Skip to main content

Frontiers in the Treatment of Hearing Loss

  • Chapter
  • First Online:
Noise-Induced Hearing Loss

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 40))

Abstract

In the last decade, a paradigm shift has occurred in our vision for the prevention and treatment of hearing impairment. No longer are the solutions restricted to hearing aids, surgery, and implants to restore hearing, control of serum levels to prevent drug-induced ototoxicity, hearing protectors to prevent noise-induced hearing loss (NIHL), and for hereditary loss: wait and hope. Obviously all but the latter practices are of vital continued value, but the promise of more varied and more effective opportunities to prevent hearing loss and to restore hearing have provided increased hope and opportunity. Our future vision is now filled with complex pharmaceutical, cellular, and molecular strategies to modulate hereditary loss, replace and regenerate tissues of the inner ear, and prevent drug-induced hearing loss and NIHL. This future holds the promise of dramatically reducing the lost educational and job opportunities, the social isolation, and the reduced quality of life that accompanies hearing impairment and deafness, and with it the enormous economic costs associated with health care and lost productivity (estimated by the World Health Organization at >2% world GNP). This future molds and reshapes the practices of audiology and otolaryngology to place far greater efforts on the prevention of hearing impairment and the use of local and systemic drug treatment to restore hearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Hachem, R. N., Zine, A., & Van De Water, T. R. (2010). The injured cochlea as a target for inflammatory processes, initiation of cell death pathways and application of related otoprotectives strategies. Recent Patents on CNS Drug Delivery, 5(2), 147–163.

    CAS  Google Scholar 

  • Ahn, J. H., Kang, H. H., Kim, Y. J., & Chung, J. W. (2005). Anti-apoptotic role of retinoic acid in the inner ear of noise-exposed mice. Biochemical and Biophysical Research Communications, 335(2), 485–490.

    CAS  PubMed  Google Scholar 

  • Altschuler, R. A., Cho, Y., Ylikoski, J., Pirvola, U., Magal, E., & Miller, J. M. (1999). Rescue and regrowth of sensory nerves following deafferentation by neurotrophic factors. Annals of the New York Academy of Sciences, 884, 305–311.

    CAS  PubMed  Google Scholar 

  • Altschuler, R. A., O’Shea, K. S., & Miller, J. M. (2008). Stem cell transplantation for auditory nerve replacement. Hearing Research, 242(1–2), 110–116.

    PubMed Central  PubMed  Google Scholar 

  • Asoh, S., Ohtsu, T., & Ohta, S. (2000). The super anti-apoptotic factor Bcl-xFNK constructed by disturbing intramolecular polar interactions in rat Bcl-xL. The Journal of Biological Chemistry, 275(47), 37240–37245.

    CAS  PubMed  Google Scholar 

  • Asoh, S., Ohsawa, I., Mori, T., Katsura, K., Hiraide, T., Katayama, Y., & Ohta, S. (2002). Protection against ischemic brain injury by protein therapeutics. Proceedings of the National Academy of Sciences of the USA, 99(26), 17107–17112.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohne, B. A., & Harding, G. W. (1992). Neural regeneration in the noise-damaged chinchilla cochlea. The Laryngoscope, 102(6), 693–703.

    CAS  PubMed  Google Scholar 

  • Bohne, B. A., Harding, G. W., Nordmann, A. S., Tseng, C. J., Liang, G. E., & Bahadori, R. S. (1999). Survival-fixation of the cochlea: A technique for following time-dependent degeneration and repair in noise-exposed chinchillas. Hearing Research, 134(1–2), 163–178.

    CAS  PubMed  Google Scholar 

  • Branis, M., & Burda, H. (1988). Effect of ascorbic acid on the numerical hair cell loss in noise exposed guinea pigs. Hearing Research, 33(2), 137–140.

    CAS  PubMed  Google Scholar 

  • Campbell, K. C., Meech, R. P., Klemens, J. J., Gerberi, M. T., Dyrstad, S. S., Larsen, D. L., & Hughes, L. F. (2007). Prevention of noise – and drug-induced hearing loss with d-methionine. Hearing Research, 226(1–2), 92–103.

    CAS  PubMed  Google Scholar 

  • Cassandro, E., Sequino, L., Mondola, P., Attanasio, G., Barbara, M., & Filipo, R. (2003). Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs – electrophysiological and biochemical study. Acta Oto-Laryngologica, 123(7), 802–807.

    CAS  PubMed  Google Scholar 

  • Cevette, M. J., Vormann, J., & Franz, K. (2003). Magnesium and hearing. Journal of the American Academy of Audiology, 14(4), 202–212.

    PubMed  Google Scholar 

  • Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., & Choi, S. Y. (2006). PEP-1–SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radical Biology & Medicine, 41(7), 1058–1068.

    CAS  Google Scholar 

  • Circu, M. L., & Aw, T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biology & Medicine, 48(6), 749–762.

    CAS  Google Scholar 

  • Colletti, V., & Shannon, R. V. (2005). Open set speech perception with auditory brainstem implant? The Laryngoscope, 115(11), 1974–1978.

    PubMed  Google Scholar 

  • Corwin, J. T., & Cotanche, D. A. (1988). Regeneration of sensory hair cells after acoustic trauma. Science, 240(4860), 1772–1774.

    CAS  PubMed  Google Scholar 

  • Cotanche, D. A., & Kaiser, C. L. (2010). Hair cell fate decisions in cochlear development and regeneration. Hearing Research, 266(1–2), 18–25.

    PubMed Central  PubMed  Google Scholar 

  • Dazert, S., Kim, D., Luo, L., Aletsee, C., Garfunkel, S., Maciag, T., & Ryan, A. F. (1998). Focal delivery of fibroblast growth factor-1 by transfected cells induces spiral ganglion neurite targeting in vitro. Journal of Cellular Physiology, 177(1), 123–129.

    CAS  PubMed  Google Scholar 

  • Derekoy, F. S., Koken, T., Yilmaz, D., Kahraman, A., & Altuntas, A. (2004). Effects of ascorbic acid on oxidative system and transient evoked otoacoustic emissions in rabbits exposed to noise. The Laryngoscope, 114(10), 1775–1779.

    PubMed  Google Scholar 

  • Duan, M., Qiu, J., Laurell, G., Olofsson, A., Counter, S. A., & Borg, E. (2004). Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma. Hearing Research, 192(1–2), 1–9.

    CAS  PubMed  Google Scholar 

  • Edge, A. S., & Chen, Z. Y. (2008). Hair cell regeneration. Current Opinion in Neurobiology, 18(4), 377–382.

    CAS  PubMed  Google Scholar 

  • Ernfors, P., Duan, M. L., ElShamy, W. M., & Canlon, B. (1996). Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nature Medicine, 2(4), 463–467.

    CAS  PubMed  Google Scholar 

  • Fairfield, D. A., Lomax, M. I., Dootz, G. A., Chen, S., Galecki, A. T., Benjamin, I. J., & Altschuler, R. A. (2005). Heat shock factor 1–deficient mice exhibit decreased recovery of hearing following noise overstimulation. Journal of Neuroscience Research, 81(4), 589–596.

    CAS  PubMed  Google Scholar 

  • Fetoni, A. R., Mancuso, C., Eramo, S. L., Ralli, M., Piacentini, R., Barone, E., & Troiani, D. (2010). In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea-pig. Neuroscience, 169(4), 1575–1588.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B., Silos-Santiago, I. I., Bianchi, L. M., & Farinas, I. I. (1997). Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Seminars in Cell & Developmental Biology, 8(3), 277–284.

    CAS  Google Scholar 

  • Fukuda, K., Asoh, S., Ishikawa, M., Yamamoto, Y., Ohsawa, I., & Ohta, S. (2007). Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochemical & Biophysical Research Communications, 361(3), 670–674.

    CAS  Google Scholar 

  • Garnham, C., Reetz, G., Jolly, C., Miller, J., Salt, A., & Beal, F. (2005). Drug delivery to the cochlea after implantation: Consideration of the risk factors. Cochlear Implants International, 6 (Supplement 1), 12–14.

    PubMed  Google Scholar 

  • Gfeller, K., Oleson, J., Knutson, J. F., Breheny, P., Driscoll, V., & Olszewski, C. (2008). Multivariate predictors of music perception and appraisal by adult cochlear implant users. Journal of the American Academy of Audiology, 19(2), 120–134.

    PubMed Central  PubMed  Google Scholar 

  • Gillespie, L. N., Clark, G. M., & Marzella, P. L. (2004). Delayed neurotrophin treatment supports auditory neuron survival in deaf guinea pigs. NeuroReport, 15(7), 1121–1125.

    CAS  PubMed  Google Scholar 

  • Glueckert, R., Bitsche, M., Miller, J. M., Zhu, Y., Prieskorn, D. M., Altschuler, R. A., & Schrott-Fischer, A. (2008). Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor. The Journal of Comparative Neurology, 507(4), 1602–1621.

    PubMed  Google Scholar 

  • Gooch, J. L., Gorin, Y., Zhang, B. X., & Abboud, H. E. (2004). Involvement of calcineurin in transforming growth factor-beta-mediated regulation of extracellular matrix accumulation. The Journal of Biological Chemistry, 279(15), 15561–15570.

    CAS  PubMed  Google Scholar 

  • Green, S. H., Altschuler, R. A., & Miller, J. M. (2008). Cell death and cochlear protection. In J. Schacht, A. N. Popper & R. R. Fay (Eds.), Auditory Trauma, Protection and Repair (pp. 275–319). New York: Springer.

    Google Scholar 

  • Grosh, K., Zheng, J., Zou, Y., de Boer, E., & Nuttall, A. L. (2004). High-frequency electromotile responses in the cochlea. The Journal of the Acoustical Society of America, 115(5 Pt 1), 2178–2184.

    PubMed  Google Scholar 

  • Gunther, T., Ising, H., & Joachims, Z. (1989). Biochemical mechanisms affecting susceptibility to noise-induced hearing loss. The American Journal of Otology, 10(1), 36–41.

    CAS  PubMed  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. (1986). Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts. Archives of Biochemistry & Biophysics, 246(2), 501–514.

    CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Hansen, M. R., Zha, X. M., Bok, J., & Green, S. H. (2001). Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro. The Journal of Neuroscience, 21(7), 2256–2267.

    CAS  PubMed  Google Scholar 

  • Hansen, M. R., Bok, J., Devaiah, A. K., Zha, X. M., & Green, S. H. (2003). Ca2+/calmodulin-dependent protein kinases II and IV both promote survival but differ in their effects on axon growth in spiral ganglion neurons. Journal of Neuroscience Research, 72(2), 169–184.

    CAS  PubMed  Google Scholar 

  • Hayashida, K., Sano, M., Ohsawa, I., Shinmura, K., Tamaki, K., Kimura, K., & Fukuda, K. (2008). Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochemical and Biophysical Research Communications, 373(1), 30–35.

    CAS  PubMed  Google Scholar 

  • Henderson, D., Bielefeld, E. C., Harris, K. C., & Hu, B. H. (2006). The role of oxidative stress in noise-induced hearing loss. Ear & Hearing, 27(1), 1–19.

    Google Scholar 

  • Hirose, Y., Sugahara, K., Mikuriya, T., Hashimoto, M., Shimogori, H., & Yamashita, H. (2008). Effect of water-soluble coenzyme Q10 on noise-induced hearing loss in guinea pigs. Acta Oto-Laryngologica, 128(10), 1071–1076.

    CAS  PubMed  Google Scholar 

  • Hossain, W. A., & Morest, D. K. (2000). Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: Immunohistochemistry and antibody perturbation. Journal of Neuroscience Research, 62(1), 40–55.

    CAS  PubMed  Google Scholar 

  • Hou, F., Wang, S., Zhai, S., Hu, Y., Yang, W., & He, L. (2003). Effects of alpha-tocopherol on noise-induced hearing loss in guinea pigs. Hearing Research, 179(1–2), 1–8.

    CAS  PubMed  Google Scholar 

  • Hu, B. H., Zheng, X. Y., McFadden, S. L., Kopke, R. D., & Henderson, D. (1997). R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla. Hearing Research, 113(1–2), 198–206.

    CAS  PubMed  Google Scholar 

  • Hu, Z., Ulfendahl, M., & Olivius, N. P. (2004a). Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve. Brain Research, 1026(1), 68–73.

    CAS  PubMed  Google Scholar 

  • Hu, Z., Ulfendahl, M., & Olivius, N. P. (2004b). Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Experimental Neurology, 185(1), 7–14.

    PubMed  Google Scholar 

  • Hu, Z., Andang, M., Ni, D., & Ulfendahl, M. (2005a). Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Research, 1051(1–2), 137–144.

    CAS  PubMed  Google Scholar 

  • Hu, Z., Wei, D., Johansson, C. B., Holmstrom, N., Duan, M., Frisen, J., & Ulfendahl, M. (2005b). Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Experimental Cell Research, 302(1), 40–47.

    CAS  PubMed  Google Scholar 

  • Hu, Z., Ulfendahl, M., Prieskorn, D. M., Olivius, P., & Miller, J. M. (2009). Functional evaluation of a cell replacement therapy in the inner ear. Otology & Neurotology, 30(4), 551–558.

    Google Scholar 

  • Huang, C., Li, J., Costa, M., Zhang, Z., Leonard, S. S., Castranova, V., & Shi, X. (2001). Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by nickel subsulfide. Cancer Research, 61(22), 8051–8057.

    CAS  PubMed  Google Scholar 

  • Husseman, J., & Raphael, Y. (2009). Gene therapy in the inner ear using adenovirus vectors. Advances in Oto-Rhino-Laryngology, 66, 37–51.

    CAS  PubMed  Google Scholar 

  • Iguchi, F., Nakagawa, T., Tateya, I., Endo, T., Kim, T. S., Dong, Y., & Ito, J. (2004). Surgical techniques for cell transplantation into the mouse cochlea. Acta Oto-Laryngologica, (551, Supplement), 43–47.

    Google Scholar 

  • Incesulu, A., & Nadol, J. B., Jr. (1998). Correlation of acoustic threshold measures and spiral ganglion cell survival in severe to profound sensorineural hearing loss: Implications for cochlear implantation. The Annals of Otology, Rhinology, & Laryngology, 107(11 Pt 1), 906–911.

    CAS  Google Scholar 

  • Ito, J., Murata, M., & Kawaguchi, S. (2001). Regeneration and recovery of the hearing function of the central auditory pathway by transplants of embryonic brain tissue in adult rats. Experimental Neurology, 169(1), 30–35.

    CAS  PubMed  Google Scholar 

  • Izumikawa, M., Minoda, R., Kawamoto, K., Abrashkin, K. A., Swiderski, D. L., Dolan, D. F., &. Raphael, Y. (2005). Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nature Medicine, 11(3), 271–276.

    CAS  PubMed  Google Scholar 

  • Kajiyama, S., Hasegawa, G., Asano, M., Hosoda, H., Fukui, M., Nakamura, N., & Yoshikawa, T. (2008). Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutrition Research, 28(3), 137–143.

    CAS  PubMed  Google Scholar 

  • Kanzaki, S., Stover, T., Kawamoto, K., Prieskorn, D. M., Altschuler, R. A., Miller, J. M., & Raphael, Y. (2002). Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. The Journal of Comparative Neurology, 454(3), 350–360.

    CAS  PubMed  Google Scholar 

  • Kashio, A., Sakamoto, T., Suzukawa, K., Asoh, S., Ohta, S., & Yamasoba, T. (2007). A protein derived from the fusion of TAT peptide and FNK, a Bcl-x(L) derivative, prevents cochlear hair cell death from aminoglycoside ototoxicity in vivo. Journal of Neuroscience Research, 85(7), 1403–1412.

    CAS  PubMed  Google Scholar 

  • Kawamoto, K., Kanzaki, S., Yagi, M., Stover, T., Prieskorn, D. M., Dolan, D. F., & Raphael, Y. (2001). Gene-based therapy for inner ear disease. Noise Health, 3(11), 37–47.

    PubMed  Google Scholar 

  • Kawamoto, K., Yagi, M., Stover, T., Kanzaki, S., & Raphael, Y. (2003). Hearing and hair cells are protected by adenoviral gene therapy with TGF-beta1 and GDNF. Molecular Therapy, 7(4), 484–492.

    CAS  PubMed  Google Scholar 

  • Kawamoto, K., Sha, S. H., Minoda, R., Izumikawa, M., Kuriyama, H., Schacht, J., & Raphael, Y. (2004). Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Molecular Therapy, 9(2), 173–181.

    CAS  PubMed  Google Scholar 

  • Kikkawa, Y. S., Nakagawa, T., Horie, R. T., & Ito, J. (2009). Hydrogen protects auditory hair cells from free radicals. NeuroReport, 20(7), 689–694.

    PubMed  Google Scholar 

  • Kirkland, R. A., & Franklin, J. L. (2003). Bax, reactive oxygen, and cytochrome c release in neuronal apoptosis. Antioxidants & Redox Signaling, 5(5), 589–596.

    CAS  Google Scholar 

  • Kopke, R. D., Weisskopf, P. A., Boone, J. L., Jackson, R. L., Wester, D. C., Hoffer, M. E., & McBride, D. (2000). Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hearing Research, 149(1–2), 138–146.

    CAS  PubMed  Google Scholar 

  • Kopke, R. D., Coleman, J. K., Liu, J., Campbell, K. C., & Riffenburgh, R. H. (2002). Candidate’s thesis: Enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. The Laryngoscope, 112(9), 1515–1532.

    CAS  PubMed  Google Scholar 

  • Küçük, B., Abe, K., Ushiki, T., Inuyama, Y., Fukuda, S., & Ishikawa, K. (1991). Microstructures of the bony modiolus in the human cochlea: A scanning electron microscopic study. Journal of Electron Microscopy (Tokyo), 40(3), 193–197.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077–14085.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwan, T., White, P. M., & Segil, N. (2009). Development and regeneration of the inner ear. Annals of the New York Academy of Sciences, 1170, 28–33.

    PubMed  Google Scholar 

  • Lamm, K., & Arnold, W. (2000). The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO2 and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hearing Research, 141(1–2), 199–219.

    CAS  PubMed  Google Scholar 

  • Lawner, B. E., Harding, G. W., & Bohne, B. A. (1997). Time course of nerve-fiber regeneration in the noise-damaged mammalian cochlea. International Journal of Developmental Neuroscience, 15(4–5), 601–617.

    CAS  PubMed  Google Scholar 

  • Le Prell, C. G., Yagi, M., Kawamoto, K., Beyer, L. A., Atkin, G., Raphael, Y., & Moody, D. B. (2004). Chronic excitotoxicity in the guinea pig cochlea induces temporary functional deficits without disrupting otoacoustic emissions. The Journal of the Acoustical Society of America, 116(2), 1044–1056.

    PubMed  Google Scholar 

  • Le Prell, C. G., Hughes, L. F., & Miller, J. M. (2007a). Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radical Biology & Medicine, 42(9), 1454–1463.

    Google Scholar 

  • Le Prell, C. G., Yamashita, D., Minami, S. B., Yamasoba, T., & Miller, J. M. (2007b). Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hearing Research, 226(1–2), 22–43.

    PubMed Central  PubMed  Google Scholar 

  • Lenarz, T. (2009). Electro-acoustic stimulation of the cochlea. Editorial. Audiology & Neuro-otology, 14 (Supplement 1), 1.

    PubMed  Google Scholar 

  • Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R. W., Washko, P. W., Dhariwal, K. R., & Cantilena, L. R. (1996). Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proceedings of the National Academy of Sciences of the USA, 93(8), 3704–3709.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, H., Liu, H., & Heller, S. (2003a). Pluripotent stem cells from the adult mouse inner ear. Nature Medicine, 9(10), 1293–1299.

    CAS  PubMed  Google Scholar 

  • Li, H., Roblin, G., Liu, H., & Heller, S. (2003b). Generation of hair cells by stepwise differentiation of embryonic stem cells. Proceedings of the National Academy of Sciences of the USA, 100(23), 13495–13500.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, H., Corrales, C. E., Edge, A., & Heller, S. (2004). Stem cells as therapy for hearing loss. Trends in Molecular Medicine, 10(7), 309–315.

    CAS  PubMed  Google Scholar 

  • Lim, H. H., Lenarz, T., Anderson, D. J., & Lenarz, M. (2008). The auditory midbrain implant: Effects of electrode location. Hearing Research, 242(1–2), 74–85.

    PubMed  Google Scholar 

  • Lim, H. H., Lenarz, M., & Lenarz, T. (2009). Auditory midbrain implant: A review. Trends in Amplification, 13(3), 149–180.

    PubMed  Google Scholar 

  • Lopez, I. A., Zhao, P. M., Yamaguchi, M., de Vellis, J., & Espinosa-Jeffrey, A. (2004). Stem/progenitor cells in the postnatal inner ear of the GFP-nestin transgenic mouse. International Journal of Developmental Neuroscience, 22(4), 205–213.

    CAS  PubMed  Google Scholar 

  • Lynch, E. D., & Kil, J. (2005). Compounds for the prevention and treatment of noise-induced hearing loss. Drug Discovery Today, 10(19), 1291–1298.

    CAS  PubMed  Google Scholar 

  • Maricich, S. M., Xia, A., Mathes, E. L., Wang, V. Y., Oghalai, J. S., Fritzsch, B., & Zoghbi, H. Y. (2009). Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. The Journal of Neuroscience, 29(36), 11123–11133.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Monedero, R., Yi, E., Oshima, K., Glowatzki, E., & Edge, A. S. (2008). Differentiation of inner ear stem cells to functional sensory neurons. Developmental Neurobiology, 68(5), 669–684.

    CAS  PubMed  Google Scholar 

  • Maruyama, J., Yamagata, T., Ulfendahl, M., Bredberg, G., Altschuler, R. A., & Miller, J. M. (2007). Effects of antioxidants on auditory nerve function and survival in deafened guinea pigs. Neurobiology of Disease, 25(2), 309–318.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maruyama, J., Miller, J. M., & Ulfendahl, M. (2008). Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness. Neurobiology of Disease, 29(1), 14–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattson, M. P. (1998). Neuroprotective strategies based on targeting of postreceptor signaling events. In M. P. Mattson (Ed.), Neuroprotective signal transduction (pp. 301–335). Totowa, NJ: Humana Press.

    Google Scholar 

  • McFadden, S. L., Ding, D., Jiang, H., & Salvi, R. J. (2004). Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Research, 997(1), 40–51.

    CAS  PubMed  Google Scholar 

  • McFadden, S. L., Woo, J. M., Michalak, N., & Ding, D. (2005). Dietary vitamin C supplementation reduces noise-induced hearing loss in guinea pigs. Hearing Research, 202(1–2), 200–208.

    CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Snyder, R. L. (2007). Auditory prosthesis with a penetrating nerve array. Journal of the Association for Research in Otolaryngology, 8(2), 258–279.

    PubMed Central  PubMed  Google Scholar 

  • Miller, J. M., Chi, D. H., O’Keeffe, L. J., Kruszka, P., Raphael, Y., & Altschuler, R. A. (1997). Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. International Journal of Developmental Neuroscience, 15(4–5), 631–643.

    CAS  PubMed  Google Scholar 

  • Miller, J. M., Miller, A. L., Yamagata, T., Bredberg, G., & Altschuler, R. A. (2002). Protection and regrowth of the auditory nerve after deafness: Neurotrophins, antioxidants and depolarization are effective in vivo. Audiology & Neuro-otology, 7(3), 175–179.

    CAS  Google Scholar 

  • Miller, A. L., Prieskorn, D. M., Altschuler, R. A., & Miller, J. M. (2003a). Mechanism of electrical stimulation-induced neuroprotection: Effects of verapamil on protection of primary auditory afferents. Brain Research, 966(2), 218–230.

    CAS  PubMed  Google Scholar 

  • Miller, J. M., Brown, J. N., & Schacht, J. (2003b). 8–iso-prostaglandin F, a product of noise exposure, reduces inner ear blood flow. Audiology & Neuro-otology, 8(4), 207–221.

    CAS  Google Scholar 

  • Miller, J., Yamashita, D., Minami, S., Yamasoba, T., & Le Prell, C. (2006). Mechanisms and prevention of noise-induced hearing loss. Otology Japan, 16(2), 139–153.

    CAS  Google Scholar 

  • Miller, J. M., Le Prell, C. G., Prieskorn, D. M., Wys, N. L., & Altschuler, R. A. (2007). Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: Effects of brain-derived neurotrophic factor and fibroblast growth factor. Journal of Neuroscience Research, 85(9), 1959–1969.

    CAS  PubMed  Google Scholar 

  • Minami, S. B., Yamashita, D., Ogawa, K., Schacht, J., & Miller, J. M. (2007). Creatine and tempol attenuate noise-induced hearing loss. Brain Research, 1148, 83–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris, M. C., Depollier, J., Mery, J., Heitz, F., & Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19(12), 1173–1176.

    CAS  PubMed  Google Scholar 

  • Munson, B., & Nelson, P. B. (2005). Phonetic identification in quiet and in noise by listeners with cochlear implants. The Journal of the Acoustical Society of America, 118(4), 2607–2617.

    PubMed  Google Scholar 

  • Nadol, J. B., Jr., Young, Y. S., & Glynn, R. J. (1989). Survival of spiral ganglion cells in profound sensorineural hearing loss: Implications for cochlear implantation. The Annals of Otology, Rhinology & Laryngology, 98(6), 411–416.

    Google Scholar 

  • Nagata, K., Nakashima-Kamimura, N., Mikami, T., Ohsawa, I., & Ohta, S. (2009). Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology, 34(2), 501–508.

    CAS  PubMed  Google Scholar 

  • Naito, Y., Nakamura, T., Nakagawa, T., Iguchi, F., Endo, T., Fujino, K., & Ito, J. (2004). Transplantation of bone marrow stromal cells into the cochlea of chinchillas. NeuroReport, 15(1), 1–4.

    PubMed  Google Scholar 

  • Neef, D. W., Turski, M. L., & Thiele, D. J. (2010). Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biology, 8(1), e1000291.

    PubMed Central  PubMed  Google Scholar 

  • Nishimura, K., Nakagawa, T., Ono, K., Ogita, H., Sakamoto, T., Yamamoto, N., & Ito, J. (2009). Transplantation of mouse induced pluripotent stem cells into the cochlea. NeuroReport, 20(14), 1250–1254.

    PubMed  Google Scholar 

  • Ohinata, Y., Yamasoba, T., Schacht, J., & Miller, J. M. (2000). Glutathione limits noise-induced hearing loss. Hearing Research, 146(1–2), 28–34.

    CAS  PubMed  Google Scholar 

  • Ohinata, Y., Miller, J. M., & Schacht, J. (2003). Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Research, 966(2), 265–273.

    CAS  PubMed  Google Scholar 

  • Ohlemiller, K. K., Wright, J. S., & Dugan, L. L. (1999). Early elevation of cochlear reactive oxygen species following noise exposure. Audiology & Neuro-otology, 4(5), 229–236.

    CAS  Google Scholar 

  • Ohsawa, I., Ishikawa, M., Takahashi, K., Watanabe, M., Nishimaki, K., Yamagata, K., & Ohta, S. (2007). Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine, 13(6), 688–694.

    CAS  PubMed  Google Scholar 

  • Oliva, E. N., Ronco, F., Marino, A., Alati, C., Pratico, G., & Nobile, F. (2010). Iron chelation therapy associated with improvement of hematopoiesis in transfusion-dependent patients. Transfusion, 50(7), 1568–1570.

    PubMed  Google Scholar 

  • Oshima, K., Shin, K., Diensthuber, M., Peng, A. W., Ricci, A. J., & Heller, S. (2010). Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell, 141(4), 704–716.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patsch, C., & Edenhofer, F. (2007). Conditional mutagenesis by cell-permeable proteins: Potential, limitations and prospects. Handbook of Experimental. Pharmacology, (178), 203–232.

    Google Scholar 

  • Pirvola, U., Hallbook, F., Xing-Qun, L., Virkkala, J., Saarma, M., & Ylikoski, J. (1997). Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. Journal of Neurobiology, 33(7), 1019–1033.

    CAS  PubMed  Google Scholar 

  • Pourbakht, A., & Yamasoba, T. (2003). Ebselen attenuates cochlear damage caused by acoustic trauma. Hearing Research, 181(1–2), 100–108.

    CAS  PubMed  Google Scholar 

  • Probst, F. J., Fridell, R. A., Raphael, Y., Saunders, T. L., Wang, A., Liang, Y., & Camper, S. A. (1998). Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC ­transgene. Science, 280(5368), 1444–1447.

    CAS  PubMed  Google Scholar 

  • Puel, J. L., Pujol, R., Ladrech, S., & Eybalin, M. (1991). Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid electrophysiological and neurotoxic effects in the guinea-pig cochlea. Neuroscience, 45(1), 63–72.

    CAS  PubMed  Google Scholar 

  • Puel, J. L., Saffiedine, S., Gervais d’Aldin, C., Eybalin, M., & Pujol, R. (1995). Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. Comptes Rendus de l’ Académie des Sciences Série III, 318(1), 67–75.

    CAS  Google Scholar 

  • Puel, J. L., Ruel, J., Gervais d’Aldin, C., & Pujol, R. (1998). Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport, 9(9), 2109–2114.

    Google Scholar 

  • Pujol, R., & Puel, J. L. (1999). Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: A review of recent findings. Annals of the New York Academy of Sciences, 884, 249–254.

    CAS  PubMed  Google Scholar 

  • Quirk, W. S., & Seidman, M. D. (1995). Cochlear vascular changes in response to loud noise. The American Journal of Otology, 16(3), 322–325.

    CAS  PubMed  Google Scholar 

  • Quirk, W. S., Avinash, G., Nuttall, A. L., & Miller, J. M. (1992). The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hearing Research, 63(1–2), 102–107.

    CAS  PubMed  Google Scholar 

  • Quirk, W. S., Shivapuja, B. G., Schwimmer, C. L., & Seidman, M. D. (1994). Lipid peroxidation inhibitor attenuates noise-induced temporary threshold shifts. Hearing Research, 74(1–2), 217–220.

    CAS  PubMed  Google Scholar 

  • Rask-Andersen, H., Bostrom, M., Gerdin, B., Kinnefors, A., Nyberg, G., Engstrand, T., & Lindholm, D. (2005). Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hearing Research, 203(1–2), 180–191.

    CAS  PubMed  Google Scholar 

  • Reyes, J. H., O’Shea, K. S., Wys, N. L., Velkey, J. M., Prieskorn, D. M., Wesolowski, K., & Altschuler, R. A. (2008). Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: In vitro and in vivo studies. The Journal of Neuroscience, 28(48), 12622–12631.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera, A., & Maxwell, S. A. (2005). The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. The Journal of Biological Chemistry, 280(32), 29346–29354.

    CAS  PubMed  Google Scholar 

  • Roberts, R. A., Smith, R. A., Safe, S., Szabo, C., Tjalkens, R. B., & Robertson, F. M. (2010). Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology, 276(2), 85–94.

    CAS  PubMed  Google Scholar 

  • Ryals, B. M., & Rubel, E. W. (1988). Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science, 240(4860), 1774–1776.

    CAS  PubMed  Google Scholar 

  • Salt, A. N., & Plontke, S. K. (2009). Principles of local drug delivery to the inner ear. Audiology & Neuro-otology, 14(6), 350–360.

    CAS  Google Scholar 

  • Sato, Y., Kajiyama, S., Amano, A., Kondo, Y., Sasaki, T., Handa, S., & Ishigami, A. (2008). Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochemical & Biophysical Research Communications, 375(3), 346–350.

    CAS  Google Scholar 

  • Scheibe, F., Haupt, H., & Ising, H. (2000). Preventive effect of magnesium supplement on noise-induced hearing loss in the guinea pig. European Archives of Oto-rhino-laryngology, 257(1), 10–16.

    CAS  PubMed  Google Scholar 

  • Scheper, V., Paasche, G., Miller, J. M., Warnecke, A., Berkingali, N., Lenarz, T., & Stover, T. (2009). Effects of delayed treatment with combined GDNF and continuous electrical stimulation on spiral ganglion cell survival in deafened guinea pigs. The Journal of Neuroscience Research, 87(6), 1389–1399.

    CAS  Google Scholar 

  • Schwartz, M. S., Otto, S. R., Shannon, R. V., Hitselberger, W. E., & Brackmann, D. E. (2008). Auditory brainstem implants. Neurotherapeutics, 5(1), 128–136.

    PubMed  Google Scholar 

  • Seidman, M. D., Shivapuja, B. G., & Quirk, W. S. (1993). The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngology and Head and Neck Surgery, 109(6), 1052–1056.

    CAS  Google Scholar 

  • Seidman, M., Babu, S., Tang, W., Naem, E., & Quirk, W. S. (2003). Effects of resveratrol on acoustic trauma. Otolaryngology and Head and Neck Surgery, 129(5), 463–470.

    Google Scholar 

  • Shah, S. B., Gladstone, H. B., Williams, H., Hradek, G. T., & Schindler, R. A. (1995). An extended study: Protective effects of nerve growth factor in neomycin-induced auditory neural degeneration. The American Journal of Otology, 16(3), 310–314.

    CAS  PubMed  Google Scholar 

  • Shibata, S. B., Cortez, S. R., Beyer, L. A., Wiler, J. A., Di Polo, A., Pfingst, B. E., & Raphael, Y. (2010). Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Experimental Neurology, 223(2), 464–472.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shim, H. J., Kang, H. H., Ahn, J. H., & Chung, J. W. (2009). Retinoic acid applied after noise exposure can recover the noise-induced hearing loss in mice. Acta Oto-Laryngologica, 129(3), 233–238.

    CAS  PubMed  Google Scholar 

  • Shoji, F., Miller, A. L., Mitchell, A., Yamasoba, T., Altschuler, R. A., & Miller, J. M. (2000a). Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss. Hearing Research, 146(1–2), 134–142.

    CAS  PubMed  Google Scholar 

  • Shoji, F., Yamasoba, T., Magal, E., Dolan, D. F., Altschuler, R. A., & Miller, J. M. (2000b). Glial cell line-derived neurotrophic factor has a dose dependent influence on noise-induced hearing loss in the guinea pig cochlea. Hearing Research, 142(1–2), 41–55.

    CAS  PubMed  Google Scholar 

  • Spoendlin, H. (1984). Factors inducing retrograde degeneration of the cochlear nerve. The Annals of Otology, Rhinology & Laryngology, 112(Supplement), 76–82.

    CAS  Google Scholar 

  • Spoendlin, H., & Schrott, A. (1990). Quantitative evaluation of the human cochlear nerve. Acta Oto-Laryngologica, 470(Supplementum), 61–69; discussion 69–70.

    CAS  Google Scholar 

  • Staecker, H., Liu, W., Hartnick, C., Lefebvre, P., Malgrange, B., Moonen, G., & Van de Water, T. R. (1995). NT-3 combined with CNTF promotes survival of neurons in modiolus-spiral ganglion explants. NeuroReport, 6(11), 1533–1537.

    CAS  PubMed  Google Scholar 

  • Staecker, H., Kopke, R., Malgrange, B., Lefebvre, P., & Van de Water, T. R. (1996). NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. NeuroReport, 7(4), 889–894.

    CAS  PubMed  Google Scholar 

  • Sugahara, K., Shimogori, H., & Yamashita, H. (2001). The role of acidic fibroblast growth factor in recovery of acoustic trauma. NeuroReport, 12(15), 3299–3302.

    CAS  PubMed  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    CAS  PubMed  Google Scholar 

  • Thorne, M., Salt, A. N., DeMott, J. E., Henson, M. M., Henson, O. W., Jr., & Gewalt, S. L. (1999). Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. The Laryngoscope, 109(10), 1661–1668.

    CAS  PubMed  Google Scholar 

  • Tilstra, J., Rehman, K. K., Hennon, T., Plevy, S. E., Clemens, P., & Robbins, P. D. (2007). Protein transduction: Identification, characterization and optimization. Biochemical Society Transactions, 35(Pt 4), 811–815.

    CAS  PubMed  Google Scholar 

  • Ulfendahl, M. (2007). Tissue transplantation into the inner ear. In A. Martini, D. Stephens, & A. P. Read (Eds.), Genes, Hearing and Deafness. London: Martin Dunitz & Parthenon.

    Google Scholar 

  • Ulfendahl, M., Hu, Z., Olivius, P., Duan, M., & Wei, D. (2007). A cell therapy approach to substitute neural elements in the inner ear. Physiology & Behavior, 92(1–2), 75–79.

    CAS  Google Scholar 

  • Van de Water, T. R., Dinh, C. T., Vivero, R., Hoosien, G., Eshraghi, A. A., & Balkany, T. J. (2010). Mechanisms of hearing loss from trauma and inflammation: Otoprotective therapies from the laboratory to the clinic. Acta Oto-Laryngologica, 130(3),

    Google Scholar 

  • Webster, M., & Webster, D. B. (1981). Spiral ganglion neuron loss following organ of Corti loss: A quantitative study. Brain Research, 212(1), 17–30.

    CAS  PubMed  Google Scholar 

  • Winkler, C., Kirik, D., & Bjorklund, A. (2005). Cell transplantation in Parkinson’s disease: How can we make it work? Trends in Neurosciences, 28(2), 86–92.

    CAS  PubMed  Google Scholar 

  • Woodson, E. A., Reiss, L. A., Turner, C. W., Gfeller, K., & Gantz, B. J. (2010). The hybrid cochlear implant: A review. Advances in Oto-Rhino-Laryngology, 67, 125–134.

    PubMed  Google Scholar 

  • Yagi, M., Magal, E., Sheng, Z., Ang, K. A., & Raphael, Y. (1999). Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor. Human Gene Therapy, 10(5), 813–823.

    CAS  PubMed  Google Scholar 

  • Yamagata, T., Miller, J. M., Ulfendahl, M., Olivius, N. P., Altschuler, R. A., Pyykko, I., & Bredberg, G. (2004). Delayed neurotrophic treatment preserves nerve survival and electrophysiological responsiveness in neomycin-deafened guinea pigs. The Journal of Neuroscience Research, 78(1), 75–86.

    CAS  Google Scholar 

  • Yamashita, D., Jiang, H. Y., Schacht, J., & Miller, J. M. (2004). Delayed production of free radicals following noise exposure. Brain Research, 1019(1–2), 201–209.

    CAS  PubMed  Google Scholar 

  • Yamashita, D., Jiang, H. Y., Le Prell, C. G., Schacht, J., & Miller, J. M. (2005). Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience, 134(2), 633–642.

    CAS  PubMed  Google Scholar 

  • Yamasoba, T., Nuttall, A. L., Harris, C., Raphael, Y., & Miller, J. M. (1998). Role of glutathione in protection against noise-induced hearing loss. Brain Research, 784(1–2), 82–90.

    CAS  PubMed  Google Scholar 

  • Yamasoba, T., Schacht, J., Shoji, F., & Miller, J. M. (1999). Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo. Brain Research, 815(2), 317–325.

    CAS  PubMed  Google Scholar 

  • Yamasoba, T., Altschuler, R. A., Raphael, Y., Miller, A. L., Shoji, F., & Miller, J. M. (2001). Absence of hair cell protection by exogenous FGF-1 and FGF-2 delivered to guinea pig cochlea in vivo. In D. Henderson, D. Prasher, R. Kopke, & R. Salvi (Eds.), Noise Induced Hearing Loss: Basic mechanisms, prevention and control (pp. 73–86). London: Noise in Network Publications.

    Google Scholar 

  • Yamasoba, T., Pourbakht, A., Sakamoto, T., & Suzuki, M. (2005). Ebselen prevents noise-induced excitotoxicity and temporary threshold shift. Neurosci Letters, 380(3), 234–238.

    CAS  Google Scholar 

  • Yeum, K. J., Beretta, G., Krinsky, N. I., Russell, R. M., & Aldini, G. (2009). Synergistic interactions of antioxidant nutrients in a biological model system. Nutrition, 25(7–8), 839–846.

    CAS  PubMed  Google Scholar 

  • Ylikoski, J., Pirvola, U., Moshnyakov, M., Palgi, J., Arumae, U., & Saarma, M. (1993). Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hearing Research, 65(1–2), 69–78.

    CAS  PubMed  Google Scholar 

  • Ylikoski, J., Pirvola, U., Virkkala, J., Suvanto, P., Liang, X. Q., Magal, E., & Saarma, M. (1998). Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hearing Research, 124(1–2), 17–26.

    CAS  PubMed  Google Scholar 

  • Yoshida, N., Kristiansen, A., & Liberman, M. C. (1999). Heat stress and protection from permanent acoustic injury in mice. The Journal of Neuroscience, 19(22), 10116–10124.

    CAS  PubMed  Google Scholar 

  • Zhai, S. Q., Wang, D. J., Wang, J. L., Han, D. Y., & Yang, W. Y. (2004). Basic fibroblast growth factor protects auditory neurons and hair cells from glutamate neurotoxicity and noise exposure. Acta Oto-Laryngologica, 124(2), 124–129.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ research was supported by NIH/NIDCD grants U01 DC008423, R01 DC003820, R01 DC004058 and P30 DC005188 and The Ruth and Lynn Townsend Professorship for Communication Disorders, and MECSST grants (11557125, 17659527, 20390440). We also acknowledge the editorial contributions to the paper made by Diane Prieskorn and Susan DeRemer. We also thank the editors for their helpful comments and changes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef M. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yamasoba, T., Miller, J.M., Ulfendahl, M., Altschuler, R.A. (2012). Frontiers in the Treatment of Hearing Loss. In: Le Prell, C.G., Henderson, D., Fay, R.R., Popper, A.N. (eds) Noise-Induced Hearing Loss. Springer Handbook of Auditory Research, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9523-0_14

Download citation

Publish with us

Policies and ethics