Skip to main content

Signaling in Hypertension

  • Chapter
  • First Online:
Signaling in the Heart
  • 1088 Accesses

Abstract

It is well established that signaling through G protein-coupled receptors, including those that respond to angiotensin II (AT1-receptors), endothelin (ET1B receptors) and to epinephrine and norepinephrine (β-adrenergic receptors) are intimately implicated in the regulation of normal cardiovascular function, including mediation in peripheral artery resistance, vasodilation, contraction, and vascular tone. Given the key role of angiotensin II, endothelin-1, and adrenergic agonists and their signaling pathways in stimulating vascular smooth muscle cell proliferation and modifying endothelial cell function, it is not surprising that alterations in these signaling pathways are increasingly implicated as contributory factors in vascular pathologies, including hypertension and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.

    PubMed  CAS  Google Scholar 

  2. Rosskopf D, Koch K, Habich C, et al. Interaction of Gβ3s, a splice variant of the G-protein Gβ3, with Gγ- and Gα-proteins. Cell Signal. 2003;15:479–88.

    Article  PubMed  CAS  Google Scholar 

  3. Hengstenberg C, Schunkert H, Mayer B, et al. Association between a polymorphism in the G protein β3 subunit gene (GNB3) with arterial hypertension but not with myocardial infarction. Cardiovasc Res. 2001;49:820–7.

    Article  PubMed  CAS  Google Scholar 

  4. Brand E, Wang JG, Herrmann SM, et al. An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gβ3 C825T polymorphism. J Hypertens. 2003;21:729–37.

    Article  PubMed  CAS  Google Scholar 

  5. Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal. 1997;9:337–51.

    Article  PubMed  CAS  Google Scholar 

  6. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292:C82–97.

    Article  PubMed  CAS  Google Scholar 

  7. Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells – implications in cardiovascular disease. Braz J Med Biol Res. 2004;37:1263–73.

    Article  PubMed  CAS  Google Scholar 

  8. Rocic P, Jo H, Lucchesi PA. A role for PYK2 in ANG II-dependent regulation of the PHAS-1-eIF4E complex by multiple signaling cascades in vascular smooth muscle. Am J Physiol Cell Physiol. 2003;285:C1437–44.

    PubMed  CAS  Google Scholar 

  9. Ishida M, Ishida T, Thomas SM, Berk BC. Activation of extracellular signal-regulated kinases (ERK1/2) by angiotensin II is dependent on c-Src in vascular smooth muscle cells. Circ Res. 1998;82:7–12.

    PubMed  CAS  Google Scholar 

  10. Seko T, Ito M, Kureishi Y, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res. 2003;92:411–8.

    Article  PubMed  CAS  Google Scholar 

  11. Yamakawa T, Tanaka S, Numaguchi K, et al. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension. 2000;35:313–8.

    PubMed  CAS  Google Scholar 

  12. Ohtsu H, Suzuki H, Nakashima H, et al. Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension. 2006;48:534–40.

    Article  PubMed  CAS  Google Scholar 

  13. Lee DL, Webb RC, Jin L. Hypertension and RhoA/Rho-kinase signaling in the vasculature: highlights from the recent literature. Hypertension. 2004;44:796–9.

    Article  PubMed  CAS  Google Scholar 

  14. Lutz S, Freichel-Blomquist A, Yang Y, et al. The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J Biol Chem. 2005;280:11134–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ohtsu H, Mifune M, Frank GD, et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol. 2005;25:1831–6.

    Article  PubMed  CAS  Google Scholar 

  16. Barandier C, Ming XF, Yang Z. Small G proteins as novel therapeutic targets in cardiovascular medicine. News Physiol Sci. 2003;18:18–22.

    PubMed  CAS  Google Scholar 

  17. Eguchi S, Inagami T. Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase. Regul Pept. 2000;91:13–20.

    Article  PubMed  CAS  Google Scholar 

  18. Eguchi S, Dempsey PJ, Frank GD, Motley ED, Inagami T. Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J Biol Chem. 2001;276:7957–62.

    Article  PubMed  CAS  Google Scholar 

  19. Kagiyama S, Eguchi S, Frank GD, Inagami T, Zhang YC, Phillips MI. Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation. 2002;106:909–12.

    Article  PubMed  CAS  Google Scholar 

  20. Ohtsu H, Dempsey PJ, Frank GD, et al. ADAM17 mediates ­epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II. Arterioscler Thromb Vasc Biol. 2006;26:e133–7.

    PubMed  Google Scholar 

  21. Saito S, Frank GD, Motley ED, et al. Metalloprotease inhibitor blocks angiotensin II-induced migration through inhibition of epidermal growth factor receptor transactivation. Biochem Biophys Res Communs. 2002;294:1023–9.

    Article  CAS  Google Scholar 

  22. Berk BC, Corson MA. Angiotensin II signal transduction in ­vascular smooth muscle: role of tyrosine kinases. Circ Res. 1997;80:607–16.

    PubMed  CAS  Google Scholar 

  23. Ishida T, Ishida M, Suero J, Takahashi M, Berk BC. Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. J Clin Invest. 1999;103:789–97.

    Article  PubMed  CAS  Google Scholar 

  24. Marrero MB, Schieffer B, Paxton WG, et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995;375:247–50.

    Article  PubMed  CAS  Google Scholar 

  25. Madamanchi NR, Li S, Patterson C, Runge MS. Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol. 2001;21:321–6.

    Article  PubMed  CAS  Google Scholar 

  26. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res. 1995;30:537–43.

    PubMed  CAS  Google Scholar 

  27. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75.

    Article  PubMed  CAS  Google Scholar 

  28. Iaccarino G, Ciccarelli M, Sorriento D, et al. AKT participates in endothelial dysfunction in hypertension. Circulation. 2004;109:2587–93.

    Article  PubMed  CAS  Google Scholar 

  29. Crowley SD, Gurley SB, Herrera MJ, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103:17985–90.

    Article  PubMed  CAS  Google Scholar 

  30. Veerasingham SJ, Raizada MK. Brain renin-angiotensin system dysfunction: recent advances and perspectives. Br J Pharmacol. 2003;139:191–202.

    Article  PubMed  CAS  Google Scholar 

  31. Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer J-D. Pivotal role of the renin/pro-renin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–27.

    PubMed  CAS  Google Scholar 

  32. Nguyen G. Renin/pro-renin receptors. Kidney Int. 2006;69:1503–6.

    Article  PubMed  CAS  Google Scholar 

  33. Wood JM, Maibaum J, Rahuel J, et al. Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem Biophys Res Commun. 2003;308:698–705.

    Article  PubMed  CAS  Google Scholar 

  34. Oh BH, Mitchell J, Herron JR, et al. Aliskiren, an oral renin inhibitor, provides dose-dependent efficacy and sustained 24-h blood pressure control in patients with hypertension. J Am Coll Cardiol. 2007;49:1157–63.

    Article  PubMed  CAS  Google Scholar 

  35. Oparil S, Yarows SA, Patel S, et al. Efficacy and safety of combined use of aliskiren and valsartan in patients with hypertension: a randomized double-blind trial. Lancet. 2007;370:221–9.

    Article  PubMed  CAS  Google Scholar 

  36. Chobian AV, Barkis GL, Black HR, et al. The seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure. JAMA. 2003;289:2560–71.

    Article  Google Scholar 

  37. Dunn GF, Oigman W, Ventura HO, Messerli FH, Kobrin I, Frolich ED. Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. Am J Cardiol. 1984;53:105–8.

    Article  PubMed  CAS  Google Scholar 

  38. Hiramatsu K, Yamada T, et al. Changes in endocrine activities relative to obesity in patients with essential hypertension. J Am Geriatr Soc. 1981;29:25–30.

    PubMed  CAS  Google Scholar 

  39. Dustan HP. Mechanisms of hypertension associated with obesity. Ann Intern Med. 1983;98:860–4.

    PubMed  CAS  Google Scholar 

  40. Ishizawa K, Izawa Y, Ito H, et al. Aldosterone stimulates vascular smooth muscle cell proliferation via big mitogen-activated protein kinase 1 activation. Hypertension. 2005;46:1046–52.

    Article  PubMed  CAS  Google Scholar 

  41. Grossmann C, Benesic A, Krug AW, et al. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol Endocrinol. 2005;19:1697–710.

    Article  PubMed  CAS  Google Scholar 

  42. Callera GE, Touyz RM, Tostes RC, et al. Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src. Hypertension. 2005;45:773–9.

    Article  PubMed  CAS  Google Scholar 

  43. Xiao F, Puddefoot JR, Vinson GP. Aldosterone mediates angiotensin II-stimulated rat vascular smooth muscle cell proliferation. J Endocrinol. 2000;165:533–6.

    Article  PubMed  CAS  Google Scholar 

  44. Mazak I, Fiebeler A, Muller DN, et al. Aldosterone potentiates angiotensin II-induced signaling in vascular smooth muscle cells. Circulation. 2004;109:2792–800.

    Article  PubMed  CAS  Google Scholar 

  45. Lemarié CA, Simeone SMC, Nikonova A, et al. Aldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors. Circ Res. 2009;105:852–9.

    Article  PubMed  CAS  Google Scholar 

  46. Kambara A, Holycross BJ, Wung P, et al. Combined effects of low-dose oral spironolactone and captopril therapy in a rat model of spontaneous hypertension and heart failure. J Cardiovasc Pharmacol. 2003;41:830–7.

    Article  PubMed  CAS  Google Scholar 

  47. Tanabe A, Naruse M, Hara Y, et al. Aldosterone antagonist facilitates the cardioprotective effects of angiotensin receptor blockers in hypertensive rats. J Hypertens. 2004;22:1017–23.

    Article  PubMed  CAS  Google Scholar 

  48. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from direct intraneural recordings. Hypertension. 1989;14:177–83.

    PubMed  CAS  Google Scholar 

  49. Esler M, Jennings G, Biviano B, Lambert G, Hasking G. Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8 Suppl 5:S39–43.

    Article  PubMed  Google Scholar 

  50. King AJ, Osborn JW, Fink GD. Splanchnic circulation is a critical neural target in angiotensin II salt hypertension in rats. Hypertension. 2007;50:547–56.

    Article  PubMed  CAS  Google Scholar 

  51. Cowley AW, Lohmeier TE. Changes in renal vascular sensitivity and arterial pressure associated with sodium intake during longterm intrarenal norepinephrine infusion in dogs. Hypertension. 1979;1:549–58.

    PubMed  CAS  Google Scholar 

  52. Grisk O, Rose HJ, Lorenz G, Rettig R. Sympathetic-renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol. 2002;283:R441–50.

    PubMed  CAS  Google Scholar 

  53. Pedersen ME, Cockcroft JR. The vasodilatory beta-blockers. Curr Hypertens Rep. 2007;9:269–77.

    Article  PubMed  CAS  Google Scholar 

  54. Neumann J, Ligtenberg G, Klein IH, et al. Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension. 2007;49:506–10.

    Article  PubMed  CAS  Google Scholar 

  55. Swayze RD, Braun AP. A catalytically inactive mutant of type I cGMP-dependent protein kinase prevents enhancement of large conductance, calcium-sensitive K+ channels by sodium nitroprusside and cGMP. J Biol Chem. 2001;276:19729–37.

    Article  PubMed  CAS  Google Scholar 

  56. Jiang LH, Gawler DJ, Hodson N, et al. Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase. J Biol Chem. 2000;275:6135–43.

    Article  PubMed  CAS  Google Scholar 

  57. Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM. Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol. 1991;40:923–31.

    PubMed  CAS  Google Scholar 

  58. Komalavilas P, Lincoln TM. Phosphorylation of the inositol 1,4,5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem. 1996;271:21933–8.

    Article  PubMed  CAS  Google Scholar 

  59. MacFarland RT, Zelus BD, Beavo JA. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem. 1991;266:136–42.

    PubMed  CAS  Google Scholar 

  60. Gambaryan S, Wagner C, Smolenski A, et al. Endogenous or ­overexpressed cGMP-dependent protein kinases inhibit cAMP dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. Proc Natl Acad Sci USA. 1998;95:9003–8.

    Article  PubMed  CAS  Google Scholar 

  61. Harris PJ, Thomas D, Morgan TO. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature. 1987;326:697–8.

    Article  PubMed  CAS  Google Scholar 

  62. Newton-Cheh C, Larson MG, Vasan RS, et al. Association of ­common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet. 2009;41:348–53.

    Article  PubMed  CAS  Google Scholar 

  63. Cusson JR, Thibault G, Cantin M, Larochelle P. Prolonged low dose infusion of atrial natriuretic factor in essential hypertension. Clin Exp Hypertens A. 1990;12:111–35.

    Article  PubMed  CAS  Google Scholar 

  64. Lin KF, Chao J, Chao L. Human atrial natriuretic peptide gene delivery reduces blood pressure in hypertensive rats. Hypertension. 1995;26:847–53.

    PubMed  CAS  Google Scholar 

  65. Weder AB, Sekkarie MA, Takiyyuddin M, Schork NJ, Julius S. Antihypertensive and hypotensive effects of atrial natriuretic factor in men. Hypertension. 1987;10:582–9.

    PubMed  CAS  Google Scholar 

  66. Schillinger KJ, Tsai SY, Taffet GE, et al. Regulatable atrial natriuretic peptide gene therapy for hypertension. Proc Natl Acad Sci USA. 2005;102:13789–94.

    Article  PubMed  CAS  Google Scholar 

  67. Oliver PM, Fox JE, Kim R, et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA. 1997;94:14730–5.

    Article  PubMed  CAS  Google Scholar 

  68. Oliver PM, John SW, Purdy KE, et al. Natriuretic peptide ­receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA. 1998;95:2547–51.

    Article  PubMed  CAS  Google Scholar 

  69. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004;17:103–11.

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki H, DeLano FA, Parks DA, et al. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci USA. 1998;95:4754–9.

    Article  PubMed  CAS  Google Scholar 

  71. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111:1201–9.

    PubMed  CAS  Google Scholar 

  72. Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R277–97.

    PubMed  CAS  Google Scholar 

  73. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res. 2002;91:406–13.

    Article  PubMed  CAS  Google Scholar 

  74. Touyz RM, He G, El Mabrouk M, Schiffrin EL. p38 Map kinase regulates vascular smooth muscle cell collagen synthesis by angiotensin II in SHR but not in WKY. Hypertension. 2001;37:574–80.

    PubMed  CAS  Google Scholar 

  75. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998;273:15022–9.

    Article  PubMed  CAS  Google Scholar 

  76. Viedt C, Soto U, Krieger-Brauer HI, et al. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen ­species. Arterioscler Thromb Vasc Biol. 2000;20:940–8.

    Article  PubMed  CAS  Google Scholar 

  77. Meloche S, Landry J, Huot J, Houle F, Marceau F, Giasson E. p38 MAP kinase pathway regulates angiotensin II-induced contraction of rat vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2000;279:H741–51.

    PubMed  CAS  Google Scholar 

  78. Torrecillas G, Boyano-Adanez MC, Medina J, et al. The role of hydrogen peroxide in the contractile response to angiotensin II. Mol Pharmacol. 2001;59:104–12.

    PubMed  CAS  Google Scholar 

  79. Wesselman JP, Dobrian AD, Schriver SD, Prewitt RL. Src tyrosine kinases and extracellular signal-regulated kinase 1/2 mitogen activated protein kinases mediate pressure-induced c-fos expression in cannulated rat mesenteric small arteries. Hypertension. 2001;37:955–60.

    PubMed  CAS  Google Scholar 

  80. Touyz RM, Yao G, Schiffrin EL. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23:981–7.

    Article  PubMed  CAS  Google Scholar 

  81. Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2001;21:489–95.

    Article  PubMed  CAS  Google Scholar 

  82. Frank GD, Mifune M, Inagami T, et al. Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: role of metalloprotease and protein kinase C-δ. Mol Cell Biol. 2003;23:1581–9.

    Article  PubMed  CAS  Google Scholar 

  83. Stoker AW. Protein tyrosine phosphatases and signalling. J Endocrinol. 2005;185:19–33.

    Article  PubMed  CAS  Google Scholar 

  84. Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res. 2000;87:1195–201.

    PubMed  CAS  Google Scholar 

  85. Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998;275:C1640–52.

    PubMed  CAS  Google Scholar 

  86. Tummala PE, Chen XL, Sundell CL, et al. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin–angiotensin system and atherosclerosis. Circulation. 1999;100:1223–9.

    PubMed  CAS  Google Scholar 

  87. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain-induced reactive oxygen species involved in ICAM-1 gene induction in endothelial cells. Hypertension. 1998;31:125–30.

    PubMed  CAS  Google Scholar 

  88. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial via nuclear factor-κB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol. 2000;20:645–51.

    Article  PubMed  CAS  Google Scholar 

  89. Touyz RM, Yao G, Quinn MT, Pagano PJ, Schiffrin EL. p47phox associates with the cytoskeleton through cortactin in human vascular smooth muscle cells: role in NAD(P)H oxidase regulation by angiotensin II. Arterioscler Thromb Vasc Biol. 2005;25:512–8.

    Article  PubMed  CAS  Google Scholar 

  90. Wassmann S, Wassmann K, Nickenig G. Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension. 2004;44:381–6.

    Article  PubMed  CAS  Google Scholar 

  91. Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG. Role of superoxide in angiotensin II–induced but not catecholamine-induced hypertension. Circulation. 1997;95:588–93.

    PubMed  CAS  Google Scholar 

  92. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. J Clin Invest. 1996;97:1916–23.

    Article  PubMed  CAS  Google Scholar 

  93. Prasad A, Tupas-Habib T, Schenke WH, et al. Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis. Circulation. 2000;101:2349–54.

    PubMed  CAS  Google Scholar 

  94. Postnov IuV. The role of mitochondrial calcium overload and energy deficiency in pathogenesis of arterial hypertension. Arkh Patol. 2001;63:3–10.

    PubMed  CAS  Google Scholar 

  95. Chen L, Tian X, Song L. Biochemical and biophysical characteristics of mitochondria in the hypertrophic hearts from hypertensive rats. Chin Med J Engl. 1995;108:361–6.

    PubMed  CAS  Google Scholar 

  96. Atlante A, Seccia TM, Pierro P, et al. ATP synthesis and export in heart left ventricle mitochondria from spontaneously hypertensive rat. Int J Mol Med. 1998;1:709–16.

    PubMed  CAS  Google Scholar 

  97. Bernal-Mizrachi C, Gates AC, Weng S, et al. Vascular respiratory uncoupling increases blood pressure and atherosclerosis. Nature. 2005;435:502–6.

    Article  PubMed  CAS  Google Scholar 

  98. Ji Q, Ikegami H, Fujisawa T, et al. A common polymorphism of uncoupling protein 2 gene is associated with hypertension. J Hypertens. 2004;22:97–102.

    Article  PubMed  CAS  Google Scholar 

  99. Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci. 2006;7:295–309.

    Article  PubMed  CAS  Google Scholar 

  100. Bianchi P, Kunduzova O, Masini E, et al. Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation. 2005;112:3297–305.

    Article  PubMed  CAS  Google Scholar 

  101. Bianchi P, Pimentel DR, Murphy MP, Colucci WS, Parini A. A new hypertrophic mechanism of serotonin in cardiac myocytes: receptor-independent ROS generation. FASEB J. 2005;19:641–3.

    PubMed  CAS  Google Scholar 

  102. Pchejetski D, Kunduzova O, Dayon A, et al. Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res. 2007;100:41–9.

    Article  PubMed  CAS  Google Scholar 

  103. Coatrieux C, Sanson M, Negre-Salvayre A, et al. MAO-A-induced mitogenic signaling is mediated by reactive oxygen species, MMP-2, and the sphingolipid pathway. Free Radic Biol Med. 2007;43:80–9.

    Article  PubMed  CAS  Google Scholar 

  104. Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122:221–33.

    Article  PubMed  CAS  Google Scholar 

  105. Pinton P, Rimessi A, Marchi S, et al. Protein kinase C β and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science. 2007;315:659–63.

    Article  PubMed  CAS  Google Scholar 

  106. Napoli C, Martin-Padura I, de Nigris F, et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA. 2003;100:2112–6.

    Article  PubMed  CAS  Google Scholar 

  107. Rodriguez-Iturbe B, Sepassi L, Quiroz Y, Ni Z, Vaziri ND. Association of mitochondrial sod deficiency with salt-sensitive hypertension and accelerated renal senescence. J Appl Physiol. 2007;102:255–60.

    Article  PubMed  CAS  Google Scholar 

  108. Chan SH, Wu KL, Chang AY, Tai MH, Chan JY. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension. 2009;53:217–27.

    Article  PubMed  CAS  Google Scholar 

  109. Smith RA, Kelso GF, Blaikie FH, et al. Using mitochondria-targeted molecules to study mitochondrial radical production and its consequences. Biochem Soc Trans. 2003;31:1295–9.

    Article  PubMed  CAS  Google Scholar 

  110. Liu J, Atamna H, Kuratsune H, Ames BN. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci. 2002;959:133–66.

    Article  PubMed  CAS  Google Scholar 

  111. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97:2222–9.

    PubMed  CAS  Google Scholar 

  112. Luscher TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension. 1986;8:344–8.

    PubMed  CAS  Google Scholar 

  113. Huang A, Sun D, Koller A. Shear stress-induced release of prostaglandin H2 in arterioles of hypertensive rats. Hypertension. 2000;35:925–30.

    PubMed  CAS  Google Scholar 

  114. Luscher TF, Boulanger CM, Dohi Y, Yang ZH. Endothelium derived contracting factors. Hypertension. 1992;19:117–30.

    PubMed  CAS  Google Scholar 

  115. Vanhoutte PM, Feletou M, Taddei S. Endothelium-dependent ­contractions in hypertension. Br J Pharmacol. 2005;144:449–58.

    Article  PubMed  CAS  Google Scholar 

  116. Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension. 1993;21:929–33.

    PubMed  CAS  Google Scholar 

  117. Virdis A, Colucci R, Fornai M, et al. Cyclooxygenase-1 is involved in endothelial dysfunction of mesenteric small arteries from angiotensin II-infused mice. Hypertension. 2007;49:679–86.

    Article  PubMed  CAS  Google Scholar 

  118. Taddei S, Virdis A, Mattei P, et al. Hypertension causes premature aging of endothelial function in humans. Hypertension. 1997;29:736–43.

    PubMed  CAS  Google Scholar 

  119. Barton M. Endothelial dysfunction and atherosclerosis: endothelin receptor antagonists as novel therapeutics. Curr Hypertens Rep. 2000;2:84–91.

    Article  PubMed  CAS  Google Scholar 

  120. Verhaar MC, Strachan FE, Newby DE, et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation. 1998;97:752–6.

    PubMed  CAS  Google Scholar 

  121. Penna C, Rastaldo R, Mancardi D, et al. Effect of endothelins on the cardiovascular system. J Cardiovasc Med. 2006;7:645–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2011). Signaling in Hypertension. In: Signaling in the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9461-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9461-5_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9460-8

  • Online ISBN: 978-1-4419-9461-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics