Skip to main content

Signaling in Congenital Heart Disease

  • Chapter
  • First Online:
Signaling in the Heart
  • 1167 Accesses

Abstract

While congenital heart disease (CHD), ­cardiomyopathy, dysrhythmias, and acquired cardiac ­diseases are common causes of mortality and morbidity in infants and children, the basic underlying mechanisms of many specific pediatric cardiovascular diseases still remain undetermined. Breakthroughs in molecular biology and genetic technology­ have just begun to be applied in pediatric cardiology stemming from the use of chromosomal mapping and the identification of genes involved in both the primary etiology and as significant risk factors in the development of cardiac and vascular abnormalities. This chapter focuses on information obtained thus far by molecular biology, in ­particular on numerous signaling pathways and genetic analysis to diagnosis, treatment and overall understanding of pediatric cardiovascular disease pathogenesis, mainly CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierpont ME, Basson CT, Benson Jr DW, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.

    Article  PubMed  Google Scholar 

  2. Association AH. Heart disease and stroke statistics – 2005 update. Dallas, TX: American Heart Association; 2005.

    Google Scholar 

  3. Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008;451:943–948.

    Article  PubMed  CAS  Google Scholar 

  4. Weismann CG, Gelb BD. The genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol. 2007;22:200–6.

    Article  PubMed  Google Scholar 

  5. Wolf M, Basson CT. The molecular genetics of congenital heart disease: a review of recent development. Curr Opin Cardiol. 2010;25:192–7.

    Article  Google Scholar 

  6. Garg V. Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci. 2006;63:1141–8.

    Article  PubMed  CAS  Google Scholar 

  7. Wessels MW, Willems PJ. Genetic factors in non-syndromic ­congenital heart malformations. Clin Genet. 2010;78:103–23.

    Article  PubMed  CAS  Google Scholar 

  8. Bruneau BG. The developmental genetics of congenital heart ­disease. Nature. 2008;451:943–8.

    Article  PubMed  CAS  Google Scholar 

  9. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006;354:2443–51.

    Article  PubMed  CAS  Google Scholar 

  10. Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:2995–3014.

    Article  PubMed  Google Scholar 

  11. Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. Annu Rev Pathol. 2006;1:199–213.

    Article  PubMed  CAS  Google Scholar 

  12. Tidyman WE, Rauen KA. The RASopathies: developmental ­syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009;19:230–6.

    Article  PubMed  CAS  Google Scholar 

  13. Noonan JA. Noonan syndrome. An update and review for the ­primary pediatrician. Clin Pediatr (Phila). 1994;33:548–55.

    Article  CAS  Google Scholar 

  14. Marino B, Digilio MC, Toscano A, Giannotti A, Dallapiccola B. Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr. 1999;135:703–6.

    Article  PubMed  CAS  Google Scholar 

  15. Jamieson CR, van der Burgt I, Brady AF, et al. Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nat Genet. 1994;8:357–60.

    Article  PubMed  CAS  Google Scholar 

  16. Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29:465–8.

    Article  PubMed  CAS  Google Scholar 

  17. Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38:331–6.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-­function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007;39:70–4.

    Article  PubMed  CAS  Google Scholar 

  19. Tartaglia M, Pennacchio LA, Zhao C, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet. 2007;39:75–9.

    Article  PubMed  CAS  Google Scholar 

  20. Pandit B, Sarkozy A, Pennacchio LA, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39:1007–12.

    Article  PubMed  CAS  Google Scholar 

  21. Razzaque MA, Nishizawa T, Komoike Y, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet. 2007;39:1013–7.

    Article  PubMed  CAS  Google Scholar 

  22. Feng GS. Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res. 1999;253:47–54.

    Article  PubMed  CAS  Google Scholar 

  23. Chen B, Bronson RT, Klaman LD, et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet. 2000;24:296–9.

    Article  PubMed  CAS  Google Scholar 

  24. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002;70:1555–63.

    Article  PubMed  CAS  Google Scholar 

  25. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998;92:441–50.

    Article  PubMed  CAS  Google Scholar 

  26. Keilhack H, David FS, McGregor M, Cantley LC, Neel BG. Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem. 2005;280:30984–93.

    Article  PubMed  CAS  Google Scholar 

  27. Niihori T, Aoki Y, Ohashi H, et al. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood ­leukemia. J Hum Genet. 2005;50:192–202.

    Article  PubMed  CAS  Google Scholar 

  28. Tartaglia M, Martinelli S, Stella L, et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet. 2006;78:279–90.

    Article  PubMed  CAS  Google Scholar 

  29. Schubbert S, Bollag G, Lyubynska N, et al. Biochemical and functional characterization of germ line KRAS mutations. Mol Cell Biol. 2007;27:7765–70.

    Article  PubMed  CAS  Google Scholar 

  30. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 2006;281:6785–92.

    Article  PubMed  CAS  Google Scholar 

  31. Digilio MC, Conti E, Sarkozy A, et al. Grouping of multiple-­lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet. 2002;71:389–94.

    Article  PubMed  CAS  Google Scholar 

  32. Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. PTPN11 mutations in LEOPARD syndrome. J Med Genet. 2002;39:571–4.

    Article  PubMed  CAS  Google Scholar 

  33. Sarkozy A, Carta C, Moretti S, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat. 2009;30:695–702.

    Article  PubMed  CAS  Google Scholar 

  34. Sarkozy A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis. 2008;3:13.

    Article  PubMed  Google Scholar 

  35. Wright EM, Kerr B. RAS-MAPK pathway disorders: important causes of congenital heart disease, feeding difficulties, developmental delay and short stature. Arch Dis Child. 2010;95:724–30.

    Article  PubMed  Google Scholar 

  36. Aoki Y, Niihori T, Kawame H, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005;37:1038–40.

    Article  PubMed  CAS  Google Scholar 

  37. Gripp KW, Lin AE, Stabley DL, et al. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation. Am J Med Genet A. 2006;140:1–7.

    PubMed  Google Scholar 

  38. Estep AL, Tidyman WE, Teitell MA, Cotter PD, Rauen KA. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A. 2006;140:8–16.

    PubMed  Google Scholar 

  39. Kerr B, Delrue MA, Sigaudy S, et al. Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 43 cases. J Med Genet. 2006;43:401–5.

    Article  PubMed  CAS  Google Scholar 

  40. Tidyman WE, Rauen KA. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras-MAPK pathway. Expert Rev Mol Med. 2008;10:e37.

    Article  PubMed  Google Scholar 

  41. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–9.

    PubMed  CAS  Google Scholar 

  42. Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science. 2006;311:1287–90.

    Article  PubMed  CAS  Google Scholar 

  43. Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38:294–6.

    Article  PubMed  CAS  Google Scholar 

  44. Armour CM, Allanson JE. Further delineation of cardio-facio-cutaneous syndrome: clinical features of 38 individuals with proven mutations. J Med Genet. 2008;45:249–54.

    Article  PubMed  CAS  Google Scholar 

  45. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.

    Article  PubMed  CAS  Google Scholar 

  46. Anastasaki C, Estep AL, Marais R, Rauen KA, Patton EE. Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors. Hum Mol Genet. 2009;18:2543–54.

    Article  PubMed  CAS  Google Scholar 

  47. Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99–115.

    Article  PubMed  CAS  Google Scholar 

  48. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270–4.

    Article  PubMed  CAS  Google Scholar 

  49. Jain R, Rentschler S, Epstein JA. Notch and cardiac outflow tract development. Ann N Y Acad Sci. 2010;1188:184–90.

    Article  PubMed  CAS  Google Scholar 

  50. Marin-Garcia J. Advances in molecular genetics of congenital heart disease. Rev Esp Cardiol. 2009;62:242–5.

    Article  PubMed  Google Scholar 

  51. Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20:2096–109.

    Article  PubMed  CAS  Google Scholar 

  52. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9:49–61.

    Article  PubMed  CAS  Google Scholar 

  53. Mohamed SA, Aherrahrou Z, Liptau H, et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun. 2006;345:1460–5.

    Article  PubMed  CAS  Google Scholar 

  54. High FA, Jain R, Stoller JZ, et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest. 2009;119:1986–96.

    PubMed  CAS  Google Scholar 

  55. McElhinney DB, Krantz ID, Bason L, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation. 2002;106:2567–74.

    Article  PubMed  Google Scholar 

  56. Kamath BM, Spinner NB, Emerick KM, et al. Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation. 2004;109:1354–8.

    Article  PubMed  Google Scholar 

  57. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16:243–51.

    Article  PubMed  CAS  Google Scholar 

  58. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16:235–42.

    Article  PubMed  CAS  Google Scholar 

  59. Krantz ID, Smith R, Colliton RP, et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet. 1999;84:56–60.

    Article  PubMed  CAS  Google Scholar 

  60. Eldadah ZA, Hamosh A, Biery NJ, et al. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet. 2001;10:163–9.

    Article  PubMed  CAS  Google Scholar 

  61. McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79:169–73.

    Article  PubMed  CAS  Google Scholar 

  62. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421:172–7.

    Article  PubMed  CAS  Google Scholar 

  63. Yashiro K, Shiratori H, Hamada H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature. 2007;450:285–8.

    Article  PubMed  CAS  Google Scholar 

  64. Momma K, Kondo C, Matsuoka R, Takao A. Cardiac anomalies associated with a chromosome 22q11 deletion in patients with conotruncal anomaly face syndrome. Am J Cardiol. 1996;78:591–4.

    Article  PubMed  CAS  Google Scholar 

  65. Digilio MC, Angioni A, De Santis M, et al. Spectrum of clinical variability in familial deletion 22q11.2: from full manifestation to extremely mild clinical anomalies. Clin Genet. 2003;63:308–13.

    Article  PubMed  CAS  Google Scholar 

  66. Marino B, Digilio MC, Toscano A, et al. Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet Med. 2001;3:45–8.

    Article  PubMed  CAS  Google Scholar 

  67. Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362:1366–73.

    Article  PubMed  CAS  Google Scholar 

  68. Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001;410:97–101.

    Article  PubMed  CAS  Google Scholar 

  69. Edelmann L, Pandita RK, Spiteri E, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet. 1999;8:1157–67.

    Article  PubMed  CAS  Google Scholar 

  70. Ou Z, Berg JS, Yonath H, et al. Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med. 2008;10:267–77.

    Article  PubMed  Google Scholar 

  71. Ensenauer RE, Adeyinka A, Flynn HC, et al. Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet. 2003;73:1027–40.

    Article  PubMed  CAS  Google Scholar 

  72. Guris DL, Duester G, Papaioannou VE, Imamoto A. Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell. 2006;10:81–92.

    Article  PubMed  CAS  Google Scholar 

  73. Moon AM, Guris DL, Seo JH, et al. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell. 2006;10:71–80.

    Article  PubMed  CAS  Google Scholar 

  74. Wessel A, Pankau R, Kececioglu D, Ruschewski W, Bursch JH. Three decades of follow-up of aortic and pulmonary vascular lesions in the Williams-Beuren syndrome. Am J Med Genet. 1994;52:297–301.

    Article  PubMed  CAS  Google Scholar 

  75. Eronen M, Peippo M, Hiippala A, et al. Cardiovascular manifestations in 75 patients with Williams syndrome. J Med Genet. 2002;39:554–8.

    Article  PubMed  CAS  Google Scholar 

  76. Ewart AK, Morris CA, Atkinson D, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet. 1993;5:11–6.

    Article  PubMed  CAS  Google Scholar 

  77. Wu YQ, Nickerson E, Shaffer LG, Keppler-Noreuil K, Muilenburg A. A case of Williams syndrome with a large, visible cytogenetic deletion. J Med Genet. 1999;36:928–32.

    PubMed  CAS  Google Scholar 

  78. Vissers LE, van Ravenswaaij CM, Admiraal R, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–7.

    Article  PubMed  CAS  Google Scholar 

  79. Aramaki M, Udaka T, Kosaki R, et al. Phenotypic spectrum of CHARGE syndrome with CHD7 mutations. J Pediatr. 2006;148:410–4.

    Article  PubMed  CAS  Google Scholar 

  80. Jongmans MC, Admiraal RJ, van der Donk KP, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43:306–14.

    Article  PubMed  CAS  Google Scholar 

  81. Lalani SR, Safiullah AM, Fernbach SD, et al. Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet. 2006;78:303–14.

    Article  PubMed  CAS  Google Scholar 

  82. Phillips HM, Renforth GL, Spalluto C, et al. Narrowing the critical region within 11q24-qter for hypoplastic left heart and identification of a candidate gene, JAM3, expressed during cardiogenesis. Genomics. 2002;79:475–8.

    Article  PubMed  CAS  Google Scholar 

  83. Grossfeld PD, Mattina T, Lai Z, et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A. 2004;129A:51–61.

    Article  PubMed  Google Scholar 

  84. Ye M, Hamzeh R, Geddis A, Varki N, Perryman MB, Grossfeld P. Deletion of JAM-C, a candidate gene for heart defects in Jacobsen syndrome, results in a normal cardiac phenotype in mice. Am J Med Genet A. 2009;149A:1438–43.

    Article  PubMed  CAS  Google Scholar 

  85. Sato Y. Role of ETS family transcription factors in vascular development and angiogenesis. Cell Struct Funct. 2001;26:19–24.

    Article  PubMed  CAS  Google Scholar 

  86. Ye M, Coldren C, Liang X, et al. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet. 2010;19:648–56.

    Article  PubMed  CAS  Google Scholar 

  87. Holt M, Oram S. Familial heart disease with skeletal malformations. Br Heart J. 1960;22:236–42.

    Article  PubMed  CAS  Google Scholar 

  88. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    Article  PubMed  CAS  Google Scholar 

  89. Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997;15:21–9.

    Article  PubMed  Google Scholar 

  90. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709–21.

    Article  PubMed  CAS  Google Scholar 

  91. Mori AD, Zhu Y, Vahora I, et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol. 2006;297:566–86.

    Article  PubMed  CAS  Google Scholar 

  92. Hiroi Y, Kudoh S, Monzen K, et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet. 2001;28:276–80.

    Article  PubMed  CAS  Google Scholar 

  93. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.

    Article  PubMed  CAS  Google Scholar 

  94. Jay PY, Harris BS, Maguire CT, et al. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 2004;113:1130–7.

    PubMed  CAS  Google Scholar 

  95. Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004;117:373–86.

    Article  PubMed  CAS  Google Scholar 

  96. Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–60.

    Article  PubMed  CAS  Google Scholar 

  97. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11:1061–72.

    Article  PubMed  CAS  Google Scholar 

  98. Rajagopal SK, Ma Q, Obler D, et al. Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol. 2007;43:677–85.

    Article  PubMed  CAS  Google Scholar 

  99. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281:108–11.

    Article  PubMed  CAS  Google Scholar 

  100. Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104:1567–73.

    Article  PubMed  CAS  Google Scholar 

  101. Goldmuntz E, Geiger E, Benson DW. NKX2.5 mutations in patients with tetralogy of fallot. Circulation. 2001;104:2565–8.

    Article  PubMed  CAS  Google Scholar 

  102. Hirayama-Yamada K, Kamisago M, Akimoto K, et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A. 2005;135:47–52.

    PubMed  Google Scholar 

  103. Posch MG, Gramlich M, Sunde M, et al. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J Med Genet. 2010;47:230–5.

    Article  PubMed  CAS  Google Scholar 

  104. Heathcote K, Braybrook C, Abushaban L, et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet. 2005;14:585–93.

    Article  PubMed  CAS  Google Scholar 

  105. Tanaka M, Yamasaki N, Izumo S. Phenotypic characterization of the murine Nkx2.6 homeobox gene by gene targeting. Mol Cell Biol. 2000;20:2874–9.

    Article  PubMed  CAS  Google Scholar 

  106. Kodo K, Nishizawa T, Furutani M, et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci USA. 2009;106:13933–8.

    Article  PubMed  CAS  Google Scholar 

  107. Durocher D, Nemer M. Combinatorial interactions regulating cardiac transcription. Dev Genet. 1998;22:250–62.

    Article  PubMed  CAS  Google Scholar 

  108. Mackay JP, Crossley M. Zinc fingers are sticking together. Trends Biochem Sci. 1998;23:1–4.

    Article  PubMed  CAS  Google Scholar 

  109. Al-Baradie R, Yamada K, St Hilaire C, et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet. 2002;71:1195–9.

    Article  PubMed  CAS  Google Scholar 

  110. Kohlhase J, Heinrich M, Schubert L, et al. Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet. 2002;11:2979–87.

    Article  PubMed  CAS  Google Scholar 

  111. Bohm J, Munk-Schulenburg S, Felscher S, Kohlhase J. SALL1 mutations in sporadic Townes-Brocks syndrome are of predominantly paternal origin without obvious paternal age effect. Am J Med Genet A. 2006;140:1904–8.

    PubMed  Google Scholar 

  112. Borozdin W, Steinmann K, Albrecht B, et al. Detection of heterozygous SALL1 deletions by quantitative real time PCR proves the contribution of a SALL1 dosage effect in the pathogenesis of Townes-Brocks syndrome. Hum Mutat. 2006;27:211–2.

    Article  PubMed  Google Scholar 

  113. Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, et al. Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet. 2006;38:175–83.

    Article  PubMed  CAS  Google Scholar 

  114. Ching YH, Ghosh TK, Cross SJ, et al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet. 2005;37:423–8.

    Article  PubMed  CAS  Google Scholar 

  115. Sperling S, Grimm CH, Dunkel I, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005;26:575–82.

    Article  PubMed  CAS  Google Scholar 

  116. Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature. 1995;376:348–51.

    Article  PubMed  CAS  Google Scholar 

  117. Roelfsema JH, White SJ, Ariyurek Y, et al. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet. 2005;76:572–80.

    Article  PubMed  CAS  Google Scholar 

  118. Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet. 2000;25:42–6.

    Article  PubMed  CAS  Google Scholar 

  119. Schroeder JA, Jackson LF, Lee DC, Camenisch TD. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med. 2003;81:392–403.

    Article  PubMed  CAS  Google Scholar 

  120. Sanchez-Soria P, Camenisch TD. ErbB signaling in cardiac development and disease. Semin Cell Dev Biol. 2010;21(9):929–35.

    Article  PubMed  CAS  Google Scholar 

  121. Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996;15:2452–67.

    PubMed  CAS  Google Scholar 

  122. Elenius K, Paul S, Allison G, Sun J, Klagsbrun M. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J. 1997;16:1268–78.

    Article  PubMed  CAS  Google Scholar 

  123. Riese 2nd DJ, Komurasaki T, Plowman GD, Stern DF. Activation of ErbB4 by the bifunctional epidermal growth factor family ­hormone epiregulin is regulated by ErbB2. J Biol Chem. 1998;273:11288–94.

    Article  PubMed  CAS  Google Scholar 

  124. Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol. 2005;1:2005.0008.

    Article  PubMed  CAS  Google Scholar 

  125. Dengjel J, Akimov V, Blagoev B, Andersen JS. Signal transduction by growth factor receptors: signaling in an instant. Cell Cycle. 2007;6:2913–6.

    Article  PubMed  CAS  Google Scholar 

  126. Fuller SJ, Sivarajah K, Sugden PH. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol. 2008;44:831–54.

    Article  PubMed  CAS  Google Scholar 

  127. Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 2005;16:797–803.

    Article  PubMed  CAS  Google Scholar 

  128. Fukazawa R, Miller TA, Kuramochi Y, et al. Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol. 2003;35:1473–9.

    Article  PubMed  CAS  Google Scholar 

  129. Meadows KN, Iyer S, Stevens MV, et al. Akt promotes endocardial-mesenchyme transition. J Angiogenes Res. 2009;1:2.

    Article  PubMed  CAS  Google Scholar 

  130. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995;378:394–8.

    Article  PubMed  CAS  Google Scholar 

  131. Sibilia M, Wagner EF. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science. 1995;269:234–8.

    Article  PubMed  CAS  Google Scholar 

  132. Erickson SL, O’Shea KS, Ghaboosi N, et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development. 1997;124:4999–5011.

    PubMed  CAS  Google Scholar 

  133. Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med. 2002;8:850–5.

    PubMed  CAS  Google Scholar 

  134. Chan R, Hardy WR, Laing MA, Hardy SE, Muller WJ. The catalytic activity of the ErbB-2 receptor tyrosine kinase is essential for embryonic development. Mol Cell Biol. 2002;22:1073–8.

    Article  PubMed  CAS  Google Scholar 

  135. Jackson LF, Qiu TH, Sunnarborg SW, et al. Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J. 2003;22:2704–16.

    Article  PubMed  CAS  Google Scholar 

  136. Lin AE, Birch PH, Korf BR, et al. Cardiovascular malformations and other cardiovascular abnormalities in neurofibromatosis 1. Am J Med Genet. 2000;95:108–17.

    Article  PubMed  CAS  Google Scholar 

  137. Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature. 2000;403:385–9.

    Article  PubMed  CAS  Google Scholar 

  138. Kosaki K, Bassi MT, Kosaki R, et al. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet. 1999;64:712–21.

    Article  PubMed  CAS  Google Scholar 

  139. Kosaki R, Gebbia M, Kosaki K, et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet. 1999;82:70–6.

    Article  PubMed  CAS  Google Scholar 

  140. Bamford RN, Roessler E, Burdine RD, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000;26:365–9.

    Article  PubMed  CAS  Google Scholar 

  141. Goldmuntz E, Bamford R, Karkera JD, dela Cruz J, Roessler E, Muenke M. CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet. 2002;70:776–80.

    Article  PubMed  CAS  Google Scholar 

  142. Karkera JD, Lee JS, Roessler E, et al. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet. 2007;81:987–94.

    Article  PubMed  CAS  Google Scholar 

  143. Roessler E, Ouspenskaia MV, Karkera JD, et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet. 2008;83:18–29.

    Article  PubMed  CAS  Google Scholar 

  144. Mohapatra B, Casey B, Li H, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18:861–71.

    PubMed  CAS  Google Scholar 

  145. De Luca A, Sarkozy A, Consoli F, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart. 2010;96:673–7.

    Article  PubMed  Google Scholar 

  146. Conlon FL, Lyons KM, Takaesu N, et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994;120:1919–28.

    PubMed  CAS  Google Scholar 

  147. Lowe LA, Supp DM, Sampath K, et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature. 1996;381:158–61.

    Article  PubMed  CAS  Google Scholar 

  148. Saloman DS, Bianco C, Ebert AD, et al. The EGF-CFC family: novel epidermal growth factor-related proteins in development and cancer. Endocr Relat Cancer. 2000;7:199–226.

    Article  PubMed  CAS  Google Scholar 

  149. Shen MM, Schier AF. The EGF-CFC gene family in vertebrate development. Trends Genet. 2000;16:303–9.

    Article  PubMed  CAS  Google Scholar 

  150. Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell. 1999;97:121–32.

    Article  PubMed  CAS  Google Scholar 

  151. Gaio U, Schweickert A, Fischer A, et al. A role of the cryptic gene in the correct establishment of the left-right axis. Curr Biol. 1999;9:1339–42.

    Article  PubMed  CAS  Google Scholar 

  152. Ozcelik C, Bit-Avragim N, Panek A, et al. Mutations in the EGF-CFC gene cryptic are an infrequent cause of congenital heart disease. Pediatr Cardiol. 2006;27:695–8.

    Article  PubMed  Google Scholar 

  153. Selamet Tierney ES, Marans Z, Rutkin MB, Chung WK. Variants of the CFC1 gene in patients with laterality defects associated with congenital cardiac disease. Cardiol Young. 2007;17:268–74.

    Article  PubMed  Google Scholar 

  154. Harrison CA, Gray PC, Fischer WH, Donaldson C, Choe S, Vale W. An activin mutant with disrupted ALK4 binding blocks signaling via type II receptors. J Biol Chem. 2004;279:28036–44.

    Article  PubMed  CAS  Google Scholar 

  155. Meno C, Takeuchi J, Sakuma R, et al. Diffusion of nodal signaling activity in the absence of the feedback inhibitor Lefty2. Dev Cell. 2001;1:127–38.

    Article  PubMed  CAS  Google Scholar 

  156. Gebbia M, Ferrero GB, Pilia G, et al. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet. 1997;17:305–8.

    Article  PubMed  CAS  Google Scholar 

  157. Pyeritz RE. The Marfan syndrome. Annu Rev Med. 2000;51:481–510.

    Article  PubMed  CAS  Google Scholar 

  158. Boileau C, Jondeau G, Mizuguchi T, Matsumoto N. Molecular genetics of Marfan syndrome. Curr Opin Cardiol. 2005;20:194–200.

    Article  PubMed  Google Scholar 

  159. Robinson PN, Arteaga-Solis E, Baldock C, et al. The molecular genetics of Marfan syndrome and related disorders. J Med Genet. 2006;43:769–87.

    Article  PubMed  CAS  Google Scholar 

  160. Lee B, Godfrey M, Vitale E, et al. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature. 1991;352:330–4.

    Article  PubMed  CAS  Google Scholar 

  161. Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337–9.

    Article  PubMed  CAS  Google Scholar 

  162. Corson GM, Chalberg SC, Dietz HC, Charbonneau NL, Sakai LY. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics. 1993;17:476–84.

    Article  PubMed  CAS  Google Scholar 

  163. Putnam EA, Zhang H, Ramirez F, Milewicz DM. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat Genet. 1995;11:456–8.

    Article  PubMed  CAS  Google Scholar 

  164. Sakai LY, Keene DR, Glanville RW, Bachinger HP. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem. 1991;266:14763–70.

    PubMed  CAS  Google Scholar 

  165. Carta L, Pereira L, Arteaga-Solis E, et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem. 2006;281:8016–23.

    Article  PubMed  CAS  Google Scholar 

  166. Gregory KE, Ono RN, Charbonneau NL, et al. The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem. 2005;280:27970–80.

    Article  PubMed  CAS  Google Scholar 

  167. Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM. Fibrillin-1 regulates the bioavailability of TGFbeta1. J Cell Biol. 2007;176:355–67.

    Article  PubMed  CAS  Google Scholar 

  168. Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81.

    Article  PubMed  CAS  Google Scholar 

  169. Mizuguchi T, Collod-Beroud G, Akiyama T, et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet. 2004;36:855–60.

    Article  PubMed  CAS  Google Scholar 

  170. Grady WM, Myeroff LL, Swinler SE, et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 1999;59:320–4.

    PubMed  CAS  Google Scholar 

  171. Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.

    Article  PubMed  CAS  Google Scholar 

  172. Ng CM, Cheng A, Myers LA, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114:1586–92.

    PubMed  CAS  Google Scholar 

  173. Loeys BL, Schwarze U, Holm T, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355:788–98.

    Article  PubMed  CAS  Google Scholar 

  174. Horbelt D, Guo G, Robinson PN, Knaus P. Quantitative analysis of TGFBR2 mutations in Marfan-syndrome-related disorders suggests a correlation between phenotypic severity and Smad signaling activity. J Cell Sci. 2010;123(Pt 24):4340–50.

    Article  PubMed  CAS  Google Scholar 

  175. Robinson SW, Morris CD, Goldmuntz E, et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet. 2003;72:1047–52.

    Article  PubMed  CAS  Google Scholar 

  176. Maslen CL, Babcock D, Robinson SW, et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. Am J Med Genet A. 2006;140:2501–5.

    PubMed  Google Scholar 

  177. Stossel TP, Condeelis J, Cooley L, et al. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001;2:138–45.

    Article  PubMed  CAS  Google Scholar 

  178. Zhou AX, Hartwig JH, Akyurek LM. Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 2010;20:113–23.

    Article  PubMed  CAS  Google Scholar 

  179. van der Flier A, Sonnenberg A. Structural and functional aspects of filamins. Biochim Biophys Acta. 2001;1538:99–117.

    Article  PubMed  Google Scholar 

  180. Fox JW, Lamperti ED, Eksioglu YZ, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron. 1998;21:1315–25.

    Article  PubMed  CAS  Google Scholar 

  181. Parrini E, Ramazzotti A, Dobyns WB, et al. Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain. 2006;129:1892–906.

    Article  PubMed  CAS  Google Scholar 

  182. Kyndt F, Gueffet JP, Probst V, et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007;115:40–9.

    Article  PubMed  CAS  Google Scholar 

  183. Feng Y, Chen MH, Moskowitz IP, et al. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci USA. 2006;103:19836–41.

    Article  PubMed  CAS  Google Scholar 

  184. Lu J, Lian G, Lenkinski R, et al. Filamin B mutations cause chondrocyte defects in skeletal development. Hum Mol Genet. 2007;16:1661–75.

    Article  PubMed  CAS  Google Scholar 

  185. Zhou X, Tian F, Sandzen J, et al. Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc Natl Acad Sci USA. 2007;104:3919–24.

    Article  PubMed  CAS  Google Scholar 

  186. Dalkilic I, Schienda J, Thompson TG, Kunkel LM. Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure. Mol Cell Biol. 2006;26:6522–34.

    Article  PubMed  CAS  Google Scholar 

  187. Cinquetti R, Badi I, Campione M, et al. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return. Hum Mutat. 2008;29:468–74.

    Article  PubMed  CAS  Google Scholar 

  188. Budde BS, Binner P, Waldmuller S, et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One. 2007;2:e1362.

    Article  PubMed  CAS  Google Scholar 

  189. Zhu L, Vranckx R, Khau Van Kien P, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic ­aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet. 2006;38:343–9.

    Article  PubMed  CAS  Google Scholar 

  190. Lekanne Deprez RH, Muurling-Vlietman JJ, Hruda J, et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet. 2006;43:829–32.

    Article  PubMed  CAS  Google Scholar 

  191. Zahka K, Kalidas K, Simpson MA, et al. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish. Heart. 2008;94:1326–30.

    Article  PubMed  CAS  Google Scholar 

  192. Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000;32:1687–94.

    Article  PubMed  CAS  Google Scholar 

  193. Monserrat L, Hermida-Prieto M, Fernandez X, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J. 2007;28:1953–61.

    Article  PubMed  CAS  Google Scholar 

  194. Matsson H, Eason J, Bookwalter CS, et al. Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet. 2008;17:256–65.

    Article  PubMed  CAS  Google Scholar 

  195. Couzin J. Breakthrough of the year. Small RNAs make big splash. Science. 2002;298:2296–7.

    Article  PubMed  CAS  Google Scholar 

  196. Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol. 2007;210:279–89.

    Article  PubMed  CAS  Google Scholar 

  197. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  PubMed  CAS  Google Scholar 

  198. Lee CT, Risom T, Strauss WM. MicroRNAs in mammalian development. Birth Defects Res C Embryo Today. 2006;78:129–39.

    Article  PubMed  CAS  Google Scholar 

  199. van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369–76.

    Article  PubMed  CAS  Google Scholar 

  200. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.

    Article  PubMed  CAS  Google Scholar 

  201. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.

    Article  PubMed  CAS  Google Scholar 

  202. Bohlmeyer TJ, Helmke S, Ge S, et al. Hypoplastic left heart syndrome myocytes are differentiated but possess a unique phenotype. Cardiovasc Pathol. 2003;12:23–31.

    Article  PubMed  Google Scholar 

  203. Kaynak B, von Heydebreck A, Mebus S, et al. Genome-wide array analysis of normal and malformed human hearts. Circulation. 2003;107:2467–74.

    Article  PubMed  Google Scholar 

  204. Kaufman BD, Desai M, Reddy S, et al. Genomic profiling of left and right ventricular hypertrophy in congenital heart disease. J Card Fail. 2008;14:760–7.

    Article  PubMed  CAS  Google Scholar 

  205. Nigam V, Sievers HH, Jensen BC, et al. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and ­insufficient valves. J Heart Valve Dis. 2010;19:459–65.

    PubMed  Google Scholar 

  206. Barth JL, Clark CD, Fresco VM, et al. Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract ­morphogenesis. Dev Dyn. 2010;239:2024–33.

    Article  PubMed  CAS  Google Scholar 

  207. Yuasa S, Onizuka T, Shimoji K, et al. Zac1 is an essential transcription factor for cardiac morphogenesis. Circ Res. 2010;106:1083–91.

    Article  PubMed  CAS  Google Scholar 

  208. Jacobs JP, Maruszewski B. Computerized outcomes analysis for congenital heart disease. Curr Opin Pediatr. 2005;17:586–91.

    Article  PubMed  Google Scholar 

  209. Zannini L, Borini I. State of the art of cardiac surgery in patients with congenital heart disease. J Cardiovasc Med (Hagerstown). 2007;8:3–6.

    Article  Google Scholar 

  210. Dorfman AT, Marino BS, Wernovsky G, et al. Critical heart disease in the neonate: presentation and outcome at a tertiary care center. Pediatr Crit Care Med. 2008;9:193–202.

    Article  PubMed  Google Scholar 

  211. Lickert H, Takeuchi JK, Von Both I, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432:107–12.

    Article  PubMed  CAS  Google Scholar 

  212. Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21:1790–802.

    Article  PubMed  CAS  Google Scholar 

  213. Biben C, Weber R, Kesteven S, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res. 2000;87:888–95.

    PubMed  CAS  Google Scholar 

  214. Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development. 2005;132:2463–74.

    Article  PubMed  CAS  Google Scholar 

  215. Stennard FA, Costa MW, Lai D, et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development. 2005;132:2451–62.

    Article  PubMed  CAS  Google Scholar 

  216. Todd AK. Bioinformatics approaches to quadruplex sequence location. Methods. 2007;43:246–51.

    Article  PubMed  CAS  Google Scholar 

  217. Daley GQ, Cargill M. The heart SNPs a beat: polymorphisms in candidate genes for cardiovascular disease. Trends Cardiovasc Med. 2001;11:60–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2011). Signaling in Congenital Heart Disease. In: Signaling in the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9461-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9461-5_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9460-8

  • Online ISBN: 978-1-4419-9461-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics