Skip to main content

Structure-Function Relationship of the Extracellular Calcium-Sensing Receptor

  • Chapter
Calcium-Sensing Receptor

Part of the book series: Endocrine updates ((ENDO,volume 19))

  • 135 Accesses

Abstract

The extracellular calcium (Ca2+ o)-sensing receptor (CaR), originally cloned from bovine parathyroid, is a G protein-coupled receptor (GPCR) (1). The CaR is expressed on the plasma membrane of a variety of cell types, including those involved in maintaining systemic calcium homeostasis, such as parathyroid chief cells, renal cells, as well as thyroid C-cells, and those not participating in systemic calcium homeostasis, such as brain and breast cells (2). The CaR is well conserved across species (38). For instance, the amino acid sequences of CaRs from human, rat, and rabbit are more than 90% identical to that of the bovine CaR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC 1993 Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  PubMed  CAS  Google Scholar 

  2. Brown EM, MacLeod RJ 2001 Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297.

    PubMed  CAS  Google Scholar 

  3. Aida K, Koishi S, Tawata M, Onaya T 1995 Molecular cloning of a putative Ca2+-sensing receptor cDNA from human kidney. Biochem Biophys Res Commun 214:524–529

    Article  PubMed  CAS  Google Scholar 

  4. Garrett JE, Capuano IV, Hammerland LG, Hung BC, Brown EM, Hebert SC, Nemeth EF, Fuller F 1995 Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem 270:12919–12925

    Article  PubMed  CAS  Google Scholar 

  5. Garrett JE, Tamir H, Kifor O, Simin RT, Rogers KV, Mithal A, Gagel RF, Brown EM 1995 Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 136:5202–5211

    Article  PubMed  CAS  Google Scholar 

  6. Riccardi D, Park J, Lee WS, Gamba G, Brown EM, Hebert SC 1995 Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci U S A 92:131–135

    Article  PubMed  CAS  Google Scholar 

  7. Butters RR, Jr., Chattopadhyay N, Nielsen P, Smith CP, Mithal A, Kifor O, Bai M, Quinn S, Goldsmith P, Hurwitz S, Krapcho K, Busby J, Brown EM 1997 Cloning and characterization of a calcium-sensing receptor from the hypercalcemic New Zealand white rabbit reveals unaltered responsiveness to extracellular calcium. J Bone Miner Res 12:568–579

    Article  PubMed  CAS  Google Scholar 

  8. Ruat M, Molliver ME, Snowman AM, Snyder SH 1995 Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc Natl Acad Sci U S A 92:3161–3165

    Article  PubMed  CAS  Google Scholar 

  9. Goldsmith PK, Fan GF, Ray K, Shiloach J, McPhie P, Rogers KV, Spiegel AM 1999 Expression, purification, and biochemical characterization of the amino-terminal extracellular domain of the human calcium receptor. J Biol Chem 274:11303–11309.

    Article  PubMed  CAS  Google Scholar 

  10. Nakanishi S 1992 Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  11. Pin JP, Duvoisin R 1995 The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  PubMed  CAS  Google Scholar 

  12. Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M 1998 Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev 26:230–235

    Article  PubMed  Google Scholar 

  13. 13._Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B 1997 Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    Article  PubMed  CAS  Google Scholar 

  14. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen G, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C 1998 GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–679

    Article  PubMed  CAS  Google Scholar 

  15. Kaupmann K, Malitschek B, Sehuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B 1998 GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    Article  PubMed  CAS  Google Scholar 

  16. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH 1998 Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679–682

    Article  PubMed  CAS  Google Scholar 

  17. Herrada G, Dulac C 1997 A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773

    Article  PubMed  CAS  Google Scholar 

  18. Matsunami H, Buck LB 1997 A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784

    Article  PubMed  CAS  Google Scholar 

  19. Naito T, Saito Y, Yamamoto J, Nozaki Y, Tomura K, Hazama M, Nakanishi S, Brenner S 1998 Putative pheromone receptors related to the Ca2+-sensing receptor in Fugu. Proc Natl Acad Sci U S A 95:5178–5181

    Article  PubMed  CAS  Google Scholar 

  20. Ryba NJ, Tirindelli R 1997 A new multigene family of putative pheromone receptors. Neuron 19:371–379

    Article  PubMed  CAS  Google Scholar 

  21. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS 1999 Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551

    Article  PubMed  CAS  Google Scholar 

  22. O’Hara PJ, Sheppard PO, Thogersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER 1993 The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11:41–52

    Article  PubMed  Google Scholar 

  23. Ray K, Hauschild BC, Steinbach PJ, Goldsmith PK, Hauache O, Spiegel AM 1999 Identification of the cysteine residues in the aminoterminal extracellular domain of the human Ca2+ receptor critical for dimerization. Implications for function of monomelic Ca2+ receptor. J Biol Chem 274:27642–27650

    Article  PubMed  CAS  Google Scholar 

  24. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K 2000 Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor Nature 407:971–977

    Article  PubMed  CAS  Google Scholar 

  25. Reyes-Cruz G, Hu J, Goldsmith PK, Steinbach PJ, Spiegel AM 2001 Human Ca2+ receptor extracellular domain: Analysis of function of lobe I loop deletion mutants. J Biol Chem. 276:32145–32151

    Article  PubMed  CAS  Google Scholar 

  26. Hu J, Reyes-Cruz G, Goldsmith PK, Spiegel AM 2001 The venus’s-flytrap and cysteine-rich domains of the human Ca2+ receptor are not linked by disulfide bonds. J Biol Chem 276:6901–6904

    Article  PubMed  CAS  Google Scholar 

  27. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S 1991 Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765

    Article  PubMed  CAS  Google Scholar 

  28. Fan GF, Ray K, Zhao XM, Goldsmith PK, Spiegel AM 1998 Mutational analysis of the cysteines in the extracellular domain of the human Ca2+ receptor: effects on cell surface expression, dimerization and signal transduction. FEBS Lett 436:353–356

    Article  PubMed  CAS  Google Scholar 

  29. Romano C, Yang WL, O’Malley KL 1996 Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271:28612–28616

    Article  PubMed  CAS  Google Scholar 

  30. Bai M, Trivedi S, Brown EM 1998 Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 273:23605–23610

    Article  PubMed  CAS  Google Scholar 

  31. Ward DT, Brown EM, Harris HW 1998 Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation a.nd its response to divalent cations in vitro. J Biol Chem 273:14476–14483

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Z, Sun S, Quinn SJ, Brown EM, Bai M 2001 The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J Biol Chem 276:5316–5322

    Article  PubMed  CAS  Google Scholar 

  33. Pin JP, Joly C, Heinemann SF, Bockaert J 1994 Domains involved in the specificity of G protein activation in phospholipase C-coupled metabotropic glutamate receptors. EMBO J 13:342–348

    PubMed  CAS  Google Scholar 

  34. Gomeza J, Joly C, Kuhn R, Knopfel T, Bockaert J, Pin JP 1996 The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G-proteins. J Biol Chem 271:2199–2205

    Article  PubMed  CAS  Google Scholar 

  35. Pin JP, Gomeza J, Joly C, Bockaert J 1995 The metabotropic glutamate receptors: their second intracellular loop plays a critical role in the G-protein coupling specificity. Biochem Soc Trans 23:91–96

    PubMed  CAS  Google Scholar 

  36. Bai M, Quinn S, Trivedi S, Kifor O, Pearce SHS, Pollak MR, Krapcho K, Hebert SC, Brown EM 1996 Expression and characterization of inactivating and activating mutations in the human Ca2+-sensing receptor. J Biol Chem 271:19537–19545

    Article  PubMed  CAS  Google Scholar 

  37. Ray K, Clapp P, Goldsmith PK, Spiegel AM 1998 Identification of the sites of N-linked glycosylation on the human calcium receptor and assessment of their role in cell surface expression and signal transduction. J Biol Chem 273:34558–34567

    Article  PubMed  CAS  Google Scholar 

  38. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M 1996 A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392

    Article  PubMed  CAS  Google Scholar 

  39. Bai M, Trivedi S, Kifor O, Quinn SJ, Brown EM 1999 Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc Natl Acad Sci U S A 96:2834–2839

    Article  PubMed  CAS  Google Scholar 

  40. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ 1988 Chimeric alpha 2,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240:1310–1316

    Article  PubMed  CAS  Google Scholar 

  41. Maggio R, Vogel Z, Wess J 1993 Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G protein-linked receptors. Proc Natl Acad Sci USA 90:3103–3107

    Article  PubMed  CAS  Google Scholar 

  42. Maggio R, Vogel Z, Wess J 1993 Reconstitution of functional muscarinic receptors by co-expression of amino-and carboxyl-terminal receptor fragments. FEBS Lett 319:195–200

    Article  PubMed  CAS  Google Scholar 

  43. Ridge KD, Lee SS, Yao LL 1995 In vivo assembly of rhodopsin from expressed polypeptide fragments. Proc Natl Acad Sci U S A 92:3204–3208

    Article  PubMed  CAS  Google Scholar 

  44. Schoneberg T, Liu J, Wess J 1995 Plasma membrane localization and functional rescue of truncated forms of a G protein-coupled receptor. J Biol Chem 270:18000–18006

    Article  PubMed  CAS  Google Scholar 

  45. Schoneberg T, Yun J, Wenkert D, Wess J 1996 Functional rescue of mutant V2 vasopressin receptors causing. EMBO J 15:1283–1291

    PubMed  CAS  Google Scholar 

  46. Gouldson PR, Reynolds CA 1997 Simulations on dimeric peptides: evidence for domain swapping in G-protein-coupled receptors? Biochem Soc Trans 25:1066–1071

    PubMed  CAS  Google Scholar 

  47. Nemeth EF. (1996) in Principles of Bone Biology (Bilezikian, J. P., Raisz, L. G., and Rodan, G. A., eds), pp. 1019–1035, Academic Press, San Diego

    Google Scholar 

  48. Hammerland LG, Krapcho KJ, Garrett JE, Alasti N, Hung BC, Simin RT, Levinthal C, Nemeth EF, Fuller FH 1999 Domains determining ligand specificity for Ca2+ receptors. Mol Pharmacol 55:642–648

    PubMed  CAS  Google Scholar 

  49. Brauner-Osborne H, Jensen AA, Sheppard PO, O’Hara P, Krogsgaard-Larsen P 1999 The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J Biol Chem 274:18382–18386

    Article  PubMed  CAS  Google Scholar 

  50. Berthold M, Bartfai T 1997 Modes of peptide binding in G protein-coupled receptors. Neurochem Res 22:1023-1031

    Google Scholar 

  51. Bai M, Pearce SH, Kifor O, Trivedi S, Stauffer UG, Thakker RV, Brown EM, Steinmann B 1997 In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J Clin Invest 99:88–96

    Article  PubMed  CAS  Google Scholar 

  52. Oda Y, Tu CL, Pillai S, Bikle DD 1998 The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 273:23344–23352

    Article  PubMed  CAS  Google Scholar 

  53. Jensen AA, Spalding TA, Burstein ES, Sheppard PO, O’Hara PJ, Brann MR, Krogsgaard-Larsen P, Brauner-Osborne H 2000 Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor. J Biol Chem 275:29547–29555

    Article  PubMed  CAS  Google Scholar 

  54. Hu J, Hauache O, Spiegel AM 2000 Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J Biol Chem 275:16382–16389

    Article  PubMed  CAS  Google Scholar 

  55. Hampson DR, Huang XP, Pekhletski R, Peltekova V, Hornby G, Thomsen C, Thogersen H 1999 Probing the ligand-binding domain of the mGluR4 subtype of metabotropic glutamate receptor. J Biol Chem 274:33488–33495

    Article  PubMed  CAS  Google Scholar 

  56. Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP 1999 Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274:13362–13369

    Article  PubMed  CAS  Google Scholar 

  57. Bai M, Janicic N, Trivedi S, Quinn SJ, Cole DEC, Brown EM, Hendy GN 1997 Markedly reduced activity of mutant calcium-sensing receptor with an inserted Alu element from a kindred with familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. J Clin Invest 99:1917–1925

    Article  PubMed  CAS  Google Scholar 

  58. Ostrowski J, Kjelsberg MA, Caron MG, Lefkowitz RJ 1992 Mutagenesis of the beta 2-adrenergic receptor: how structure elucidates function. Annu Rev Pharmacol Toxicol 32:167–183

    Article  PubMed  CAS  Google Scholar 

  59. Savarese TM, Fraser CM 1992 In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J 283:1–19

    PubMed  CAS  Google Scholar 

  60. Francesconi A, Duvoisin RM 1998 Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation. J Biol Chem 273:5615–5624

    Article  PubMed  CAS  Google Scholar 

  61. Chang W, Chen TH, Pratt S, Shoback D 2000 Amino acids in the second and third intracellular loops of the parathyroid Ca-sensing receptor mediate efficient coupling to phospholipase C. J Biol Chem 275:19955–19963

    Article  PubMed  CAS  Google Scholar 

  62. Lienhardt A, Garabedian M, Bai M, Sinding C, Zhang Z, Lagarde JP, Boulesteix J, Rigaud M, Brown EM, Kottler ML 2000 A large homozygous or heterozygous in-frame deletion within the calcium-sensing receptor’s carboxylterminal cytoplasmic tail that causes autosomal dominant hypocalcemia. J Clin Endocrinol Metab 85:1695–1702

    Article  PubMed  CAS  Google Scholar 

  63. Ray K, Fan GF, Goldsmith PK, Spiegel AM 1997 The carboxyl terminus of the human calcium receptor. Requirements for cell-surface expression and signal transduction. J Biol Chem 272:31355–31361

    Article  PubMed  CAS  Google Scholar 

  64. Gama L, Breitwieser GE 1998 A carboxyl-terminal domain controls the cooperativity for extracellular Ca2+activation of the human calcium sensing receptor. A study with receptor-green fluorescent protein fusions. J Biol Chem 273:29712–29718

    Article  PubMed  CAS  Google Scholar 

  65. Clarke BL, Hassager C, Fitzpatrick LA 1993 Regulation of parathyroid hormone release by protein kinase-C is dependent on extracellular calcium in bovine parathyroid cells. Endocrinology 132:1168–1175

    Article  PubMed  CAS  Google Scholar 

  66. Kifor O, Congo D, Brown EM 1990 Phorbol esters modulate the high Ca2+-stimulated accumulation of inositol phosphates in bovine parathyroid cells. J Bone Miner Res 5:1003–1011

    Article  PubMed  CAS  Google Scholar 

  67. Membreno L, Chen TH, Woodley S, Gagucas R, Shoback D 1989 The effects of protein kinase-C agonists on parathyroid hormone release and intracellular free Ca2+ in bovine parathyroid cells. Endocrinology 124:789–797

    Article  PubMed  CAS  Google Scholar 

  68. Morrissey JJ 1988 Effect of phorbol myristate acetate on secretion of parathyroid hormone. Am J of Physiol 254:E63–70

    CAS  Google Scholar 

  69. Racke FK, Nemeth EF 1993 Protein kinase C modulates hormone secretion regulated by extracellular polycations in bovine parathyroid cells. J Physiol 468:163–176

    PubMed  CAS  Google Scholar 

  70. Racke FK, Nemeth EF 1993 Cytosolic calcium homeostasis in bovine parathyroid cells and its modulation by protein kinase C J Physiol 468:141–162

    PubMed  CAS  Google Scholar 

  71. Racke FK, Nemeth EF 1994 Stimulus-secretion coupling in parathyroid cells deficient in protein kinase C activity. Am J Physiol 267:E429–438.

    PubMed  CAS  Google Scholar 

  72. Shoback DM, Chen TH 1990 Effects of protein kinase C activation on inositol phosphate generation and intracellular Ca2+ mobilization in bovine parathyroid cells. Endocrinology 127:141–148

    Article  PubMed  CAS  Google Scholar 

  73. Watson PH, Mortimer ST, Tanguay KE, Hanley DA 1992 Activation and inhibition of protein kinase C in cultured bovine parathyroid cells: effect on the release of C-terminal fragments of parathyroid hormone. J Bone Miner Res 7:667–674

    Article  PubMed  CAS  Google Scholar 

  74. Ishizuka T, Kajita K, Kamikubo K, Komaki T, Miura K, Nagao S, Nozawa Y 1987 Phospholipid/Ca2+-dependent protein kinase activity in human parathyroid adenoma. Endocrinol Jpn 34:965–968

    Article  PubMed  CAS  Google Scholar 

  75. Ridefelt P, Nygren P, Hellman P, Larsson R, Rastad J, Akerstrom G, Gylfe E 1992 Regulation of parathyroid hormone release in normal and pathological parathyroid cells exposed to modulators of protein kinase C Acta Endocrinol 126:505–509

    PubMed  CAS  Google Scholar 

  76. Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E, Drueke TB 1997 Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int 51:328–336

    Article  PubMed  CAS  Google Scholar 

  77. Kifor O, Moore FD, Jr., Wang P, Goldstein M, Vassilev P, Kifor I, Hebert SC, Brown EM 1996 Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. J Clinic Endocrinol Metab 81:1598–1606

    Article  CAS  Google Scholar 

  78. Wongsurawat N, Armbrecht HJ 1987 Comparison of calcium effect on in vitro calcitonin and parathyroid hormone release by young and aged thyroparathyroid glands. Exp Gerontol 22:263–269

    Article  PubMed  CAS  Google Scholar 

  79. Bai M, Trivedi S, Lane CR, Yang Y, Quinn SJ, Brown EM 1998 Protein kinase C phosphorylation of threonine at position 888 in Ca2+-sensing receptor (CaR) inhibits coupling to Ca2+ store release. J Biol Chem 273:21267–21275

    Article  PubMed  CAS  Google Scholar 

  80. Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG 1993 Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297–1303

    Article  PubMed  CAS  Google Scholar 

  81. Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG 1994 Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet 8:303–307

    Article  PubMed  CAS  Google Scholar 

  82. Chou YH, Pollak MR, Brandi ML, Toss G, Arnqvist H, Atkinson AB, Papapoulos SE, Marx S, Brown EM, Seidman JG 1995 Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet 56:1075–1079

    PubMed  CAS  Google Scholar 

  83. Pearce SH, Trump D, Wooding C, Besser GM, Chew SL, Grant DB, Heath DA, Hughes IA, Paterson CR, Whyte MP 1995 Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest 96:2683–2692

    Article  PubMed  CAS  Google Scholar 

  84. Aida K, Koishi S, Inoue M, Nakazato M, Tawata M, Onaya T 1995 Familial hypocalciuric hypercalcemia associated with mutation in the human Ca2+-sensing receptor gene. J Clin Endocrinol Metab 80:2594–2598

    Article  PubMed  CAS  Google Scholar 

  85. Janicic N, Pausova Z, Cole DE, Hendy GN 1995 Insertion of an Alu sequence in the Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am J Hum Genet 56:880–886

    PubMed  CAS  Google Scholar 

  86. Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, Lewis-Barned N, McCredie D, Powell H, Kendall-Taylor P, Brown EM, Thakker RV 1996 A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Eng J Med 335:1115–1122

    Article  CAS  Google Scholar 

  87. Baron J, Winer KK, Yanovski JA, Cunningham AW, Laue L, Zimmerman D, Cutler GB, Jr. 1996 Mutations in the Ca2+-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum Mol Genet 5:601–606

    Article  PubMed  CAS  Google Scholar 

  88. Lávlie R, Eiken HG, Sárheim JI, Boman H 1996 The Ca2+-sensing receptor gene (PCAR1) mutation T151M in isolated autosomal dominant hypoparathyroidism. Hum Genet 98:129–133

    Article  Google Scholar 

  89. Heath H, Odelberg S, Jackson CE, Teh BT, Hayward N, Larsson C, Buist N, Krapcho KJ, Hung BC, Capuano IV, Garrett JE, Leppert MF 1996 Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercalcemia suggest receptor functional domains. J Clin Endocrinol Metab 81:1312–1317

    Article  PubMed  CAS  Google Scholar 

  90. De Luca F, Ray K, Mancilla EE, Fan GF, Winer KK, Gore P, Spiegel AM, Baron J 1997 Sporadic hypoparathyroidism caused by de novo gain-of-function mutations of the Ca2+-sensing receptor. J Clin Endocrinol Metab 82:2710–2715

    Article  PubMed  Google Scholar 

  91. Ward BK, Stuckey BG, Gutteridge DH, Laing NG, Pullan PT, Ratafczak T 1997 A novel mutation (L174R) in the Ca2+-sensing receptor gene associated With familial hypocalciuric hypercalcemia. Hum Mutat 10:233–235

    Article  PubMed  CAS  Google Scholar 

  92. Kobayashi M, Tanaka H, Tsuzuki K, Tsuyuki M, Igaki H, Ichinose Y, Aya K, Nishioka N, Seino Y 1997 Two novel missense mutations in calcium-sensing receptor gene associated with neonatal severe hyperparathyroidism. J Clin Endocrinol Metab 82:2716–2719

    Article  PubMed  CAS  Google Scholar 

  93. Watanabe T, Bai M, Lane CR, Matsumoto S, Minamitani K, Minagawa M, Niimi H, Brown EM, Yasuda T 1998 Familial hypoparathyroidism: identification of a novel gain of function mutation in transmembrane domain 5 of the calcium-sensing receptor. J Clin Endocrinol Metab 83:2497–2502

    Article  PubMed  CAS  Google Scholar 

  94. Okazaki R, Chikatsu N, Nakatsu M, Takeuchi Y, Ajima M, Miki J, Fujita T, Arai M, Totsuka Y, Tanaka K, Fukumoto S 1999 A novel activating mutation in calcium-sensing receptor gene associated with a family of autosomal dominant hypocalcemia. J Clin Endocrinol Metab 84:363–366

    Article  PubMed  CAS  Google Scholar 

  95. Pearce SH, Bai M, Quinn SJ, Kifor O, Brown EM, Thakker RV 1996 Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells. J Clin Invest 98:1860–1866

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bai, M. (2003). Structure-Function Relationship of the Extracellular Calcium-Sensing Receptor. In: Chattopadhyay, N., Brown, E.M. (eds) Calcium-Sensing Receptor. Endocrine updates, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9256-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9256-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4861-0

  • Online ISBN: 978-1-4419-9256-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics