Skip to main content

The Biosynthesis of Hemes, Siroheme, Vitamin B12 and Linear Tetrapyrroles in Pseudomonads

  • Chapter
Pseudomonas

Abstract

Structure and function of tetrapyrroles. Tetrapyrroles are characterized by their four five-membered pyrrole rings usually linked together via single atom bridges (Figure 1). The four rings of the macrocycle are labeled clockwise A-D starting with the first of the three symmetric rings with regard to the ring substituents. Two principal classes of cyclic tetrapyrroles are found in pseudomonads. The porphyrins, including various hemes, are characterized by their completely saturated ring system. The porphinoids are more reduced cyclic tetrapyrroles and include vitamin B12 (corrinoids), siroheme and heme d 1. In cyclic tetrapyrroles, the nitrogen atoms of the four pyrrole rings are used to chelate a variety of divalent cations. Tetrapyrroles are very distinct in color. The pink cobalt-containing vitamin B12 derivatives are the most complex known tetrapyrroles1. They are involved in complex enzymatic reactions like radical-dependent nucleotide reduction, rearrangements and methyl transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martens, J.H., Barg, H., Warren, M.J., and Jahn, D., 2002, Microbial production of vitamin B12. Appl. Microbiol. Biotechnol., 58:275–285.

    Article  PubMed  CAS  Google Scholar 

  2. Raux, E., Leech, H.K., Beck, R., Schubert, H.L., Santander, P.J., Roessner, C.A., Scott, A.I., Martens, J.H., Jahn, D., Thermes, C., Rambach, A., and Warren, M.J., 2003, Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem. J. 370:505–516.

    Article  PubMed  CAS  Google Scholar 

  3. Chang, C.K., 1994, Haem dl and other haem cofactors from bacteria. Ciba Found. Symp., 180:228–238; discussion 238-246.

    PubMed  CAS  Google Scholar 

  4. O’Brian, M.R. and Thöny-Meyer, L., 2002, Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv. Microb. Physiol., 46:257–318.

    Article  PubMed  Google Scholar 

  5. Schmitt, M.R, 1997, Utilization of host iron sources by Corynebacterium diphtheriae: Identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J. Bacteriol., 179:838–845.

    PubMed  CAS  Google Scholar 

  6. Letoffe, S., Nato, F., Goldberg, M.E., and Wandersman, C., 1999, Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor HasR. Mol. Microbiol., 33:546–555.

    Article  PubMed  CAS  Google Scholar 

  7. Ogawa, K., Sun, J., Taketani, S., Nakajima, O., Nishitani, C., Sassa, S., Hayashi, N., Yamamoto, M., Shibahara, S., Fujita, H., and Igarashi, K., 2001, Herne mediates derepression of Maf recognition element through direct binding to transcription repressor Bachl. EMBO J., 20:2835–2843.

    Article  PubMed  CAS  Google Scholar 

  8. Schmitt, M.P., 1999, Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of heme and hemoglobin. J. Bacteriol., 181:5330–5340.

    PubMed  CAS  Google Scholar 

  9. Chen, J.J. and London, I.M., 1995, Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem. Sci., 20:105–108.

    Article  PubMed  CAS  Google Scholar 

  10. Zumft, W.G. 1997, Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61:533–616.

    PubMed  CAS  Google Scholar 

  11. Jacobs, N.J., Jacobs, J.M., and Morgan, H.E., 1972, Comparative effect of oxygen and nitrate on protoporphyrin and heme synthesis from δ-aminlolevulinic acid in bacterial cultures. J. Bacteriol., 112:1444–1445.

    PubMed  CAS  Google Scholar 

  12. Cooper, M., Tavankar, G.R., and Williams, H.D. 2003, Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa. Microbiology, 149:1275–1284.

    Article  PubMed  CAS  Google Scholar 

  13. Ratliff, M., Zhu, W, Deshmukh, R., Wilks, A., and Stojiljkovic, I., 2001, Homologues of Neisserial Herne Oxygenase in Gram-Negative Bacteria: Degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J. Bacteriol., 183:6394–6403.

    Article  PubMed  CAS  Google Scholar 

  14. Frankenberg, N. and Lagarias, J.C., 2003, Biosynthesis and biological functions of bilins. In K.M. Kadish, K.M. Smith, and R. Guilard (eds), The Porphyrin Handbook, vol. 13 Elsevier Science, USA.

    Google Scholar 

  15. Shemin, D. and Russell, C.S., 1953, Delta-aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J. Am. Chem. Soc, 75:4873–4875.

    Article  CAS  Google Scholar 

  16. Beale, S.I. and Castelfranco, P.A., 1973, 14 C incorporation from exogenous compounds into δ-aminolevulinic acid by greening cucumber cotyledons. Biochem. Biophys. Res. Commun., 52:143–149.

    Article  PubMed  CAS  Google Scholar 

  17. Jahn, D., Verkamp, E., and Söll, D., 1992, Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends Biochem. Sci., 17:215–218.

    Article  PubMed  CAS  Google Scholar 

  18. Kikuchi, G., Kumar, A.M., Tamalge, P., and Shemin, D., 1958, The enzymatic synthesis of δ-aminolevulinic acid. J. Biol. Chem., 233:1214–1219.

    PubMed  CAS  Google Scholar 

  19. Gibson, K.D., Laver, W.G., and Neuberger, A., 1958, Initial steps in the biosynthesis of porphyrins. The formation of δ-aminolevulinic acid from glycine and succinyl-CoA by particles of chicken erythrocytes. Biochem. J., 70:71–81.

    PubMed  CAS  Google Scholar 

  20. Hungerer, C., Troup, B., Romling, U., and Jahn, D., 1995, Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J. Bacteriol., 177:1435–1443.

    PubMed  CAS  Google Scholar 

  21. I1ag, L.L. and Jahn, D., 1992, Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry, 31:7143–7151.

    Article  PubMed  CAS  Google Scholar 

  22. Hungerer, C., Troup, B., Romling, U., and Jahn, D., 1995, Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene. Mol. Gen. Genet., 248:375–380.

    Article  PubMed  CAS  Google Scholar 

  23. Weinstein, J.D. and Beale, S.I., 1983, Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem., 258:6799–6807.

    PubMed  CAS  Google Scholar 

  24. O’Neill, G.P. and Soil, D., 1990, Transfer RNA and the formation of the heme and chlorophyll precursor, 5-aminolevulinic acid. Biofactors, 2:227–235.

    PubMed  Google Scholar 

  25. Moser, J., Lorenz, S., Hubschwerlen, C., Rompf, A., and Jahn, D., 1999, Methanopyrus kandleri Glutamyl-tRNA Reductase. J. Biol. Chem., 274:30679–30685.

    Article  PubMed  CAS  Google Scholar 

  26. Moser, J., Schubert, W.D., Beier, V, Bringemeier, I., Jahn, D., and Heinz, D.W., 2001, V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J., 20:6583–6590.

    Article  PubMed  CAS  Google Scholar 

  27. Schubert, W.-D., Moser, J., Schauer, S., Heinz, D.W., and Jahn, D., 2002, Structure and function of glutamyl-tRNA reductase, the first enzmye of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth. Res., 74:205–215.

    Article  PubMed  CAS  Google Scholar 

  28. Schauer, S., Chaturvedi, S., Randau, L., Moser, J., Kitabatake, M., Lorenz, S., Verkamp, E., Schubert, W.D., Nakayashiki, T., Murai, M., Wall, K., Thomann, H.U., Heinz, D.W., Inokuchi, H., Söll, D., and Jahn, D., 2002, Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J. Biol. Chem., 277:48657–48663.

    Article  PubMed  CAS  Google Scholar 

  29. Smith, M.A., Kannangara, CG., Grimm, B., and von Wettstein, D., 1991, Characterization of glutamate-1-semialdehyde aminotransferase of Synechococcus. Steady-state kinetic analysis. Eur. J. Biochem., 202:749–757.

    Article  PubMed  CAS  Google Scholar 

  30. Smith, M.A., Grimm, B., Kannangara, CG., and von Wettstein, D., 1991, Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus. Proc. Natl. Acad. Sci. USA, 88:9775–9779.

    Article  PubMed  CAS  Google Scholar 

  31. Friedmann, H.C., Duban, M.E., Valasinas, A., and Frydman, B., 1992, The enantioselective participation of (S)-and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria. Biochem. Biophys. Res. Commun., 185:60–68.

    Article  PubMed  CAS  Google Scholar 

  32. Grimm, B., Smith, M.A., and von Wettstein, D., 1992, The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur. J. Biochem., 206:579–585.

    Article  PubMed  CAS  Google Scholar 

  33. Hennig, M, Grimm, B., Contestabile, R., John, R.A., and Jansonius, J.N., 1997, Crystal structure of glutamate-1-semialdehyde aminomutase: An alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc. Natl. Acad. Sci. USA, 94:4866–4871.

    Article  PubMed  CAS  Google Scholar 

  34. Contestabile, R., Angelaccio, S., Maytum, R., Bossa, F, and John, R.A., 2000, The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase. J. Biol. Chem., 275:3879–3886.

    Article  PubMed  CAS  Google Scholar 

  35. Shoolingin-Jordan, P.M., Spencer, P., Sarwar, M, Erskine, P.E., Cheung, K.M., Cooper, J.B., and Norton, E.B., 2002, 5-Aminolaevulinic acid dehydratase: Metals, mutants and mechanism. Biochem. Soc. Trans., 30:584–590.

    Article  PubMed  CAS  Google Scholar 

  36. Frankenberg, N., Kittel, T., Hungerer, C., Romling, U., and Jahn, D., 1998, Cloning, mapping and functional characterization of the hemB gene of Pseudomonas aeruginosa, which encodes a magnesium-dependent 5-aminolevulinic acid dehydratase. Mol Gen. Genet., 257:485–489.

    Article  PubMed  CAS  Google Scholar 

  37. Frankenberg, N., Heinz, D.W., and Jahn, D., 1999, Production, purification, and characterization of a Mg2+-responsive porphobilinogen synthase from Pseudomonas aeruginosa. Biochemistry, 38:13968–13975.

    Article  PubMed  CAS  Google Scholar 

  38. Erskine, P.T., Senior, N., Awan, S., Lambert, R., Lewis, G., Tickle, I.J., Sarwar, M., Spencer, P., Thomas, P., Warren, M.J., Shoolingin-Jordan, P.M., Wood, S.P., and Cooper, J.B., 1997, X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat. Struct. Biol., 4:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  39. Erskine, P.T., Norton, E., Cooper, J.B., Lambert, R., Coker, A., Lewis, G., Spencer, P., Sarwar, M., Wood, S.P., Warren, M.J., and Shoolingin-Jordan, P.M., 1999, X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 A resolution. Biochemistry, 38:4266–4276.

    Article  PubMed  CAS  Google Scholar 

  40. Frankenberg, N., Erskine, P.T., Cooper, J.B., Shoolingin-Jordan, P.M., Jahn, D., and Heinz, D.W., 1999, High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase. J. Mol. Biol., 289:591–602.

    Article  PubMed  CAS  Google Scholar 

  41. Frere, F., Schubert, W.D., Stauffer, F., Frankenberg, N., Neier, R., Jahn, D., and Heinz, D.W., 2002, Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism. J. Mol. Biol., 320:237–247.

    Article  PubMed  CAS  Google Scholar 

  42. Frankenberg, N., Jahn, D., and Jaffe, E.K., 1999, Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions. Biochemistry, 38:13976–13982.

    Article  PubMed  CAS  Google Scholar 

  43. Jaffe, E.K., 2003, An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem. Biol., 10:25–34.

    Article  PubMed  CAS  Google Scholar 

  44. Jordan, P.M. and Warren, M.J., 1987, Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett., 225:87–92.

    Article  PubMed  CAS  Google Scholar 

  45. Jordan, P.M., 1994, Highlights in haem biosynthesis. Curr. Opin. Struct. Biol., 4:902–911.

    Article  PubMed  CAS  Google Scholar 

  46. Hadener, A., Matzinger, P.K., Battersby, A.R., McSweeney, S., Thompson, A.W, Hammersley, A.P., Harrop, S.J., Cassetta, A., Deacon, A., Hunter, W.N., Nieh, Y.P., Raftery, J., Hunter, N., and Helliwell, J.R., 1999, Determination of the structure of seleno-methionine-labelled hydroxymethylbilane synthase in its active form by multi-wavelength anomalous dispersion. Acta Crystallogr. D Biol. Crystallogr., 55(Pt 3):631–643.

    Article  PubMed  CAS  Google Scholar 

  47. Warren, M.J. and Scott, A.I., 1990, Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem. Sci., 15:486–491.

    Article  PubMed  Google Scholar 

  48. Helliwell, J.R., Nieh, Y.P., Habash, J., Faulder, P.F., Raftery, J., Cianci, M., Wulff, M., and Hadener, A., 2003, Time-resolved and static-ensemble structural chemistry of hydroxymethylbilane synthase. Faraday Discuss, 122:131–144; discussion 171-190.

    Article  PubMed  CAS  Google Scholar 

  49. Mohr, CD., Sonsteby, S.K., and Deretic, V., 1994, The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR. Mol Gen. Genet., 242:177–184.

    Article  PubMed  CAS  Google Scholar 

  50. Mathews, M.A., Schubert, H.L., Whitby, F.G., Alexander, K.J., Schadick, K., Bergonia, H.A., Phillips, J.D., and Hill, C.P., 2001, Crystal structure of human uroporphyrinogen III synthase. EMBO J., 20:5832–5839.

    Article  PubMed  CAS  Google Scholar 

  51. Schubert, H.L., Raux, E., Matthews, M.A., Phillips, J.D., Wilson, K.S., Hill, C.P., and Warren, M.J., 2002, Structural diversity in metal ion chelation and the structure of uroporphyrinogen III synthase. Biochem. Soc. Trans., 30:595–600.

    Article  PubMed  CAS  Google Scholar 

  52. Akhtar, M., 1991, Mechanism and stereochemistry of the enzymes involved in the conversion of uroporphyrinogen III into haem. In P.M. Jordan, (ed.), Biosynthesis of Tetrapyrmles, pp. 67–99, Elsevier Science Publishers, Amsterdam.

    Chapter  Google Scholar 

  53. Martins, B.M., Grimm, B., Mock, H.P., Huber, R., and Messerschmidt, A., 2001, Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum. Implications for the catalytic mechanism. J. Biol. Chem., 276:44108–44116.

    Article  PubMed  CAS  Google Scholar 

  54. Whitby, KG., Phillips, J.D., Kushner, J.P., and Hill, C.P., 1998, Crystal structure of human uroporphyrinogen decarboxylase. EMBO J., 17:2463–2471.

    Article  PubMed  CAS  Google Scholar 

  55. de Verneuil, H., Sassa, S., and Kappas, A., 1983, Purification and properties of uroporphyrinogen decarboxylase from human erythrocytes. A single enzyme catalyzing the four sequential decarboxylations of uroporphyrinogens I and III. J. Biol. Chem., 258:2454-2460.

    PubMed  Google Scholar 

  56. Straka, J.G. and Kushner, J.P., 1983, Purification and characterization of bovine hepatic uroporphyrinogen decarboxylase. Biochemistry, 22:4664–4672.

    Article  PubMed  CAS  Google Scholar 

  57. Dailey, H.A., 2002, Terminal steps of haem biosynthesis. Biochem. Soc. Trans., 30:590–595.

    Article  PubMed  CAS  Google Scholar 

  58. Colloc’h, N., Mornon, J.P., and Camadro, J.M., 2002, Towards a new T-fold protein?: The coproporphyrinogen III oxidase sequence matches many structural features from urate oxidase. FEBS Lett, 526:5–10.

    Article  CAS  Google Scholar 

  59. Medlock, A.E. and Dailey, H.A., 1996, Human coproporphyrinogen oxidase is not a metallo-protein. J. Biol. Chem., 271:32507–32510.

    Article  PubMed  CAS  Google Scholar 

  60. Homuth, G., Rompf, A., Schumann, W., and Jahn, D., 1999, Transcriptional control of Bacillus subtilis hemN and hemZ. J. Bacteriol., 181:5922–5929

    PubMed  CAS  Google Scholar 

  61. Layer, G., Verfurth, K., Mahlitz, E., and Jahn, D., 2002, Oxygen-independent copropor-phyrinogen-III oxidase HemN from Escherichia coli. J. Biol. Chem., 277:34136–34142.

    Article  PubMed  CAS  Google Scholar 

  62. Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F., and Miller, N.E., 2001, Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res., 29:1097–1106.

    Article  PubMed  CAS  Google Scholar 

  63. Rompf, A., Hungerer, C., Hoffmann, T., Lindenmeyer, M., Romling, U., Gross, U., Doss, M.O., Arai, H., Igarashi, Y., and Jahn, D., 1998, Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol. Microbiol., 29:985–997.

    Article  PubMed  CAS  Google Scholar 

  64. Dailey, T.A. and Dailey, H.A., 1998, Identification of an FAD superfamily containing proto-porphyrinogen oxidases, monoamine oxidases, and phytoene desaturase. Expression and characterization of phytoene desaturase of Myxococcus xanthus. J. Biol. Chem., 273:13658–13662.

    Article  PubMed  CAS  Google Scholar 

  65. Sasarman, A., Letowski, J., Czaika, G., Ramirez, V, Nead, M.A., Jacobs, J.M., and Morais, R., 1993, Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. Can. J. Microbiol., 39:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  66. Nakayashiki, T., Nishimura, K., and Inokuchi, H., 1995, Cloning and sequencing of a previously unidentified gene that is involved in the biosynthesis of heme in Escherichia coli. Gene., 153:67–70.

    Article  PubMed  CAS  Google Scholar 

  67. Hansson, M. and Hederstedt, L., 1992, Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J. Bacteriol, 174:8081–8093.

    PubMed  CAS  Google Scholar 

  68. Heurgue-Hamard, V, Champ, S., Engstrom, A., Ehrenberg, M., and Buckingham, R.H., 2002, The hemK gene in Escherichia coli encodes the N(5)-glutamine methyltransferase that modifies peptide release factors. EMBO J., 21:769–778.

    Article  PubMed  CAS  Google Scholar 

  69. Nakahigashi, K., Kubo, N., Narita, S., Shimaoka, T., Goto, S., Oshima, T., Mori, H., Maeda, M., Wada, C., and Inokuchi, H., 2002, HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc. Natl. Acad. Sci. USA 99:1473–1478.

    Article  PubMed  CAS  Google Scholar 

  70. Sasarman, A., Chartrand, P., Lavoie, ML, Tardif, D., Proschek, R., and Lapointe, C., 1979, Mapping of a new hem gene in Escherichia coli K12. J. Gen. Microbiol., 113:297–303.

    Article  PubMed  CAS  Google Scholar 

  71. Hansson, M. and Hederstedt, L., 1994, Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX. J. Bacteriol., 176:5962–5970.

    PubMed  CAS  Google Scholar 

  72. Hansson, M., Gustafsson, M.C., Kannangara, CG., and Hederstedt, L., 1997, Isolated Bacillus subtilis HemY has coproporphyrinogen III to coproporphyrin III oxidase activity. Biochim. Biophys. Acta, 1340:97–104.

    Article  PubMed  CAS  Google Scholar 

  73. Panek, H. and O’Brian, M.R., 2002, A whole genome view of prokaryotic haem biosynthesis. Microbiology, 148:2273–2282.

    PubMed  CAS  Google Scholar 

  74. Al-Karadaghi, S., Hansson, M., Nikonov, S., Jonsson, B., and Hederstedt, L., 1997, Crystal structure of ferrochelatase: The terminal enzyme in heme biosynthesis. Structure, 5:1501–1510.

    Article  PubMed  CAS  Google Scholar 

  75. Lecerof, D., Fodje, M, Hansson, A., Hansson, M., and Al-Karadaghi, S., 2000, Structural and mechanistic basis of porphyrin metallation by ferrochelatase. J. Mol. Biol., 297:221–232.

    Article  PubMed  CAS  Google Scholar 

  76. Wilks, A., 2002, Herne oxygenase: Evolution, structure, and mechanism. Antioxid. Redox Signal., 4:603–614.

    Article  PubMed  CAS  Google Scholar 

  77. Abraham, N.G., Drummond, G.S., Lutton, J.D., and Kappas, A., 1996, The physiological significance of heme oxygenase. Cell. Physiol. Biochem., 6:129–168.

    Article  CAS  Google Scholar 

  78. Cornejo, J., Willows, R.D., and Beale, S.I., 1998, Phytobilin biosynthesis: Cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J., 15:99–107.

    Article  PubMed  CAS  Google Scholar 

  79. Vasil, M.L. and Ochsner, U.A., 1999, The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol., 34:399–413.

    Article  PubMed  CAS  Google Scholar 

  80. Ochsner, U.A. and Vasil, M.L., 1996, Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: Cycle selection of iron-regulated genes. Proc. Natl. Acad. Sci. USA, 93:4409–4414.

    Article  PubMed  CAS  Google Scholar 

  81. Caignan, G.A., Deshmukh, R., Wilks, A., Zeng, Y, Huang, H.W., Moenne-Loccoz, P., Bunce, R.A., Eastman, M.A., and Rivera, M., 2002, Oxidation of heme to beta-and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. J. Am.Chem. Soc., 124:14879–14892.

    Article  PubMed  CAS  Google Scholar 

  82. Bhoo, S.-H., Davis, S.J., Walker, I, Karniol, B., and Viestra, R.D., 2001, Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature, 414:776–789.

    Article  PubMed  CAS  Google Scholar 

  83. Wegele, R. and Frankenberg, N., unpublished results.

    Google Scholar 

  84. Murphy, M.J., Siegel, L.M., Tove, S.R., and Kamin, H., 1974, Siroheme: A new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc. Natl. Acad. Sci. USA, 71:612–616.

    Article  PubMed  CAS  Google Scholar 

  85. Crane, B.R., Siegel, L.M., and Getzoff, E.D., 1995, Sulfite reduetase structure at 1.6 A: Evolution and catalysis for reduction of inorganic anions. Science, 270:59–67.

    Article  PubMed  CAS  Google Scholar 

  86. Crane, B.R. and Getzoff, E.D., 1996, The relationship between structure and function for the sulfite reductases. Curr. Opin. Struct. Biol, 6:744–756.

    Article  PubMed  CAS  Google Scholar 

  87. Warren, M.J., Bolt, EX., Roessner, CA., Scott, A.I., Spencer, J.B., and Woodcock, S.C., 1994, Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem. J., 302(Pt 3):837–844.

    PubMed  CAS  Google Scholar 

  88. Spencer, J.B., Stolowich, N.J., Roessner, CA., and Scott, A.I., 1993, The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett., 335:57–60.

    Article  PubMed  CAS  Google Scholar 

  89. Raux, E., McVeigh, T., Peters, S.E., Leustek, T., and Warren, M.J., 1999, The role of Saccharomyces cerevisiae Metlp and Met8p in sirohaem and cobalamin biosynthesis. Biochem. J., 338(Pt 3):701–708.

    Article  PubMed  CAS  Google Scholar 

  90. Schubert, H.L., Raux, E., Brindley, A.A., Leech, H.K., Wilson, K.S., Hill, C.P., and Warren, M.J., 2002, The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase. EMBO J., 21:2068–2075.

    Article  PubMed  CAS  Google Scholar 

  91. Leech, H.K., Raux-Deery, E., Heathcote, P., and Warren, M.J., 2002, Production of cobal-amin and sirohaem in Bacillus megaterium: An investigation into the role of the branchpoint chelatases sirohydrochlorin ferrochelatase (SirB) and sirohydrochlorin cobalt chelatase (CbiX). Biochem. Soc. Trans., 30:610–613.

    Article  PubMed  CAS  Google Scholar 

  92. Roth, J.R., Lawrence, J.G., and Bobik, T.A., 1996, Cobalamin (coenzyme B12): Synthesis and biological significance. Annu. Rev. Microbiol., 50:137–181.

    Article  PubMed  CAS  Google Scholar 

  93. Banerjee, R., 1999, Chemistry and Biochemistry of B12., John Wiley and Son, New York.

    Google Scholar 

  94. Debussche, L., Thibaut, D., Cameron, B., Crouzet, J., and Blanche, E., 1993, Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J. Bacteriol., 175:7430–7440.

    PubMed  CAS  Google Scholar 

  95. Warren, M.J., Raux, E., Schubert, H.L., and Escalante-Semerena, J.C., 2002, The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep., 19:390–412.

    Article  PubMed  CAS  Google Scholar 

  96. Roessner, C.A., Santander, P.J., and Scott, A.I., 2001, Multiple biosynthetic pathways for vitamin B12: Variations on a central theme. Vitam. Horm., 61:267–297.

    Article  PubMed  CAS  Google Scholar 

  97. Walker, C.J. and Willows, R.D., 1997, Mechanism and regulation of Mg-chelatase. Biochem. J., 327(Pt 2):321–333.

    PubMed  CAS  Google Scholar 

  98. Warren, M.J. and Jahn, D., unpublished data.

    Google Scholar 

  99. Chang, C.K. 1985, On the structure of heme dl. An isobacteriochlorin derivative as the prosthetic group of dissimilatory nitrite reductase? J. Biol. Chem., 260:9520–9522.

    PubMed  CAS  Google Scholar 

  100. Weeg-Aerssens, E., Wu, WS., Ye, R.W, Tiedje, J.M., and Chang, C.K., 1991, Purification of cytochrome cdl nitrite reductase from Pseudomonas stutzeri JM300 and reconstitution with native and synthetic heme dl. J. Biol. Chem., 266:7496–7502.

    PubMed  CAS  Google Scholar 

  101. Fulop, V, Moir, J.W., Ferguson, S.J., and Hajdu, J., 1995, The anatomy of a bifunctional enzyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cdl. Cell, 81:369–377.

    Article  PubMed  CAS  Google Scholar 

  102. Kawasaki, S., Arai, H., Kodama, T., and Igarashi, Y., 1997, Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: Sequencing and identification of a locus for heme dl biosynthesis. J. Bacteriol., 179:235–242.

    PubMed  CAS  Google Scholar 

  103. Nakahigashi, K., Nishimura, K., Miyamoto, K., and Inokuchi, H., 1991, Photosensitivity of a protoporphyrin-accumulating, light-sensitive mutant (visA) of Escherichia coli K-12. Proc. Natl.Acad. Sci. USA, 88:10520–10524.

    Article  PubMed  CAS  Google Scholar 

  104. Doss, M. and Philipp-Dormston, W.K., 1971, Porphyrin and heme biosynthesis from endogenous and exogenous delta-aminolevulinic acid in Escherichia coli, Pseudomonas aeruginosa, and Achromobacter metalcaligenes. Hoppe Seylers Z. Physiol. Chem., 352:725–733.

    Article  PubMed  CAS  Google Scholar 

  105. Jacobs, N.J., Jacobs, J.M., and Mills, B.A., 1973, Role of oxygen in the late steps of heme synthesis in pseudomonads and Escherichia coli. Enzyme, 16:50–56.

    PubMed  CAS  Google Scholar 

  106. Woodard, S.I. and Dailey, H.A., 1995, Regulation of heme biosynthesis in Escherichia coli. Arch. Biochem. Biophys, 316:110–115.

    Article  PubMed  CAS  Google Scholar 

  107. Verderber, E., Lucast, L.J., Van Dehy, J.A., Cozart, P., Etter, J.B., and Best, E.A., 1997, Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. J. Bacteriol, 179:4583–4590.

    PubMed  CAS  Google Scholar 

  108. Philipp-Dormston, WK. and Doss, M., 1973, Comparison of porphyrin and heme biosynthesis in various heterotrophic bacteria. Enzyme, 16:57–64.

    PubMed  CAS  Google Scholar 

  109. Krieger, R., Rompf, A., Schobert, M., and Jahn, D., 2002, The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and Integration Host Factor. Mol. Genet. Genomics, 267:409–417.

    Article  PubMed  CAS  Google Scholar 

  110. Arai, H., Kodama, T., and Igarashi, Y., 1997, Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol. Microbiol., 25:1141–1148.

    Article  PubMed  CAS  Google Scholar 

  111. Hasegawa, N., Arai, H., and Igarashi, Y., 1998, Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol. Lett., 166:213–217.

    Article  PubMed  CAS  Google Scholar 

  112. Wang, L.Y., Brown, L., Elliott, M., and Elliott, T., 1997, Regulation of heme biosynthesis in Salmonella typhimurium: Activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein. J.Bacteriol., 179:2907–2914.

    PubMed  CAS  Google Scholar 

  113. Wang, L., Elliott, M., and Elliott, T., 1999, Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J.Bacteriol., 181:1211–1219.

    PubMed  CAS  Google Scholar 

  114. Wang, L., Wilson, S., and Elliott, T., 1999, A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J. Bacteriol., 181:6033–6041.

    PubMed  CAS  Google Scholar 

  115. Jahn, D., Michelsen, U., and Söll, D., 1991, Two glutamyl-tRNA reductase activities in Escherichia coli. J. Biol. Chem., 266:2542–2548.

    PubMed  CAS  Google Scholar 

  116. Javor, G.T. and Febre, E.F., 1992, Enzymatic basis of thiol-stimulated secretion of porphyrins by Escherichia coli. J. Bacteriol., 174:1072–1075.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frankenberg, N. et al. (2004). The Biosynthesis of Hemes, Siroheme, Vitamin B12 and Linear Tetrapyrroles in Pseudomonads. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics