pinzon MA, Xu GP, Dietrich WD, Rosenthal M, Sick TJ. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cerebr Blood Flow Metab. 1997;17(2):175–82.

    CAS  Google Scholar 

  11. Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Ohtsuki T, Hata R, Ueda H, Handa N, Kimura K, Kamada T. ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 1990;528:21–4.

    Article  PubMed  CAS  Google Scholar 

  12. Stagliano NE, Perez-Pinzon MA, Moskowitz MA, Huang PL. Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J Cerebr Blood Flow Metab. 1999;19:757–61.

    CAS  Google Scholar 

  13. Perez-Pinzon MA, Born JG. Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience. 1999;89:453–9.

    Article  PubMed  CAS  Google Scholar 

  14. Kirino T. Ischemic tolerance. J Cerebr Blood Flow Metab. 2002;22:1283–96.

    Google Scholar 

  15. Grabb MC, Choi DW. Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci. 1999;19:1657–62.

    PubMed  CAS  Google Scholar 

  16. Jiang X, Tian F, Mearow K, Okagaki P, Lipsky RH, Marini AM. The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. J Neurochem. 2005;94:713–22.

    Article  PubMed  CAS  Google Scholar 

  17. Bhave SV, Ghoda L, Hoffman PL. Brain-derived neurotrophic factor mediates the anti-­apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J Neurosci. 1999;19:3277–86.

    PubMed  CAS  Google Scholar 

  18. Kato H, Liu Y, Araki T, Kogure K. MK-801, but not anisomycin, inhibits the induction of tolerance to ischemia in the gerbil hippocampus. Neurosci Lett. 1992;139:118–21.

    Article  PubMed  CAS  Google Scholar 

  19. Lin CH, Chen PS, Gean PW. Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons. Eur J Pharmacol. 2008;589:85–93.

    Article  PubMed  CAS  Google Scholar 

  20. Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA. Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab. 2004;24:636–45.

    Article  PubMed  CAS  Google Scholar 

  21. Perez-Pinzon MA. Neuroprotective effects of ischemic preconditioning in brain mitochondria following cerebral ischemia. J Bioenerg Biomembr. 2004;36:323–7.

    Article  PubMed  CAS  Google Scholar 

  22. Raval AP, Dave K, Mochly-Rosen D, Sick T, Perez-Pinzon M. εPKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci. 2003;23:384–91.

    PubMed  CAS  Google Scholar 

  23. Johnson JA, Gray MO, Chen C-H, Mochly-Rosen D. A protein kinase C translocation inhibitor as an isozyme-selective antagonist of cardiac function. J Biol Chem. 1996;271:24962–6.

    Article  PubMed  CAS  Google Scholar 

  24. Maulik N, Watanabe M, Zu YL, et al. Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 1996;396:233–7.

    Article  PubMed  CAS  Google Scholar 

  25. Shamloo M, Wieloch T. Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. J Cereb Blood Flow Metab. 1999;19:173–83.

    Article  PubMed  CAS  Google Scholar 

  26. Wang RM, Zhang QG, Li CH, Zhang GY. Activation of extracellular signal-regulated kinase 5 may play a neuroprotective role in hippocampal CA3/DG region after cerebral ischemia. J Neurosci Res. 2005;80:391–9.

    Article  PubMed  CAS  Google Scholar 

  27. Noshita N, Lewen A, Sugawara T, Chan PH. Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2001;21:1442–50.

    Article  PubMed  CAS  Google Scholar 

  28. Yano S, Morioka M, Fukunaga K, Kawano T, Hara T, Kai Y, Hamada J, Miyamoto E, Ushio Y. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2001;21:351–60.

    Article  PubMed  CAS  Google Scholar 

  29. Nakajima T, Iwabuchi S, Miyazaki H, Okuma Y, Kuwabara M, Nomura Y, Kawahara K. Preconditioning prevents ischemia-induced neuronal death through persistent Akt activation in the penumbra region of the rat brain. J Vet Med Sci. 2004;66:521–7.

    Article  PubMed  CAS  Google Scholar 

  30. Miao B, Yin XH, Pei DS, Zhang QG, Zhang GY. Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation. J Biol Chem. 2005;280:21693–9.

    Article  PubMed  CAS  Google Scholar 

  31. Atkinson TJ. Toll-like receptors, transduction-effector pathways, and disease diversity: evidence of an immunobiological paradigm explaining all human illness? Int Rev Immunol. 2008;27:255–81.

    Article  PubMed  CAS  Google Scholar 

  32. Tasaki K, Ruetzler CA, Ohtsuki T, et al. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748:267–70.

    Article  PubMed  CAS  Google Scholar 

  33. Furuya K, Ginis I, Takeda H, Chen Y, Hallenbeck J. Cell permeable exogenous ceramide reduces infarct size in spontaneously hypertensive rats supporting in vitro studies that have implicated ceramide in induction of tolerance to ischemia. J Cereb Blood Flow Metab. 2001;21:226–32.

    Article  PubMed  CAS  Google Scholar 

  34. Marshall JD, Heeke DS, Abbate C, et al. Induction of interferon-gamma from natural killer cells by immunostimulatory CpG DNA is mediated through plasmacytoid-endritic-cell-produced interferon-alpha and tumour necrosis factor-alpha. Immunology 2006;117:38–46.

    Article  PubMed  CAS  Google Scholar 

  35. Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, Raz E. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest. 2005;115:695–702.

    PubMed  CAS  Google Scholar 

  36. Ryu H, et al. Sp1 and Sp3 are oxidative stressinducible, antideath transcription factors in cortical neurons. J Neurosci. 2003;23:3597–606.

    PubMed  CAS  Google Scholar 

  37. Zhou AM, Li WB, Li QJ, Liu HQ, Feng RF, Zhao HG. A short cerebral ischemic preconditioning up-regulates adenosine receptors in the hippocampal CA1 region of rats. Neurosci Res. 2004;48:397–404.

    Article  PubMed  CAS  Google Scholar 

  38. Carbonell T, Rama R. Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem. 2007;14:857–74.

    Article  PubMed  CAS  Google Scholar 

  39. Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int. 1998;32:117–31.

    Article  PubMed  CAS  Google Scholar 

  40. Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 2005;76:126–52.

    Article  PubMed  CAS  Google Scholar 

  41. Ohtsuki T, Matsumoto M, Kuwabara K, Kitagawa K, Suzuki K, Taniguchi N, Kamada T. Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res. 1992;599:246–52.

    Article  PubMed  CAS  Google Scholar 

  42. Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F. Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev. 2008;60:1471–7.

    Article  PubMed  CAS  Google Scholar 

  43. Toyoda T, Kassell NF, Lee KS. Induction of ischemic tolerance and antioxidant activity by brief focal ischemia. Neuroreport. 1997;8:847–51.

    Article  PubMed  CAS  Google Scholar 

  44. Panahian N, Yoshiura M, Maines MD. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem. 1999;72:1187–203.

    Article  PubMed  CAS  Google Scholar 

  45. Kato H, Liu Y, Kogure K, Kato K. Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Res. 1994;634:235–44.

    Article  PubMed  CAS  Google Scholar 

  46. Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem. 2004;89:73–89.

    Article  PubMed  CAS  Google Scholar 

  47. Liu Y, Kato H, Nakata N, Kogure K. Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience. 1993;56:921–7.

    Article  PubMed  CAS  Google Scholar 

  48. Chen J, Graham SH, Zhu RL, Simon RP. Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab. 1996;16:566–77.

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka S, Kitagawa K, Ohtsuki T, Yagita Y, Takasawa K, Hori M, Matsumoto M. Synergistic induction of HSP40 and HSC70 in the mouse hippocampal neurons after cerebral ischemia and ischemic tolerance in gerbil hippocampus. J Neurosci Res. 2002;67:37–47.

    Article  PubMed  CAS  Google Scholar 

  50. Abe H, Nowak TS. Postischemic temperature as a modulator of the stress response in brain: dissociation of heat shock protein 72 induction from ischemic tolerance after bilateral carotid artery occlusion in the gerbil. Neurosci Lett. 2000;295:54–8.

    Article  PubMed  CAS  Google Scholar 

  51. Beck T, Lindholm D, Castren E, Wree A. Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J Cereb Blood Flow Metab. 1994;14:689–92.

    Article  PubMed  CAS  Google Scholar 

  52. Shigeno T, Mima T, Takakura K, Graham DI, Kato G, Hashimoto Y, Furukawa S. Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci. 1991;11:2914–9.

    PubMed  CAS  Google Scholar 

  53. Tanaka K, Tsukahara T, Hashimoto N, Ogata N, Yonekawa Y, Kimura T, Taniguchi T. Effect of nerve growth factor on delayed neuronal death after cerebral ischaemia. Acta Neurochir (Wien). 1994;129:64–71.

    Article  CAS  Google Scholar 

  54. Truettner J, Busto R, Zhao W, Ginsberg MD, Perez-Pinzon MA. Effect of ischemic preconditioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res. 2002;103:106–15.

    Article  PubMed  CAS  Google Scholar 

  55. Weih M, Kallenberg K, Bergk A, Dirnagl U, Harms L, Wernecke KD, Einhaupl KM. Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke. 1999;30:1851–4.

    Article  PubMed  CAS  Google Scholar 

  56. Wegener S, Gottschalk B, Jovanovic V, Knab R, Fiebach JB, Schellinger PD, Kucinski T, Jungehulsing GJ, Brunecker P, Muller B, Banasik A, Amberger N, Wernecke KD, Siebler M, Röther J, Villringer A, Weih M. MRI in Acute Stroke Study Group of the German Competence Network Stroke: transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke. 2004;35:616–21.

    Article  PubMed  Google Scholar 

  57. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.

    Article  PubMed  CAS  Google Scholar 

  58. Castillo J, Moro MA, Blanco M, Leira R, Serena J, Lizasoain I, Davalos A. The release of tumor necrosis factor-alpha is associated with ischemic tolerance in human stroke. Ann Neurol. 2003;54:811–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Qian, L., Sherchan, P., Sun, X. (2012). Stroke Preconditioning to Identify Endogenous Protective or Regenerative Mechanisms. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_16

Download citation

Publish with us

Policies and ethics