Skip to main content

Translational Research in Head and Neck Oncology

  • Chapter
  • First Online:
Head and Neck Cancer
  • 2482 Accesses

Abstract

Translational research in head and neck oncology has evolved dramatically. Ongoing discoveries in basic mechanisms of cancer biology and technological advances in both diagnostic imaging and radiation delivery have enhanced the ability to improve treatment outcomes. The overarching goal for all translational research should be to enlarge the armamentarium from which clinicians can rationally select the most appropriate options for individual patients in ways that maximize therapeutic benefit and minimize toxicity. Focusing on this goal will become more critical as the health care system deals with external economic, social, and political pressures and forces that will affect both bench and bedside. As these concerns encroach on the translational process, it is imperative to recognize that the research itself is best equipped to address them – more efficacious treatments, improved patient selection, decreased toxicity. What also should not be lost in translation is the unpredictable and occasional serendipitous nature of research. Two cornerstones of head and neck cancer therapy, cisplatin [1, 2] and cetuximab, owe their existence to chance and fate. Meanwhile, the compelling story of tumor hypoxia has yet to result in any new additions to the therapeutic arsenal. This chapter will explore the meaning of translational research means, identify potential pitfalls on the horizon, and highlight common themes and new avenues of research using specific examples from both the head and neck and general oncology literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fricker SP. Metal based drugs: from serendipity to design. Dalton Trans. 2007 Nov 21; (43):4903–17.

    Google Scholar 

  2. Rosenberg B. Possible mechanisms for the antitumor activity of platinum coordination complexes. Cancer Chemother Rep. 1975;59(3):589–98.

    PubMed  Google Scholar 

  3. National Cancer Institute. http://www.cancer.gov/trwg/TRWG-definition-and-TR-continuum. [cited July 20, 2009]; Available from: http://www.cancer.gov/trwg/TRWG-definition-and-TR-continuum. Accessed 2011.

  4. Karamouzis MV, Grandis JR, Argiris A. Therapies directed against epidermal growth factor receptor in aerodigestive carcinomas. JAMA. 2007;298(1):70–82.

    Article  PubMed  CAS  Google Scholar 

  5. Egloff AM, Grandis JR. Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer. Semin Oncol. 2008;35(3):286–97.

    Article  PubMed  CAS  Google Scholar 

  6. Sung NS, Crowley Jr WF, Genel M, et al. Central challenges facing the national clinical research enterprise. JAMA. 2003;289(10):1278–87.

    Article  PubMed  Google Scholar 

  7. Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299(2):211–3.

    Article  PubMed  CAS  Google Scholar 

  8. Woolf SH, Johnson RE. The break-even point: when medical advances are less important than improving the fidelity with which they are delivered. Ann Fam Med. 2005;3(6):545–52.

    Article  PubMed  Google Scholar 

  9. NCHC. Facts about Healthcare – Health Insurance Costs. [cited July 22, 2009]; Available from: http://nchc.org/facts-resources/fact-sheet-cost. Accessed 2011.

  10. Institute NC. Cancer Trends Progress Report – 2007 Update. 2007 [cited August 1, 2009]; Available from: http://progressreport.cancer.gov. Accessed 2011.

  11. Fojo T, Grady C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J Natl Cancer Inst. 2009;101(15):1044–8.

    Article  PubMed  Google Scholar 

  12. Pirker R, Pereira JR, Szczesna A, et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet. 2009;373(9674):1525–31.

    Article  PubMed  CAS  Google Scholar 

  13. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.

    Article  PubMed  CAS  Google Scholar 

  14. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–76.

    Article  PubMed  CAS  Google Scholar 

  15. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34.

    Article  PubMed  CAS  Google Scholar 

  16. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27.

    Article  PubMed  CAS  Google Scholar 

  17. Wittes RE, Cvitkovic E, Shah J, Gerold FP, Strong EW. CIS-Dichlorodiammineplatinum(II) in the treatment of epidermoid carcinoma of the head and neck. Cancer Treat Rep. 1977;61(3):359–66.

    PubMed  CAS  Google Scholar 

  18. Meropol NJ, Schrag D, Smith TJ, et al. American Society of Clinical Oncology Guidance Statement: The Cost of Cancer Care. J Clin Oncol. 2009.

    Google Scholar 

  19. Jordan VC. Tamoxifen: catalyst for the change to targeted therapy. Eur J Cancer. 2008;44(1):30–8.

    Article  PubMed  CAS  Google Scholar 

  20. Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet. 1998;351(9114):1451–67.

    Article  Google Scholar 

  21. Giard DJ, Aaronson SA, Todaro GJ, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51(5):1417–23.

    PubMed  CAS  Google Scholar 

  22. Masui H, Kawamoto T, Sato JD, Wolf B, Sato G, Mendelsohn J. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res. 1984;44(3):1002–7.

    PubMed  CAS  Google Scholar 

  23. Divgi CR, Welt S, Kris M, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst. 1991;83(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  24. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res. 1995;1(11):1311–8.

    PubMed  CAS  Google Scholar 

  25. Rubin Grandis J, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998;90(11):824–32.

    Article  PubMed  CAS  Google Scholar 

  26. Ang KK, Berkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62(24):7350–6.

    PubMed  CAS  Google Scholar 

  27. Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25(16):2171–7.

    Article  PubMed  CAS  Google Scholar 

  28. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol. 2005;23(34):8646–54.

    Article  PubMed  Google Scholar 

  29. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.

    Article  PubMed  CAS  Google Scholar 

  30. Radiation Therapy Oncology Group. Head and Neck Cancer Protocols. [cited August 1 2009]; Available from http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0522. Accessed 2011.

  31. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    Article  PubMed  CAS  Google Scholar 

  32. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25(12):1539–44.

    Article  PubMed  CAS  Google Scholar 

  33. Allegra CJ, Yothers G, O’Connell MJ, et al. Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J Clin Oncol. 2009;27(20):3385–90.

    Article  PubMed  CAS  Google Scholar 

  34. Kelly K, Chansky K, Gaspar LE, et al. Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. J Clin Oncol. 2008;26(15):2450–6.

    Article  PubMed  CAS  Google Scholar 

  35. O’Neil BH, Allen R, Spigel DR, et al. High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol. 2007;25(24):3644–8.

    Article  PubMed  Google Scholar 

  36. Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1, 3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  PubMed  CAS  Google Scholar 

  37. Al-Sarraf M, LeBlanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol. 1998;16(4):1310–7.

    PubMed  CAS  Google Scholar 

  38. Chan AT, Leung SF, Ngan RK, et al. Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst. 2005;97(7):536–9.

    Article  PubMed  CAS  Google Scholar 

  39. Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, Wang WY. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol. 2003;21(4):631–7.

    Article  PubMed  Google Scholar 

  40. Wee J, Tan EH, Tai BC, et al. Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage III and IV nasopharyngeal cancer of the endemic variety. J Clin Oncol. 2005;23(27):6730–8.

    Article  PubMed  CAS  Google Scholar 

  41. Lee AW, Lau WH, Tung SY, et al. Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma: NPC-9901 Trial by the Hong Kong Nasopharyngeal Cancer Study Group. J Clin Oncol. 2005;23(28):6966–75.

    Article  PubMed  CAS  Google Scholar 

  42. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92(9):709–20.

    Article  PubMed  CAS  Google Scholar 

  43. Syrjanen K, Syrjanen S, Lamberg M, Pyrhonen S, Nuutinen J. Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int J Oral Surg. 1983;12(6):418–24.

    Article  PubMed  CAS  Google Scholar 

  44. Niedobitek G, Pitteroff S, Herbst H, et al. Detection of human papillomavirus type 16 DNA in carcinomas of the palatine tonsil. J Clin Pathol. 1990;43(11):918–21.

    Article  PubMed  CAS  Google Scholar 

  45. Ragin CC, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer. 2007;121(8):1813–20.

    Article  PubMed  CAS  Google Scholar 

  46. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100(4):261–9.

    Article  PubMed  CAS  Google Scholar 

  47. Vidal L, Gillison ML. Human papillomavirus in HNSCC: recognition of a distinct disease type. Hematol Oncol Clin North Am. 2008;22(6):1125–42. vii.

    Article  PubMed  Google Scholar 

  48. Gillison ML. Human papillomavirus and prognosis of oropharyngeal squamous cell carcinoma: implications for clinical research in head and neck cancers. J Clin Oncol. 2006;24(36):5623–5.

    Article  PubMed  CAS  Google Scholar 

  49. Fu KK, Pajak TF, Trotti A, et al. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys. 2000;48(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  50. Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 2009;45(4–5):324–34.

    Article  PubMed  CAS  Google Scholar 

  51. Matta A, Ralhan R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol. 2009;1(1):6.

    Article  PubMed  Google Scholar 

  52. Cohen EE, Davis DW, Karrison TG, et al. Erlotinib and bevacizumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck: a phase I/II study. Lancet Oncol. 2009;10(3):247–57.

    Article  PubMed  CAS  Google Scholar 

  53. Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009;360(6):563–72.

    Article  PubMed  CAS  Google Scholar 

  54. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17.

    Article  PubMed  Google Scholar 

  55. Agulnik M, da Cunha Santos G, Hedley D, et al. Predictive and pharmacodynamic biomarker studies in tumor and skin tissue samples of patients with recurrent or metastatic squamous cell carcinoma of the head and neck treated with erlotinib. J Clin Oncol. 2007;25(16):2184–90.

    Article  PubMed  CAS  Google Scholar 

  56. Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol. 2006;24(20):3293–8.

    Article  PubMed  CAS  Google Scholar 

  57. Ah-See ML, Makris A, Taylor NJ, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2008;14(20):6580–9.

    Article  PubMed  CAS  Google Scholar 

  58. Baba Y, Yamashita Y, Onomichi M. Dynamic MR imaging and radiotherapy. Magn Reson Med Sci. 2002;1(1):32–7.

    Article  PubMed  Google Scholar 

  59. Hoskin PJ, Saunders MI, Goodchild K, Powell ME, Taylor NJ, Baddeley H. Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br J Radiol. 1999;72(863):1093–8.

    PubMed  CAS  Google Scholar 

  60. Loncaster JA, Carrington BM, Sykes JR, et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2002;54(3):759–67.

    Article  PubMed  Google Scholar 

  61. Ohno Y, Nogami M, Higashino T, et al. Prognostic value of dynamic MR imaging for non-small-cell lung cancer patients after chemoradiotherapy. J Magn Reson Imaging. 2005;21(6):775–83.

    Article  PubMed  Google Scholar 

  62. Tomura N, Omachi K, Sakuma I, et al. Dynamic contrast-enhanced magnetic resonance imaging in radiotherapeutic efficacy in the head and neck tumors. Am J Otolaryngol. 2005;26(3):163–7.

    Article  PubMed  CAS  Google Scholar 

  63. Yamashita Y, Baba T, Baba Y, et al. Dynamic contrast-enhanced MR imaging of uterine cervical cancer: pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy. Radiology. 2000;216(3):803–9.

    PubMed  CAS  Google Scholar 

  64. Pignon JP, le Maitre A, Maillard E, Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17, 346 patients. Radiother Oncol. 2009;92(1):4–14.

    Article  PubMed  Google Scholar 

  65. Pignon JP, le Maitre A, Bourhis J. Meta-analyses of chemotherapy in head and neck cancer (MACH–NC): an update. Int J Radiat Oncol Biol Phys. 2007;69(2 Suppl):S112–4.

    Article  PubMed  Google Scholar 

  66. Harrington KJ, El-Hariry IA, Holford CS, et al. Phase I study of lapatinib in combination with chemoradiation in patients with locally advanced squamous cell carcinoma of the head and neck. J Clin Oncol. 2009;27(7):1100–7.

    Article  PubMed  CAS  Google Scholar 

  67. Le QT, Raben D. Integrating biologically targeted therapy in head and neck squamous cell carcinomas. Semin Radiat Oncol. 2009;19(1):53–62.

    Article  PubMed  Google Scholar 

  68. Bourhis J, Sire C, Lapeyre M, et al. Accelerated versus conventional radiotherapy with concomitant chemotherapy in locally advanced head and neck carcinomas: results of a phase III randomized trial. Int J Radiat Oncol Biol Phys. 2008;72(1):S31–2.

    Article  Google Scholar 

  69. Cerezo L, Millan I, Torre A, Aragon G, Otero J. Prognostic factors for survival and tumor control in cervical lymph node metastases from head and neck cancer. A multivariate study of 492 cases. Cancer. 1992;69(5):1224–34.

    Article  PubMed  CAS  Google Scholar 

  70. Doweck I, Robbins KT, Vieira F. Analysis of risk factors predictive of distant failure after targeted chemoradiation for advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 2001;127(11):1315–8.

    PubMed  CAS  Google Scholar 

  71. Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4(9):737–47.

    Article  PubMed  CAS  Google Scholar 

  72. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–39.

    Article  PubMed  CAS  Google Scholar 

  73. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996;41(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  74. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38(2):285–9.

    Article  PubMed  CAS  Google Scholar 

  75. Le QT, Kong C, Lavori PW, et al. Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2007;69(1):167–75.

    Article  PubMed  CAS  Google Scholar 

  76. Le QT, Harris J, Magliocco AM, et al. Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: Radiation Therapy Oncology Group Trial 90-03. J Clin Oncol. 2009;27(26):4281–6.

    Article  PubMed  CAS  Google Scholar 

  77. Prosnitz RG, Yao B, Farrell CL, Clough R, Brizel DM. Pretreatment anemia is correlated with the reduced effectiveness of radiation and concurrent chemotherapy in advanced head and neck cancer. Int J Radiat Oncol Biol Phys. 2005;61(4):1087–95.

    Article  PubMed  Google Scholar 

  78. Fortin A, Wang CS, Vigneault E. Effect of pretreatment anemia on treatment outcome of concurrent radiochemotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;72(1):255–60.

    Article  PubMed  Google Scholar 

  79. Rades D, Stoehr M, Kazic N, et al. Locally advanced stage IV squamous cell carcinoma of the head and neck: impact of pre-radiotherapy hemoglobin level and interruptions during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(4):1108–14.

    Article  PubMed  CAS  Google Scholar 

  80. Bhide SA, Ahmed M, Rengarajan V, et al. Anemia during sequential induction chemotherapy and chemoradiation for head and neck cancer: the impact of blood transfusion on treatment outcome. Int J Radiat Oncol Biol Phys. 2009;73(2):391–8.

    Article  PubMed  Google Scholar 

  81. Overgaard J, Hansen HS, Overgaard M, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol. 1998;46(2):135–46.

    Article  PubMed  CAS  Google Scholar 

  82. Overgaard J, Hansen HS, Specht L, et al. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial. Lancet. 2003;362(9388):933–40.

    Article  PubMed  Google Scholar 

  83. Stuben G, Pottgen C, Knuhmann K, et al. Erythropoietin restores the anemia-induced reduction in radiosensitivity of experimental human tumors in nude mice. Int J Radiat Oncol Biol Phys. 2003;55(5):1358–62.

    Article  PubMed  Google Scholar 

  84. Ning S, Hartley C, Molineux G, Knox SJ. Darbepoietin alfa potentiates the efficacy of radiation therapy in mice with corrected or uncorrected anemia. Cancer Res. 2005;65(1):284–90.

    PubMed  CAS  Google Scholar 

  85. Glaser CM, Millesi W, Kornek GV, et al. Impact of hemoglobin level and use of recombinant erythropoietin on efficacy of preoperative chemoradiation therapy for squamous cell carcinoma of the oral cavity and oropharynx. Int J Radiat Oncol Biol Phys. 2001;50(3):705–15.

    Article  PubMed  CAS  Google Scholar 

  86. Henke M, Laszig R, Rube C, et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet. 2003;362(9392):1255–60.

    Article  PubMed  CAS  Google Scholar 

  87. Machtay M, Pajak TF, Suntharalingam M, et al. Radiotherapy with or without erythropoietin for anemic patients with head and neck cancer: a randomized trial of the Radiation Therapy Oncology Group (RTOG 99-03). Int J Radiat Oncol Biol Phys. 2007;69(4):1008–17.

    Article  PubMed  CAS  Google Scholar 

  88. Thomas G, Ali S, Hoebers FJ, et al. Phase III trial to evaluate the efficacy of maintaining hemoglobin levels above 12.0 g/dL with erythropoietin vs above 10.0 g/dL without erythropoietin in anemic patients receiving concurrent radiation and cisplatin for cervical cancer. Gynecol Oncol. 2008;108(2):317–25.

    Article  PubMed  CAS  Google Scholar 

  89. Bohlius J, Schmidlin K, Brillant C, et al. Erythropoietin or Darbe-poetin for patients with cancer – meta-analysis based on individual patient data. Cochrane Database Syst Rev. 2009;(3):CD007303.

    Google Scholar 

  90. Arcasoy MO, Amin K, Chou SC, Haroon ZA, Varia M, Raleigh JA. Erythropoietin and erythropoietin receptor expression in head and neck cancer: relationship to tumor hypoxia. Clin Cancer Res. 2005;11(1):20–7.

    PubMed  CAS  Google Scholar 

  91. Pajonk F, Weil A, Sommer A, Suwinski R, Henke M. The erythropoietin-receptor pathway modulates survival of cancer cells. Oncogene. 2004;23(55):8987–91.

    Article  PubMed  CAS  Google Scholar 

  92. Winter SC, Shah KA, Campo L, et al. Relation of erythropoietin and erythropoietin receptor expression to hypoxia and anemia in head and neck squamous cell carcinoma. Clin Cancer Res. 2005;11(21):7614–20.

    Article  PubMed  CAS  Google Scholar 

  93. Zeman EM, Brown JM, Lemmon MJ, Hirst VK, Lee WW. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys. 1986;12(7):1239–42.

    Article  PubMed  CAS  Google Scholar 

  94. Rischin D, Peters L, Hicks R, et al. Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol. 2001;19(2):535–42.

    PubMed  CAS  Google Scholar 

  95. Le QT, Taira A, Budenz S, et al. Mature results from a randomized Phase II trial of cisplatin plus 5-fluorouracil and radiotherapy with or without tirapazamine in patients with resectable Stage IV head and neck squamous cell carcinomas. Cancer. 2006;106(9):1940–9.

    Article  PubMed  CAS  Google Scholar 

  96. Lunt SJ, Telfer BA, Fitzmaurice RJ, Stratford IJ, Williams KJ. Tirapazamine administered as a neoadjuvant to radiotherapy reduces metastatic dissemination. Clin Cancer Res. 2005;11(11):4212–6.

    Article  PubMed  CAS  Google Scholar 

  97. Rischin D, Peters L, O’Sullivan B, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol. 2010;28(18):2989–95.

    Google Scholar 

  98. Seiwert TY, Salama JK, Vokes EE. The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol. 2007;4(3):156–71.

    Article  PubMed  CAS  Google Scholar 

  99. Brizel DM, Dodge RK, Clough RW, Dewhirst MW. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol. 1999;53(2):113–7.

    Article  PubMed  CAS  Google Scholar 

  100. Rischin D, Hicks RJ, Fisher R, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol. 2006;24(13):2098–104.

    Article  PubMed  Google Scholar 

  101. Le QT. Identifying and targeting hypoxia in head and neck cancer: a brief overview of current approaches. Int J Radiat Oncol Biol Phys. 2007;69(2 Suppl):S56–8.

    Article  PubMed  Google Scholar 

  102. Lee NY, Le QT. New developments in radiation therapy for head and neck cancer: intensity-modulated radiation therapy and hypoxia targeting. Semin Oncol. 2008;35(3):236–50.

    Article  PubMed  Google Scholar 

  103. Lin Z, Mechalakos J, Nehmeh S, et al. The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys. 2008;70(4):1219–28.

    Article  PubMed  Google Scholar 

  104. Chung CH, Wong S, Ang KK, et al. Strategic plans to promote head and neck cancer translational research within the radiation therapy oncology group: a report from the translational research program. Int J Radiat Oncol Biol Phys. 2007;69(2 Suppl):S67–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Brizel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yoo, D.S., Brizel, D.M. (2011). Translational Research in Head and Neck Oncology. In: Bernier, J. (eds) Head and Neck Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9464-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9464-6_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9463-9

  • Online ISBN: 978-1-4419-9464-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics