Skip to main content

Cell-Cycle Signaling, Epigenetics, and Nuclear Function

  • Chapter
  • First Online:
Signaling in the Heart
  • 1115 Accesses

Abstract

Like many other cells, mammalian cardiac cells are able to divide and proliferate during development and during a short time after birth. However, the ability to divide decreases dramatically in the neonatal period, and adult cardiomyocytes are unable to proliferate. In contrast, postnatal cardiomyocytes from some lower vertebrates (e.g., zebrafish, newt) maintain the capability to divide, although the mechanisms underlying these species differences are unknown.

As a result of the inability of adult cardiac cells to proliferate, the heart is unable to regenerate new functional tissue following injury, which can cause myocardium dysfunction and even death. Recently, the dogma that the heart is a terminally differentiated nonproliferating organ has been challenged as cardiac stem cells capable of converting to cardiomyocyte-like cells were identified. Thus, in the last several years, two strategies have been used for cardiac repair: induction of endogenous cardiomyocyte proliferation and cell replacement therapy.

Our understanding of the mechanisms that control proliferation of cardiovascular cells has increased significantly in recent years. Studies in proliferating cells and animal models have identified groups of genes and proteins that control cell division; cyclins, cyclin-dependent kinases, and their inhibitors are essential for cell cycle progression, and the retinoblastoma protein and transcription factors (i.e., E2F) modulate the activities of cell cycle-regulators.

In this chapter, we review the cell cycle machinery and discuss how this controls the proliferation of cardiomyocytes. In addition, we analyze the role of sirtuin-depended deacylation in cell cycle progression and proliferation, the functioning and regulation of telomere/telomerase system, and the integration of reactive oxygen species into cell proliferation. New insights into the epigenetic components of cell inheritance, the stable transmission of cellular information beyond just DNA, highlighting DNA methylation, and chromatin organization as major candidates for carriers of epigenetic information are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tateishi K, Ashihara E, Takehara N, et al. Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci. 2007;120:1791–800.

    Article  PubMed  CAS  Google Scholar 

  2. Groszer M, Erickson R, Scripture-Adams DD, et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc Natl Acad Sci USA. 2006;103:111–6.

    Article  PubMed  CAS  Google Scholar 

  3. Kang J, Shi Y, Xiang B, et al. A nuclear function of β-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;23:833–47.

    Article  Google Scholar 

  4. Evans-Anderson HJ, Alfieri CM, Yutzey KE. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res. 2008;102:686–94.

    Article  PubMed  CAS  Google Scholar 

  5. Nakajima Y, Sakabe M, Matsui H, Sakata H, Yanagawa N, Yamagishi T. Heart development before beating. Anat Sci Int. 2009;84:67–76.

    Article  PubMed  CAS  Google Scholar 

  6. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378:386–90.

    Article  PubMed  CAS  Google Scholar 

  7. Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development. 1999;126:3597–605.

    PubMed  CAS  Google Scholar 

  8. Buja LM, Vela D. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol. 2008;17:349–74.

    Article  PubMed  Google Scholar 

  9. Reiss K, Cheng W, Pierzchalski P, et al. Insulin-like growth factor-1 receptor and its ligand regulate the reentry of adult ventricular myocytes into the cell cycle. Exp Cell Res. 1997;235:198–209.

    Article  PubMed  CAS  Google Scholar 

  10. Bicknell KA, Brooks G. Reprogramming the cell cycle machinery to treat cardiovascular disease. Curr Opin Pharmacol. 2008;8:193–201.

    Article  PubMed  CAS  Google Scholar 

  11. Bicknell KA, Coxon CH, Brooks G. Forced expression of the cyclin B1–CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J. 2004;382:411–6.

    Article  PubMed  CAS  Google Scholar 

  12. Tseng AS, Engel FB, Keating MT. The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol. 2006;13:957–63.

    Article  PubMed  CAS  Google Scholar 

  13. Kuhn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13:962–9.

    Article  PubMed  Google Scholar 

  14. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  PubMed  CAS  Google Scholar 

  15. Oh H, Bradfute SB, Gallardo TD, Nakamura T, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003;100:12313–8.

    Article  PubMed  CAS  Google Scholar 

  16. Laube F, Heister M, Scholz C, Borchardt T, Braun T. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci. 2006;119:4719–29.

    Article  PubMed  CAS  Google Scholar 

  17. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298:2188–90.

    Article  PubMed  CAS  Google Scholar 

  18. Bettencourt-Dias M, Mittnacht S, Brockes JP. Heterogeneous ­proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci. 2003;116:4001–9.

    Article  PubMed  CAS  Google Scholar 

  19. Wessely R, Schomig A, Kastrati A. Sirolimus and paclitaxel on polymer-based drug-eluting stents: similar but different. J Am Coll Cardiol. 2006;47:708–14.

    Article  PubMed  CAS  Google Scholar 

  20. Giangrande PH, Zhang J, Tanner A, et al. Distinct roles of E2F proteins in vascular smooth muscle cell proliferation and intimal hyperplasia. Proc Natl Acad Sci USA. 2007;104:12988–93.

    Article  PubMed  CAS  Google Scholar 

  21. Park KW, Kim DH, You HJ, et al. Activated forkhead transcription factor inhibits neointimal hyperplasia after angioplasty through induction of p27. Arterioscler Thromb Vasc Biol. 2005;25:742–7.

    Article  PubMed  CAS  Google Scholar 

  22. Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol. 2001;3:667–74.

    Article  PubMed  CAS  Google Scholar 

  23. Leduc C, Claverie P, Eymin B, et al. p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene. 2006;25:4147–54.

    Article  PubMed  CAS  Google Scholar 

  24. Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J. 2007;407:451–60.

    Article  PubMed  CAS  Google Scholar 

  25. Rathbone CR, Booth FW, Lees SJ. Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol. 2009;88:35–44.

    Article  PubMed  CAS  Google Scholar 

  26. Vaziri H, Dessain SK, Ng EE, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.

    Article  PubMed  CAS  Google Scholar 

  27. Potente M, Laleh Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007;21:2644–58.

    Article  PubMed  CAS  Google Scholar 

  28. Cheng H-L, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 2003;100:10794–9.

    Article  PubMed  CAS  Google Scholar 

  29. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23:3173–85.

    Article  PubMed  CAS  Google Scholar 

  30. Inoue T, Hiratsuka M, Osaki M, et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene. 2007;26:945–57.

    Article  PubMed  CAS  Google Scholar 

  31. North BJ, Verdin E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J Biol Chem. 2007;282:19546–55.

    Article  PubMed  CAS  Google Scholar 

  32. Vaquero A, Scher MB, Lee DH, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006;20:1256–61.

    Article  PubMed  CAS  Google Scholar 

  33. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11:437–44.

    Article  PubMed  CAS  Google Scholar 

  34. Oh H, Taffet GE, Youker KA, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci USA. 2001;98:10308–13.

    Article  PubMed  CAS  Google Scholar 

  35. Kim M, Xu L, Blackburn EH. Catalytically active human telomerase mutants with allele-specific biological properties. Exp Cell Res. 2003;288:277–87.

    Article  PubMed  CAS  Google Scholar 

  36. Kajstura J, Rota M, Urbanek K, et al. The telomere–telomerase axis and the heart. Antioxid Redox Signal. 2006;8:2125–41.

    Article  PubMed  CAS  Google Scholar 

  37. Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure and IGF-1 overexpression. Circ Res. 2004;94:514–24.

    Article  PubMed  CAS  Google Scholar 

  38. Erusalimsky JD, Skene C. Mechanisms of endothelial senescence. Exp Physiol. 2009;94.3:299–304.

    Article  Google Scholar 

  39. Yang J, Nagavarapu U, Relloma K, et al. Telomerized human microvasculature is functional in vivo. Nat Biotechnol. 2001;19:219–24.

    Article  PubMed  CAS  Google Scholar 

  40. Breitschopf K, Zeiher AM, Dimmeler S. Proatherogenic factors induce telomerase inactivation in endothelial cells through an Akt-dependent mechanism. FEBS Lett. 2001;493:21–5.

    Article  PubMed  CAS  Google Scholar 

  41. Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens. 2005;23:1699–706.

    Article  PubMed  CAS  Google Scholar 

  42. Franco S, Segura I, Riese HH, Blasco MA. Decreased B16F10 melanoma growth and impaired vascularization in telomerase-deficient mice with critically short telomeres. Cancer Res. 2002;62:552–9.

    PubMed  CAS  Google Scholar 

  43. Markovic J, Borras C, Ortega A, Sastre J, Vina J, Pallardo FV. Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem. 2007;282:20416–24.

    Article  PubMed  CAS  Google Scholar 

  44. Markovic J, Mora NJ, Broseta AM, et al. The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts. PLoS One. 2009;4:e6413.

    Article  PubMed  Google Scholar 

  45. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S. Regulation of telomerase activity and antiapoptotic function by protein–protein interaction and phosphorylation. FEBS Lett. 2003;536:180–6.

    Article  PubMed  CAS  Google Scholar 

  46. Jakob S, Schroeder P, Lukosz M, et al. Nuclear protein tyrosine phosphatase shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem. 2008;283:33155–61.

    Article  PubMed  CAS  Google Scholar 

  47. Mattila E, Auvinen K, Salmi M, Ivaska J. The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci. 2008;121:3570–80.

    Article  PubMed  CAS  Google Scholar 

  48. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 2997;277:1501–5.

    Article  Google Scholar 

  49. Cakir Y, Ballinger SW. Reactive species-mediated regulation of cell signaling and the cell cycle: the role of MAPK. Antioxid Redox Signal. 2005;7:726–40.

    Article  PubMed  CAS  Google Scholar 

  50. Rota M, LeCapitaine N, Hosoda T, et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by the deletion of the p66shc gene. Circ Res. 2006;99:42–52.

    Article  PubMed  CAS  Google Scholar 

  51. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.

    Article  PubMed  CAS  Google Scholar 

  52. Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008;2:219–29.

    Article  PubMed  CAS  Google Scholar 

  53. Liu N, Bezprozvannaya S, Williams AH. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–54.

    Article  PubMed  CAS  Google Scholar 

  54. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.

    Article  PubMed  CAS  Google Scholar 

  55. Wang S, Aurora AB, Johnson BA. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.

    Article  PubMed  Google Scholar 

  56. Fish JE, Santoro MM, Morton SU. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.

    Article  PubMed  CAS  Google Scholar 

  57. Riggs AD, Martiennssen RA, Russo VEA. Epigenetic mechanisms of gene regulation 1–4. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1996.

    Google Scholar 

  58. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol. 2009;10:192–206.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2011). Cell-Cycle Signaling, Epigenetics, and Nuclear Function. In: Signaling in the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9461-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9461-5_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9460-8

  • Online ISBN: 978-1-4419-9461-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics