Skip to main content

Moisture-Induced Degradation

  • Chapter
  • First Online:
Long-Term Durability of Polymeric Matrix Composites

Abstract

Composites provide advantages over conventional structural upgrade systems by offering up to 50% first-cost savings and lower life-cycle costs, often with additional benefits such as easier installation and improved safety. Fiber-reinforced polymer (FRP) composites are finding increasing applications as primary structural components in aerospace and automotive applications, bridges, building repair, and the oil and gas pipeline industry. These composites are typically exposed to a variety of aggressive environments, such as extreme temperature cycles, ultraviolet (UV) radiation, moisture, alkaline/salt environments, etc. However, no capability currently exists for reliably projecting the future state and conditions of composites used in various environments. The accurate determination of diffusivity and moisture uptake in a polymer composite is a key step in the accurate prediction of moisture-induced degradation. With this in mind, the chapter is subdivided into three sections: (1) the combined influence of damage and stress on moisture diffusion within the (bulk) polymer matrix in a polymer composite, (2) the combined influence of strain gradient, relative humidity, and temperature on moisture diffusion at the fiber–matrix and/or interlaminar interface, and (3) a simple mechanism-based model to predict strength degradation in a composite due to moisture ingress. The discussions presented in this chapter are primarily directed toward thermoset resins, such as epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen, C. H. and G.S. Springer (1981) “Effects of Moisture and Temperature on the Tensile Strength of Composite Materials,” Environmental Effects on Composite Materials, G. S. Springer, ed., Lancaster, PA: Technomic Publishing Co., Inc., pp. 79–93.

    Google Scholar 

  2. Gurtin, M.E., and Yatomi, C. (1979) “On a model for Two Phase Diffusion in Composite Materials,” Journal of Composite Materials, Vol. 13, pp. 126–130.

    Article  Google Scholar 

  3. Carter, H.G., and Kibler, K.G. (1978) “Langmuir-Type Model for Anomalous Diffusion in Composite Resins,” Journal of Composite Materials, Vol. 12, pp. 118–130.

    Article  Google Scholar 

  4. Shirrell, C. D., Leisler, W. H. and Sandow, F. A. (1979) “Moisture-Induced Surface Damage in T300/5208 Graphite/Epoxy Laminates,” Nondestructive Evaluation and Flaw Criticality for Composite Materials, ASTM STP 696, R. B. Pipes, ed., American Society for Testing and Materials, pp. 209–222.

    Google Scholar 

  5. Weitsman, Y. (1991) “Moisture in Composites: Sorption and Damage,”, Fatigue of Composite Materials, K. L. Reifsnider, ed., Elsevier Science Publishers B.V., pp. 385–429.

    Google Scholar 

  6. Frisch, H.J. (1966) “Irreversible Thermodynamics of Internally relaxing Systems in the Vicinity of the Glass Transition,” In “Non-Equilibrium Thermodynamics, Variational Techniques, and Stability”, Edited by R.J. Dennelly, R. Herman, and I. Prigogine. University of Chicago Press, pp. 277–280.

    Google Scholar 

  7. Crank, J. (1975) The Mathematics of Diffusion, Oxford University Press.

    Google Scholar 

  8. Weitsman, Y. (1987) “Stress Assisted Diffusion in Elastic and Viscoelastic Materials,” Journal of Mechanics and Physics of Solids, 35(1):73–93.

    Article  Google Scholar 

  9. Biot, M.A. (1956) “Thermoelasticity and Irreversible Thermodynamics,” Journal of Applied Physics, 27(3): 240–253.

    Article  Google Scholar 

  10. Schapery, R.A. (1969) “Further Development of a Thermodynamic Constitutive Theory: Stress Formulation,” A&S Report No. 69–2, Purdue University, West Lafayette.

    Google Scholar 

  11. Weitsman, Y. (1990) “A Continuum Diffusion Model for Viscoelastic Materials,” Journal of Physical Chemistry, 94(2): 961–968.

    Article  CAS  Google Scholar 

  12. Weitsman, Y. (1987) “Coupled Damage and Moisture Transport in Fiber- Reinforced, Polymeric Composites,” International Journal of Solids and Structures, 23(7):1003–1025.

    Article  Google Scholar 

  13. Kumar, Bhavesh G., Singh, Raman P., and Nakamura, Toshio. (2002) “Degradation of Carbon Fiber-reinforced Epoxy Composites by Ultraviolet Radiation and Condensation”, Journal of Composite Materials, Vol. 36, No. 24.

    Article  CAS  Google Scholar 

  14. Weitsman,, Y.J. and Elahi, M., (2000) Mechanics of Time dependent Materials, 3, 107–126.

    Article  Google Scholar 

  15. Roy S., and Xu W., (2001). "Modeling of Diffusion in the Presence of Damage in Polymer Matrix Composites,” International Journal of Solids and Structures, 38, pp. 115–125.

    Article  Google Scholar 

  16. Talreja, R., (1994) “Damage Characterization by Internal Variables,” Damage Mechanics of Composite Materials, Edited by R. Talreja, Elsevier Science, pp. 53–78.

    Google Scholar 

  17. Adkins, J.E., (1959) “Symmetry Relations for Orthotropic and Transversely Isotropic Materials,” Arch. Rational Mech. Anal., Vol. 4, pp. 193–213.

    Article  Google Scholar 

  18. Roy, S. and Bandorawalla T., (1999) " Modeling of Diffusion in a Micro-cracked Composite Laminate using Approximate Solutions,” Journal of Composite Materials, Vol. 33, No.10, pp. 872–905.

    Article  Google Scholar 

  19. Roy, S., Lefebvre, D. R., Dillard, D. A. and Reddy, J. N. (1989) "A Model for the Diffusion of Moisture in Adhesive Joints. Part III: Numerical Simulations," Journal of Adhesion, Vol. 27, pp. 41–62.

    Article  CAS  Google Scholar 

  20. Sancaktar, E., and Baechtle, D., (1993)” The Effect of Stress Whitening on Moisture Diffusion in Thermosetting Polymers,” J. Adhesion, Vol. 42, pp. 65–85.

    Article  CAS  Google Scholar 

  21. Wong, T., and Broutman, L., (1985a.) “Moisture Diffusion in Epoxy Resins Part I: Non-Fickian Sorption Processes,” Polymer Eng. & Sci., Vol. 25, No. 9, pp. 521–528.

    Article  CAS  Google Scholar 

  22. Wong, T., and Broutman, L., (1985b.) “Water in Epoxy Resins Part II: Diffusion Mechanisms,” Polymer Eng. & Sci., Vol. 25, No. 9, pp. 529–534.

    Article  CAS  Google Scholar 

  23. Roy, S., (1999) “Modeling of Anomalous Diffusion in Polymer Composites: A Finite Element Approach,” Journal of Composite Materials, Vol. 33, No. 14, pp. 1318–1343.

    Article  CAS  Google Scholar 

  24. Fahmy, A. A., and Hurt, J. C. (1980) “Stress dependence of water diffusion in epoxy resin,” Polymer Composites, 1, pp. 77–80.

    Article  CAS  Google Scholar 

  25. Roy, S., W. Xu, S.J. Park, and K.M. Liechti (2000) "Anomalous Moisture Diffusion in Viscoelastic Polymers: Modeling and Testing”, Journal of Applied Mechanics, Vol. 67, pp. 391–396.

    Article  CAS  Google Scholar 

  26. Roy, S., W. Xu, S. Patel, and S. Case, (2001) "Modeling of Moisture Diffusion in the Presence of Bi-axial Damage in Polymer Matrix Composite Laminates,” International Journal of Solids and Structures, Vol. 38, issue 42–43, pp. 7627 – 7641.

    Article  Google Scholar 

  27. Roy S. and Shiue, F.W., (2003) “A Coupled Hygrothermal Cohesive-Layer Constitutive Model for Simulating Debond Growth”, Polymer and Polymer Composites, Vol. 11, No. 8, pp. 633–647.

    CAS  Google Scholar 

  28. Gere, J. and Timoshenko, S. (1984) “Mechanics of Materials,” PWS-Kent Publishing Company.

    Google Scholar 

  29. Tsai, C. Cheng, M., Hwang, S., Tsai, Y., (2004) “Characterizing the Hygric Behavior of Composites by Suspending Method,” Journal of Composite Materials, Vol. 38, No. 9.

    Article  CAS  Google Scholar 

  30. Xiao, G.Z., and M.E.R. Shanahan, (1997) "Water Absorption and Desorption in an Epoxy Resin with Degradation," J. Polym. Sci. B: Polym. Phys., 35, pp. 2659–2670.

    Article  CAS  Google Scholar 

  31. Goruganthu, S., Jason Elwell, Arun Ramasetty, Abilash R. Nair, Samit Roy, Anwarul Haque, Piyush K. Dutta and Ashok Kumar, (2008) “Characterization and Modeling of the Effect of Environmental Degradation on Interlaminar Shear Strength of Carbon/Epoxy Composites,” Polymer and Polymer Composites, Vol. 16, No. 3, pp. 165–179.

    CAS  Google Scholar 

Download references

Acknowledgment

The author would like to acknowledge the support of the National Science Foundation, Grant Number CMS-0296167. The author would also like to thank Mr. Avinash Reddy Akepati for his help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Roy .

Editor information

Editors and Affiliations

Appendices

Appendix A

$$ {f_1}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = 1 $$
$$ {f_2}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m} $$
$$ {f_3}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \overline{T} $$
$$ {f_4}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2} $$
$$ {f_5}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = {\overline{T}^2} $$
$$ {f_6}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}\overline{T} $$
$$ {f_7}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}{\overline{T}^2} $$
$$ {f_8}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}\overline{T} $$
$$ {f_9}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}{\overline{T}^2} $$
$$ {f_{{10}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = {\varepsilon_{{22}}} $$
$$ {f_{{11}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}{\varepsilon_{{22}}} $$
$$ {f_{{12}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \overline{T}{\varepsilon_{{22}}} $$
$$ {f_{{13}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}{\varepsilon_{{22}}} $$
$$ {f_{{14}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = {\overline{T}^2}{\varepsilon_{{22}}} $$
$$ {f_{{15}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}\overline{T}{\varepsilon_{{22}}} $$
$$ {f_{{16}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}{\overline{T}^2}{\varepsilon_{{22}}} $$
$$ {f_{{17}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}\overline{T}{\varepsilon_{{22}}} $$
$$ {f_{{18}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}{\overline{T}^2}{\varepsilon_{{22}}} $$
$$ {f_{{19}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = {\varepsilon_{{22}}}^2 $$
$$ {f_{{20}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}{\varepsilon_{{22}}}^2 $$
$$ {f_{{21}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \overline{T}{\varepsilon_{{22}}}^2 $$
$$ {f_{{22}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}{\varepsilon_{{22}}}^2 $$
$$ {f_{{23}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = {\overline{T}^2}{\varepsilon_{{22}}}^2 $$
$$ {f_{{24}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}\overline{T}{\varepsilon_{{22}}}^2 $$
$$ {f_{{25}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta \overline{m}{\overline{T}^2}{\varepsilon_{{22}}}^2 $$
$$ {f_{{26}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}\overline{T}{\varepsilon_{{22}}}^2 $$
$$ {f_{{27}}}(\Delta \overline{m},\overline{T},{\varepsilon_{{22}}}) = \Delta {\overline{m}^2}{\overline{T}^2}\varepsilon_{{22}}^2 $$

Appendix B

$$ {f_1}(RH,\overline{T},{\varepsilon_{{22}}}) = 1 $$
$$ {f_2}(RH,\overline{T},{\varepsilon_{{22}}}) = RH $$
$$ {f_3}(RH,\overline{T},{\varepsilon_{{22}}}) = \overline{T} $$
$$ {f_4}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2} $$
$$ {f_5}(RH,\overline{T},{\varepsilon_{{22}}}) = {\overline{T}^2} $$
$$ {f_6}(RH,\overline{T},{\varepsilon_{{22}}}) = RH\overline{T} $$
$$ {f_7}(RH,\overline{T},{\varepsilon_{{22}}}) = RH{\overline{T}^2} $$
$$ {f_8}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}\overline{T} $$
$$ {f_9}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}{\overline{T}^2} $$
$$ {f_{{10}}}(RH,\overline{T},{\varepsilon_{{22}}}) = {\varepsilon_{{22}}} $$
$$ {f_{{11}}}(RH,\overline{T},{\varepsilon_{{22}}}) = RH{\varepsilon_{{22}}} $$
$$ {f_{{12}}}(RH,\overline{T},{\varepsilon_{{22}}}) = \overline{T}{\varepsilon_{{22}}} $$
$$ {f_{{13}}}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}{\varepsilon_{{22}}} $$
$$ {f_{{14}}}(RH,\overline{T},{\varepsilon_{{22}}}) = {\overline{T}^2}{\varepsilon_{{22}}} $$
$$ {f_{{15}}}(RH,\overline{T},{\varepsilon_{{22}}}) = RH\overline{T}{\varepsilon_{{22}}} $$
$$ {f_{{16}}}(RH,\overline{T},{\varepsilon_{{22}}}) = RH{\overline{T}^2}{\varepsilon_{{22}}} $$
$$ {f_{{17}}}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}\overline{T}{\varepsilon_{{22}}} $$
$$ {f_{{18}}}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}{\overline{T}^2}{\varepsilon_{{22}}} $$
$$ {f_{{19}}}(RH,\overline{T},{\varepsilon_{{22}}}) = \varepsilon_{{22}}^2 $$
$$ {f_{{20}}}(RH,\overline{T},{\varepsilon_{{22}}}) = RH\varepsilon_{{22}}^2 $$
$$ {f_{{21}}}(RH,\overline{T},{\varepsilon_{{22}}}) = \overline{T}\varepsilon_{{22}}^2 $$
$$ {f_{{22}}}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}\varepsilon_{{22}}^2 $$
$$ {f_{{23}}}(RH,\overline{T},{\varepsilon_{{22}}}) = {\overline{T}^2}\varepsilon_{{22}}^2 $$
$$ {f_{{24}}}(RH,\overline{T},{\varepsilon_{{22}}}) = RH\overline{T}\varepsilon_{{22}}^2 $$
$$ {f_{{25}}}(RH,\overline{T},{\varepsilon_{{22}}}) = RH{\overline{T}^2}\varepsilon_{{22}}^2 $$
$$ {f_{{26}}}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}\overline{T}\varepsilon_{{22}}^2 $$
$$ {f_{{27}}}(RH,\overline{T},{\varepsilon_{{22}}}) = R{H^2}{\overline{T}^2}\varepsilon_{{22}}^2 $$

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roy, S. (2012). Moisture-Induced Degradation. In: Pochiraju, K., Tandon, G., Schoeppner, G. (eds) Long-Term Durability of Polymeric Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9308-3_6

Download citation

Publish with us

Policies and ethics