Skip to main content

Alginate Biosynthesis

  • Chapter
Pseudomonas

Abstract

Alginate was first isolated from marine algae in the 19th century, and was first identified from a bacterial source, namely mucoid Pseudomonas aeruginosa, in the 1960s75. Alginate is also synthesized by Azotobacter vinelandii as part of the encystment process54. Alginate is a simple unbranched polysaccharide that is composed of two kinds of uronic acid residues: β-D-mannuronic acid (M), and its C5 epimer, α-L-guluronic acid (G) (Figure 1A). Excellent reviews on alginate research have been offered by the late Peter Gacesa in 199046 and 199845. The pathogenesis of mucoid, alginate-producing P. aeruginosa in cystic fibrosis (CF) patients was also reviewed in 1996 by Govan and Deretic56. The following chapter presents highlights from these previous reviews and new studies that have recently been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltimore, R.S. and Mitchell, M., 1982, Immunologic investigations of mucoid strains of Pseudomonas aeruginosa: Comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. J. Infect. Dis., 141:238–247.

    Article  Google Scholar 

  2. Banerjee, P.C., Vanags, R.I., Chakrabarty, A.M., and Maitra, P.K., 1983, Alginic acid synthesis in Pseudomonas aeruginosa mutants defective in carbohydrate metabolism. J. Bacteriol., 155:238–245.

    PubMed  CAS  Google Scholar 

  3. Banerjee, P.C., Vanags, R.I., Chakrabarty, A.M., and Maitra, P.K., 1985, Fructose 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa. J. Bacteriol., 161:458–460.

    PubMed  CAS  Google Scholar 

  4. Bayer, A.S., Park, S., Ramos, M.C., Nast, C.C., Eftekhar, F., and Schiller, N.L., 1992, Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa. Infect. Immun., 60:3979–3985.

    PubMed  CAS  Google Scholar 

  5. Baynham, P. and Wozniak, D., 1996, Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol., 22:97–108.

    Article  PubMed  CAS  Google Scholar 

  6. Baynham, P.J., Brown, A.L., Hall, L.L., and Wozniak, D.J., 1999, Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol. Microbiol., 33:1069–1080.

    Article  PubMed  CAS  Google Scholar 

  7. Berry, A., De Vault, J.D., and Chakrabarty, A.M., 1989, High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J. Bacteriol., 171:2312–2317.

    PubMed  CAS  Google Scholar 

  8. Boucher, J., Schurr, M., Yu, H., Rowen, D., and Deretic, V., 1997, Pseudomonas aeruginosa in cystic fibrosis: Role of mucC in the regulation of alginate production and stress sensitivity. Microbiology, 143:3473–3480.

    Article  PubMed  CAS  Google Scholar 

  9. Boucher, J.C., Yu, H., Mudd, M.H., and Deretic, V., 1997, Mucoid Pseudomonas aeruginosa in cystic fibrosis: Characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun., 65:3838–3846.

    PubMed  CAS  Google Scholar 

  10. Boyd, A. and Chakrabarty, A.M., 1994, Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ. Microbiol., 60:2355–2359.

    PubMed  CAS  Google Scholar 

  11. Boyd, A., Ghosh, M., May, T.B., Shinabarger, D., Keogh, R., and Chakrabarty, A.M., 1993, Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product. Gene, 131:1–8.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, R., McBurney, A., Lunee, I, and Kelly, F., 1995, Oxidative damage to DNA in patients with cystic fibrosis. Free Radic. Biol. Med., 18:801–806.

    Article  PubMed  CAS  Google Scholar 

  13. Campbell, J.A., Davies, G.J., Bulone, V, and Henrissat, B., 1997, A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J., 326(Pt 3):929–939.

    PubMed  CAS  Google Scholar 

  14. Chitnis, C.E. and Ohman, D.E., 1990, Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. J. Bacteriol., 172:2894–2900.

    PubMed  CAS  Google Scholar 

  15. Chitnis, C.E. and Ohman, D.E., 1993, Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol. Microbiol., 8:583–590.

    Article  PubMed  CAS  Google Scholar 

  16. Chu, L., May, T.B., Chakrabarty, A.M., and Misra, T.K., 1991, Nucleotide sequence and expression of the algE gene involved in alginate biosynthesis by Pseudomonas aeruginosa. Gene, 107:1–10.

    Article  PubMed  CAS  Google Scholar 

  17. Coyne, M.J., Jr, Russell, K.S., Coyle, C.L., and Goldberg, J.B., 1994, The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J. Bacteriol., 176:3500–3507.

    PubMed  CAS  Google Scholar 

  18. Cryz, Jr, S.J., Fürer, Jr, E., and Germanier, R., 1984, Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa. Infect. Immun., 44:508–513.

    PubMed  CAS  Google Scholar 

  19. Cryz, S.J., SadorY, Jr, J.C., Ohman, D., and Fürer, E., 1988, Characterization of the human immune response to a Pseudomonas aeruginosa O-polysaccharide-toxin A conjugate vaccine. J. Lab. Clin. Med, 111:701–707.

    PubMed  CAS  Google Scholar 

  20. Darzins, A., Frantz, B., Vanags, R.I., and Chakrabarty, A.M., 1986, Nucleotide sequence analysis of the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa and comparison with the corresponding Escherichia coli gene manA. Gene, 42:293–302.

    Article  PubMed  CAS  Google Scholar 

  21. Darzins, A., Nixon, L.L., Vanags, R.I., and Chakrabarty, A.M., 1985, Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J. Bacteriol., 161:249–257.

    PubMed  CAS  Google Scholar 

  22. Darzins, A., Wang, S.-K., Vanags, R.I., and Chakrabarty, A.M., 1985, Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol., 164:516–524.

    PubMed  CAS  Google Scholar 

  23. Davidson, J.W., Lawson, C.J., and Sutherland, I.W., 1977, Localization of O-acetyl groups in bacterial alginate. J. Gen. Microbiol., 98:603–606.

    Article  CAS  Google Scholar 

  24. De Las Penas, A., Connolly, L., and Gross, C.A., 1997, SigmaE is an essential sigma factor in Escherichia coli. J. Bacteriol., 179:6862–6864.

    Google Scholar 

  25. De Las Penas, A., Connolly, L., and Gross, CA., 1997, The sigmaE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sigmaE. Mol. Microbiol., 24:373–385.

    Article  PubMed  Google Scholar 

  26. Deretic, V, Dikshit, R., Konyecsni, M., Chakrabarty, A.M., and Misra, T.K., 1989, The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J. Bacteriol., 171:1278–1283.

    PubMed  CAS  Google Scholar 

  27. Deretic, V, Gill, J.F., and Chakrabarty, A.M., 1987, Gene algD coding for GDP-mannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J. Bacteriol., 169:351–358.

    PubMed  CAS  Google Scholar 

  28. Deretic, V and Konyecsni, W.M., 1989, Control of mucoidy in Pseudomonas aeruginosa: Transcriptional regulation of algR and identification of the second regulatory gene, algQ. J. Bacteriol, 171:3680–3688.

    PubMed  CAS  Google Scholar 

  29. Deretic, V, Schurr, M.J., Boucher, J.C., Deretic, V, Schurr, M.J., Boucher, J.C., and Martin, D.W., 1994, Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: Environmental stress and regulation of bacterial virulence by alternative sigma factors. J. Bacteriol, 176:2773–2780.

    PubMed  CAS  Google Scholar 

  30. De Vault, J.D., Hendrickson, W., Kato, J., and Chakrabarty, A.M., 1991, Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli. Mol. Microbiol., 5:2503–2509.

    Article  Google Scholar 

  31. De Vries, C.A. and Ohman, D.E., 1994, Mucoid to nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternative sigma factor, and shows evidence for autoregulation. J. Bacteriol., 176:6677–6687

    Google Scholar 

  32. diSant’Agnese, P.A. and Davis, P.B., 1976, Research in cystic fibrosis. New Eng. J. Med., 295:597–602.

    Article  Google Scholar 

  33. Doggett, R.G., Harrison, G.M., Stillwell, R.N., and Wallis, E.S., 1966, An atypical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas. J. Pediatr., 68:215–221.

    Article  Google Scholar 

  34. Erickson, J.W. and Gross, CA., 1989, Identification of the σE subunit of Escherichia coli RNA polymerase: A second alternate σ factor involved in high-temperature gene expression. Genes Dev., 3:1462–1471.

    Article  PubMed  CAS  Google Scholar 

  35. Evans, L.R. and Linker, A., 1973, Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J. Bacteriol., 116:915–924.

    PubMed  CAS  Google Scholar 

  36. Firoved, A.M. and Deretic, V., 2003, Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J. Bacteriol., 185:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  37. Flynn, J.L. and Ohman, D.E., 1988, Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype. J. Bacteriol., 170:1452–1460.

    PubMed  CAS  Google Scholar 

  38. Flynn, J.L. and Ohman, D.E., 1988, Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and nonmucoid Pseudomonas aeruginosa strains: algS controls expression of algT. J. Bacteriol., 170:3228–3236

    CAS  Google Scholar 

  39. Franklin, M.J., Chitnis, C.E., Gacesa, P., Sonesson, A., White, D.C., and Ohman, D.E., 1994, Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J. Bacteriol., 176:1821–1830.

    PubMed  CAS  Google Scholar 

  40. Franklin, M.J. and Ohman, D.E., 1993, Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J. Bacteriol., 175:5057–5065.

    PubMed  CAS  Google Scholar 

  41. Franklin, MJ. and Ohman, D.E., 1996, Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J. Bacteriol., 178:2186–2195.

    PubMed  CAS  Google Scholar 

  42. Franklin, M.J. and Ohman, D.E., 2002, Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J. Bacteriol., 184:3000–30

    Article  PubMed  CAS  Google Scholar 

  43. Frederiksen, B., Koch, C., and Høiby, N., 1997, Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr. Pulmonol, 23:330–335.

    Article  PubMed  CAS  Google Scholar 

  44. Fujiwara, S., Zielinski, N.A., and Chakrabarty, A.M., 1993, Enhancer-like activity of AlgRl-binding site in alginate gene activation: Positional, orientational, and sequence specificity. J. Bacteriol., 175:5452–5459.

    PubMed  CAS  Google Scholar 

  45. Gacesa, P., 1998, Bacterial alginate biosynthesis—recent progress and future prospects. Microbiology, 144(Pt 5):1133–1143.

    Article  PubMed  CAS  Google Scholar 

  46. Gacesa, P. and Russell, N.J., 1990, Pseudomonas Infection and Alginates: Biochemistry, Genetics and Pathology. Chapman & Hall, London.

    Book  Google Scholar 

  47. Gacesa, P. and Russell, N.J., 1990, The structure and properties of alginate. In P. Gacesa and N.J. Russell (eds), Pseudomonas Infections and Alginates: Biochemistry, Genetics and Pathology, pp. 29–49. Chapman & Hall Ltd., London.

    Chapter  Google Scholar 

  48. Gill, J.F., Deretic, V, and Chakrabarty, A.M., 1986, Overproduction and assay of Pseudomonas aeruginosa phosphomannose isomerase. J. Bacteriol., 167:611–615.

    PubMed  CAS  Google Scholar 

  49. Gimmestad, M., Sletta, H., Ertesvag, H., Bakkevig, K., Jain, S., Suh, S.J., Skjak-Braek, G., Ellingsen, T.E., Ohman, D.E., and Valla, S., 2003, The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J. Bacteriol., 185:3515–3523.

    Article  PubMed  CAS  Google Scholar 

  50. Goldberg, J.B., Gorman, W.L., Flynn, J.L., and Ohman, D.E., 1993, A mutation in algN permits trans-activation of alginate production by algT in Pseudomonas species. J. Bacteriol., 175:1303–1308.

    PubMed  CAS  Google Scholar 

  51. Goldberg, J.B., Hatano, K., and Pier, G.B., 1993, Synthesis of lipopolysaccharide O side chains by Pseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase. J. Bacteriol., 175:1605–1611.

    PubMed  CAS  Google Scholar 

  52. Goldberg, J.B. and Ohman, D.E., 1984, Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J. Bacteriol., 158:1115–1121.

    PubMed  CAS  Google Scholar 

  53. Goldberg, J.B. and Ohman, D.E., 1987, Construction and characterization of Pseudomonas aeruginosa algB mutants: Role of algB in high-level production of alginate. J. Bacteriol., 169:1593–1602.

    PubMed  CAS  Google Scholar 

  54. Gorin, P.A.T. and Spencer, J.F.T., 1966, Exocellular alginic acid from Azotobacter vinelandii. Can. J. Chem., 44:993–998.

    Article  CAS  Google Scholar 

  55. Govan, J.R., Martin, D.W., and Deretic, V., 1992, Mucoid Pseudomonas aeruginosa and cystic fibrosis: The role of mutations in muc loci. FEMS Microbiol. Lett., 79:323–329.

    PubMed  CAS  Google Scholar 

  56. Govan, J.R.W. and Deretic, V., 1996, Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev., 60:539—574.

    PubMed  CAS  Google Scholar 

  57. Govan, J.R.W. and Harris, G.S., 1986, Pseudomonas aeruginosa and cystic fibrosis: Unusual bacterial adaptation and pathogenesis. Microbiol. Sci., 3:302–308.

    PubMed  CAS  Google Scholar 

  58. Hancock, R.E.W., Mutharia, L.M., Chan, L., Darveau, R.P., Speert, D.P., and Pier, G.B., 1983, Pseudomonas aeruginosa isolates from patients with cystic fibrosis: A class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect. Immun., 42:170–177.

    PubMed  CAS  Google Scholar 

  59. Hassett, D.J., Charniga, L., Bean, K., Ohman, D.E., and Cohen, M.S., 1992, Response of Pseudomonas aeruginosa to pyocyanin: Mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored Superoxide dismutase. Infect. Immun., 60:328–336.

    PubMed  CAS  Google Scholar 

  60. Hassett, DJ., Woodruff, W.A., Wozniak, DJ., Vasil, M., Cohen, M.S., and Ohman, D.E., 1993, Cloning and characterization of Pseudomonas aeruginosa sodB and sodA genes encoding iron-and manganese-cofactored Superoxide dismutase: Demonstration of increase manganese Superoxide dismutase activity in alginate-producing bacteria. J. Bacteriol., 175:7658–7665.

    PubMed  CAS  Google Scholar 

  61. Hershberger, CD., Ye, R.W., Parsek, M.R., Xie, Z., and Chakrabarty, A.M., 1995, The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative CT factor (σE). Proc. Natl. Acad. Sci. USA, 92:7941–7945.

    Article  PubMed  CAS  Google Scholar 

  62. Hoiby, N. and Oiling, S., 1977, Pseudomonas aeruginosa infection in cystic fibrosis: Bactericidal effect of serum from normal individuals and patients with cystic fibrosis on P. aeruginosa strains from patients with cystic fibrosis or other diseases. Acta Pathol. Microbiol Scand., Section C, 85:107–114.

    Google Scholar 

  63. Høidal, H.K., Ertesvåg, H., Skjak-Braek, G., Stokke, B.T., and Valla, S., 1999, The recombinant Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 epimerizes alginate by a nonrandom attack mechanism. J. Biol Chem., 274:12316–12322.

    Article  PubMed  Google Scholar 

  64. Hull, J., Vervaart, P., Grimwood, K., and Phelan, P., 1997, Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax, 52:557–560.

    Article  PubMed  CAS  Google Scholar 

  65. Jain, S., Franklin, M.J., Ertesvag, H., Valla, S., and Ohman, D.E., 2003, The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol. Microbiol., 47:1123–1133.

    Article  PubMed  CAS  Google Scholar 

  66. Jain, S. and Ohman, D.E., 2004, AlgL is essential for the secretion of alginate in mucoid Pseudomonas aeruginosa, in preparation.

    Google Scholar 

  67. Jain, S. and Ohman, D.E., 1998, Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J. Bacteriol., 180:634–641.

    PubMed  CAS  Google Scholar 

  68. Jensen, E., Kharazmi, A., Lam, K., Costerton, J., and Høiby, N., 1990, Human polymor-phonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun., 58:2383–2385.

    PubMed  CAS  Google Scholar 

  69. Kato, J. and Chakrabarty, A.M., 1991, Purification of the regulatory protein AlgRl and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc. Natl.Acad. Sci. USA, 88:1760–1764.

    Article  PubMed  CAS  Google Scholar 

  70. Kato, J., Misra, T.K., and Chakrabarty, A.M., 1990, AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 87:2887–2891.

    Article  PubMed  CAS  Google Scholar 

  71. Kim, H., Schlictman, D., Shankar, S., Xie, Z., Chakrabarty, A., and Kornberg, A., 1998, Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: Implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol. Microbiol., 27:717–725.

    Article  PubMed  CAS  Google Scholar 

  72. Koch, C. and N. Høiby. 1993, Pathogenesis in cystic fibrosis. Lancet, 341:1065–1069.

    Article  PubMed  CAS  Google Scholar 

  73. Lam, J., Chan, R., Lam, K., and Costerton, J.R.W., 1980, Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun., 28:546–556.

    PubMed  CAS  Google Scholar 

  74. Lin, Y.-T. and Hassid, W.Z., 1966, Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri Silva. J. Biol. Chem., 241:5284–5297

    CAS  Google Scholar 

  75. Linker, A. and Jones, R.S., 1966, A new polysaccharide resembling alginic acid isolated from Pseudomonads. J. Biol. Chem., 241:3845–3851.

    PubMed  CAS  Google Scholar 

  76. Lloret, L., Barreto, R., Leon, R., Moreno, S., Martinez-Salazar, J., Espin, G., and Soberon-Chavez, G., 1996, Genetic analysis of the transcriptional arrangement of Azotobacter vinelandii alginate biosynthetic genes: Identification of two independent promoters. Mol. Microbiol., 21:449–457.

    Article  PubMed  CAS  Google Scholar 

  77. Lonetto, M.A., Brown, K.L., Rudd, K.E., and Buttner, M.J., 1994, Analysis of Streptomyces coelicolor SigE gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. USA, 91:7573–7577.

    Article  PubMed  CAS  Google Scholar 

  78. Luzar, M.A. and Montie, T.C., 1985, Avirulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa. Infect. Immun., 50:572–576.

    PubMed  CAS  Google Scholar 

  79. Ma, S., Selvaraj, U., Ohman, D.E., Quarless, R., Hassett, DJ., and Wozniak, D.J., 1998, Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol., 180:956–968.

    PubMed  CAS  Google Scholar 

  80. Ma, S., Wozniak, DJ., and Ohman, D.E., 1997, Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator AlgB. J. Biol. Chem., 272:17952–17960.

    Article  PubMed  CAS  Google Scholar 

  81. Malhotra, S., Silo-Suh, L.A., Mathee, K., and Ohman, D.E., 2000, Proteome analysis of the effect of mucoid conversion on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, DsbA. J. Bacteriol., 182:6999–7006.

    Article  PubMed  CAS  Google Scholar 

  82. Marcus, H. and Baker, N.R., 1985, Quantitation of adherence of mucoid and nonmucoid Pseudomonas aeruginosa to hamster tracheal epithelium. Infect. Immun., 47:723–729.

    PubMed  CAS  Google Scholar 

  83. Martin, D.W., Schurr, M.J., Mudd, M.H., and Deretic, V., 1993, Differentiation of Pseudomonas aeruginosa into the alginate-producing form: Inactivation of mucB causes conversion to mucoidy. Mol. Microbiol., 9:497–506.

    Article  PubMed  CAS  Google Scholar 

  84. Martin, D.W., Schurr, M.J., Mudd, M.H., Govan, J.R.W., Holloway, B.W., and Deretic, V., 1993, Mechanism of conversion to mucoidy inPseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad Sci. USA, 90:8377–8381.

    Article  PubMed  CAS  Google Scholar 

  85. Martinez-Salazar, J.M., Moreno, S., Najera, R., Boucher, J.C., Espin, G., Soberon-Chavez, G., and Deretic, V., 1996, Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC., and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J. Bacteriol., 178:1800–1808.

    PubMed  CAS  Google Scholar 

  86. Mathee, K., Ciofu, O., Sternberg, C.K., Lindum, P., Campbell, J., Jensen, P., Johnsen, A., Givskov, M., Ohman, D., Molin, S., Høiby, N., and Kharazmi, A., 1999, Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: A mechanism for virulence activation in the cystic fibrosis lung. Microbiology, 145:1349–1357.

    Article  PubMed  CAS  Google Scholar 

  87. Mathee, K., McPherson, C.J., and Ohman, D.E., 1997, Posttranslational control of the algT (algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J. Bacteriol., 179:3711–3720.

    PubMed  CAS  Google Scholar 

  88. May, T.B. and Chakrabarty, A.M., 1994, Pseudomonas aeruginosa: Genes and enzymes of alginate synthesis. Trends Microbiol., 2:151–157.

    Article  PubMed  CAS  Google Scholar 

  89. May, T.B., Shinabarger, D., Maharaj, R., Kato, J., Chu, L., DeVault, J.D., Roychoudhury, S., Zielinski, N.A., Berry, A., Rothmel, R.K., Misra, T.K., and Chakrabarty, A.M., 1991, Alginate synthesis by Pseudomonas aeruginosa: A key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin. Microbiol. Rev., 4:191–206.

    PubMed  CAS  Google Scholar 

  90. Meluleni, G.J., Grout, M., Evans, D.J., and Pier, G.B., 1995, Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J. Immunol., 155:2029–2038.

    PubMed  CAS  Google Scholar 

  91. Missiakas, D., Mayer, M.P., Lemaire, M., Georgopoulos, C., and Raina, S., 1997, Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol. Microbiol., 24:355–371.

    Article  PubMed  CAS  Google Scholar 

  92. Missiakas, D. and Raina, S., 1998, The extracytoplasmic function sigma factors: Role and regulation. Mol. Microbiol., 28:1059–1066.

    Article  PubMed  CAS  Google Scholar 

  93. Mohr, CD., Rust, L., Albus, A.M., Iglewski, B.H., and Deretic, V., 1990, Expression patterns of genes encoding elastase and controlling mucoidy-Co-ordinate regulation of two virulence factors in Pseudomonas aeruginosa isolates from cystic fibrosis. Mol. Microbiol., 4:2103–2110.

    Article  PubMed  CAS  Google Scholar 

  94. Monday, S.R. and Schiller, N.L., 1996, Alginate synthesis in Pseudomonas aeruginosa: The role of AlgL (alginate lyase) and AlgX. J. Bacteriol., 178:625–632.

    PubMed  CAS  Google Scholar 

  95. Morea, A., Mathee, K., Franklin, M.J., Giacomini, A., O’Regan, M., and Ohman, D.E., 2001, Characterization of algG encoding C5-epimerase in the alginate biosynthetic gene cluster of Pseudomonas fluorescens. Gene, 278:107–114.

    Article  PubMed  CAS  Google Scholar 

  96. Nivens, D.E., Ohman, D.E., Williams, J., and Franklin, M.J., 2001, Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J. Bacteriol., 183:1047–1057.

    Article  PubMed  CAS  Google Scholar 

  97. Ohman, D.E. and Chakrabarty, A.M., 1981, Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect. Immun., 33:142–148.

    PubMed  CAS  Google Scholar 

  98. Ohman, D.E. and Chakrabarty, A.M., 1982, Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect. Immun., 37:662–669.

    PubMed  CAS  Google Scholar 

  99. Ohman, D.E., Mathee, K., McPherson, C.J., DeVries, CA., Ma, S., Wozniak, D.J., and Franklin, M.J., 1996, Regulation of the alginate (algD) operon in Pseudomonas aeruginosa. In T. Nakazawa, K. Furukawa, D. Haas, and S. Silver (eds), Molecular Biology of Pseudomonads, pp. 472–483. American Society for Microbiology Press, Washington, DC.

    Google Scholar 

  100. Olvera, C., Goldberg, J.B., Sanchez, R., and Soberon-Chavez, G., 1999, The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol. Lett., 179:85–90.

    Article  PubMed  CAS  Google Scholar 

  101. Pedersen, S.S., 1992, Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS (Suppl.) 28:1–79.

    CAS  Google Scholar 

  102. Pedersen, S.S., Moller, H., Espersen, F., Sørensen, C.H., Jensen, T., and Høiby, N., 1992, Mucosal immunity to Pseudomonas aeruginosa alginate in cystic fibrosis. Acta Pathol. Microbiol. Immunol. Scand., 100:326–334.

    CAS  Google Scholar 

  103. Penaloza-Vazquez, A., Kidambi, S.P., Chakrabarty, A.M., and Bender, C.L., 1997, Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae. J. Bacteriol., 179:4464–4472.

    PubMed  CAS  Google Scholar 

  104. Penketh, A.R.L., Wise, A., Mears, M.B., Hodson, M.E., and Batten, J.C., 1987, Cystic fibrosis in adolescents and adults. Thorax, 42:526–532.

    Article  PubMed  CAS  Google Scholar 

  105. Pier, G.B., 1985, Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: Current status of the host-bacterium interaction. J. Infect. Dis., 151:575–580.

    Article  PubMed  CAS  Google Scholar 

  106. Pier, G.B., Coleman, F., Grout, M., Franklin, M., and Ohman, D.E., 2001, Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect. Immun., 69:1895–1901.

    Article  PubMed  CAS  Google Scholar 

  107. Pier, G.B., Grouot, M., Zaidi, T.S., Olsen, J.C., Johnaon, L.G., Yankaskas, J.R., and Goldberg, J.B., 1996, Role of mutant CFTR in hypersusceptibility of cystic fibrosis to lung infections. Science, 271:64—67.

    Article  PubMed  CAS  Google Scholar 

  108. Pier, G.B., Saunders, J.M., Ames, P., Edwards, M.S., Auerbach, H., Goldfarb, J., Speert, D.P., and Hurwitch, S., 1987, Opsonophagocytic killing antibody to Pseudomonas aeruginosa mucoid exopolysaccharide in older noncolonized patients with cystic fibrosis. N. Engl. J.Med., 317:793–798.

    Article  PubMed  CAS  Google Scholar 

  109. Pier, G.B., Small, G.J., and Warren, H.B., 1990, Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science, 249:537–540.

    Article  PubMed  CAS  Google Scholar 

  110. Piggot, N.H., Sutherland, I.W., and Jarman, T.R., 1981, Enzymes involved in the biosynthesis of alginate by Pseudomonas aeruginosa. Eur. J.Appl. Microbiol. Biotechnol., 13:179–183.

    Article  Google Scholar 

  111. Pindar, D.F. and Bucke, C., 1975, The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem. J., 152:617–622.

    PubMed  CAS  Google Scholar 

  112. Pogliano, J., Lynch, A.S., Belin, D., Lin, E.C., and Beckwith, J., 1997, Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev., 11:1169–1182.

    Article  PubMed  CAS  Google Scholar 

  113. Ramphal, R., Guay, C., and Pier, G.B., 1987, Pseudomonas aeruginosa adhesins for tracheo-bronchial mucin. Infect. Immun., 55:600–603.

    PubMed  CAS  Google Scholar 

  114. Rehm, B.H., Boheim, G., Tommassen, J., and Winkler, U.K., 1994, Overexpression of algE in Escherichia coli: Subcellular localization, purification, and ion channel properties. J. Bacteriol., 176:5639–5647.

    PubMed  CAS  Google Scholar 

  115. Rehm, B.H., Ertesvå g, H., and Valla, S., 1996, A new Azotobacter vinelandii mannuronan C-5-epimerase gene (algG) is part of an alg gene cluster physically organized in a manner similar to that in Pseudomonas aeruginosa. J. Bacteriol., 178:5884–5889.

    PubMed  CAS  Google Scholar 

  116. Roehl, R.A., Feary, T.W., and Phibbs, PV., 1983, Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa. J. Bacteriol., 156:1123–1129.

    PubMed  CAS  Google Scholar 

  117. Rouviere, P.E., De Las Penas, A., Mecsas, J., Lu, C.Z., Rudd, K.E., and Gross, CA., 1995, rpoE, the gene encoding the second heat-shock sigma factor, σE, in Escherichia coli. EMBO J., 14:1032–1042.

    PubMed  CAS  Google Scholar 

  118. Roychoudhury, S., May, T., Gill, I, Singh, S., Feingold, D., and Chakrabarty, A., 1989, Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J. Biol Chem., 264:9380–9385.

    PubMed  CAS  Google Scholar 

  119. Saxena, I.M., Brown, R.M., Fevre, M., Geremia, R.A., and Henrissat, B., 1995, Multidomain architecture of β-glycosyl transferases: Implications for mechanism of action. J. Bacteriol., 177:1419–1424.

    PubMed  CAS  Google Scholar 

  120. Schiller, N.L., Monday, S.R., Boyd, CM., Keen, N.T., and Ohman, D.E., 1993, Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): Cloning, sequencing, and expression in Escherichia coli J. Bacteriol., 175:4780–4789.

    PubMed  CAS  Google Scholar 

  121. Schurr, M.J., Martin, D.W., Mudd, M.H., and Deretic, V., 1994, Gene cluster controlling conversion of alginate-overproducing phenotype in Pseudomonas aeruginosa: Functional analysis in a heterologous host and role in the instability of mucoidy. J. Bacteriol., 176:3375–3382.

    PubMed  CAS  Google Scholar 

  122. Schurr, M.J., Yu, H., Martinez-Salazar, J.M., Boucher, J.C., and Deretic, V., 1996, Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J. Bacteriol., 178:4997–5004.

    PubMed  CAS  Google Scholar 

  123. Schwarzmann, S. and Boring III, J.R., 1971, Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa. Infect. Immun., 3:762–767.

    PubMed  CAS  Google Scholar 

  124. Seale, T.W., Thirkhill, H., Tarpay, M., Flux, M., and Rennert, O.M., 1979, Serotypes and antibiotic susceptibilities of Pseudomonas aeruginosa isolates from single sputa of cystic fibrosis patients. J. Clin. Microbiol., 9:72–78.

    PubMed  CAS  Google Scholar 

  125. Sferra, T.J. and Collins, F.S., 1993, The molecular biology of cystic fibrosis. Annu. Rev. Med., 44:133–144.

    Article  PubMed  CAS  Google Scholar 

  126. Sherbrock-Cox, V, Russell, N.J., and Gacesa, P., 1984, The purification and chemical characterisation of the alginate present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa. Carbohydr. Res., 135:147–154.

    Article  PubMed  CAS  Google Scholar 

  127. Shinabarger, D., Berry, A., May, T.B., Rothmel, R., Fialho, A., and Chakrabarty, A.M., 1991, Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase—a bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J. Biol. Chem., 266:2080–2088.

    PubMed  CAS  Google Scholar 

  128. Silo-Suh, L., Sun, S.J., Sokol, P.A., and Ohman, D.E., 2002, A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc. Natl. Acad. Sci. USA, 99:15699–15704.

    Article  PubMed  CAS  Google Scholar 

  129. Simpson, J.A., Smith, S.E., and Dean, R.T., 1989, Scavenging by alginate of free radicals released by macrophages. Ree Radical Biol. Med., 6:347–353.

    Article  CAS  Google Scholar 

  130. Skjåk-Bræk, G., Grasdalen, H., and Larsen, B., 1986, Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr. Res., 154:239–250.

    Article  PubMed  Google Scholar 

  131. Skjåk-Bræk, G., Larsen, B., and Grasdalen, H., 1985, The role of O-acetyl groups in the biosynthesis of alginate by Azotobacter vinelandii. Carbohydr. Res., 145:169–174.

    Article  Google Scholar 

  132. Skjåk-Bræk, G., Zanetti, F., and Paoletti, S., 1989, Effect of acetylation on some solution and gelling properties of alginates. Carbohydr. Res., 185:131–138.

    Article  Google Scholar 

  133. Smith, J., Travis, S., Greenber, E., and Welsh, M., 1996, Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell, 85:229–236.

    Article  PubMed  CAS  Google Scholar 

  134. Snook, CF., Tipton, P.A., and Beamer, L.J., 2003, Crystal structure of GDP-mannose dehydrogenase: A key enzyme of alginate biosynthesis in P. aeruginosa. Biochemistry, 42:4658–4668.

    Article  PubMed  CAS  Google Scholar 

  135. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Huftiagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K.-S., Wu, Z., Paulsenk, I.T., Reizer, J, Saier, M.H., Hancock, R.E.W., Lory, S., and Olson, M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 959:959–964.

    Google Scholar 

  136. Suh, S.-J., Silo-Suh, L., Woods, D., Hassett, D., West, S., and Ohman, D., 1999, Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol., 181:3890–3897.

    PubMed  CAS  Google Scholar 

  137. Svanem, B.I., Skjåk-Bræk, G., Ertesvag, H., and Valla, S., 1999, Cloning and expression of three new Azotobacter vinelandii genes closely related to a previously described gene family encoding mannuronan C-5-epimerases. J. Bacteriol., 181:68–77.

    PubMed  CAS  Google Scholar 

  138. Tatnell, P.J., Russell, N.J., and Gacesa, P., 1994, GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: Evidence from metabolite studies. Microbiology, 140(Pt 7):1745–1754.

    Article  PubMed  CAS  Google Scholar 

  139. Tatnell, P.J., Russell, N.J., and Gacesa, P., 1993, A metabolic study of the activity of GDP-mannose dehydrogenase and concentrations of activated intermediates of alginate biosynthesis in Pseudomonas aeruginosa. J. Gen. Microbiol., 139:119–127.

    Article  PubMed  CAS  Google Scholar 

  140. Thomassen, M.J., Demko, CA., Boserbaum, B., Stern, R.C., and Kuchenbrod, P.T., 1979, Multiple isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. J. Infect. Dis., 140:873–880.

    Article  PubMed  CAS  Google Scholar 

  141. Trujillo-Roldan, M.A., Moreno, S., Segura, D., Galindo, E., and Espin, G., 2003, Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase. Appl. Microbiol. Biotechnol., 60:733–737.

    PubMed  CAS  Google Scholar 

  142. Vazquez, A., Moreno, S., Guzman, J., Alvarado, A., and Espin, G., 1999, Transcriptional organization of the Azotobacter vinelandii algGXLVIFA genes: Characterization of algF mutants. Gene, 232:217–222.

    Article  PubMed  CAS  Google Scholar 

  143. Whitchurch, C.B., Aim, R.A., and Mattick, J.S., 1996, The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 93:9839–9843.

    Article  PubMed  CAS  Google Scholar 

  144. Whitchurch, C.B., Erova, T.E., Emery, J.A., Sargent, J.L., Harris, J.M., Semmler, A.B., Young, M.D., Mattick, J.S., and Wozniak, DJ., 2002, Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility.J Bacteriol., 184:4544–4554

    Article  PubMed  CAS  Google Scholar 

  145. Wong, T.Y., Preston, L.A., and Schiller, N.L., 2000, ALGINATE LYASE: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol., 54:289–340.

    Article  PubMed  CAS  Google Scholar 

  146. Wood, L.F. and Ohman, D.E., 2004, Identification of an independent promoter for expression of MucD and its role as an HtrA-like protease in Pseudomonas aeruginosa, manuscript in preparation.

    Google Scholar 

  147. Woods, D.E., Sokol, P.A., Bryan, L.E., Storey, D.G., Mattingly, S.J., Vogel, HJ., and Ceri, H., 1991, In vivo regulation of virulence in Pseudomonas aeruginosa associated with genetic rearrangement. J. Infect. Dis., 163:143–149.

    Article  PubMed  CAS  Google Scholar 

  148. Woolwine, S. and Wozniak, D., 1999, Identification of an Escherichia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa. J. Bacteriol., 181:107–116.

    PubMed  CAS  Google Scholar 

  149. Wozniak, DJ. and Ohman, D.E., 1993, Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene. J. Bacteriol., 175:4145–4153.

    PubMed  CAS  Google Scholar 

  150. Wozniak, D.J. and Ohman, D.E., 1991, Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol., 173:1406–1413.

    PubMed  CAS  Google Scholar 

  151. Wozniak, D.J. and Ohman, D.E., 1994, Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J. Bacteriol., 176:6007–6014

    PubMed  CAS  Google Scholar 

  152. Wyckoff, T.J., Thomas, B., Hassett, D.J., and Wozniak, D.J., 2002, Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility. Microbiology, 148:3423–3430.

    PubMed  CAS  Google Scholar 

  153. Yu, H., Mudd, M., Boucher, J.C., Schurr, M.J., and Deretic, V., 1997, Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J. Bacteriol., 179:187–193.

    PubMed  CAS  Google Scholar 

  154. Yu, H., Schurr, M.J., and Deretic, V., 1995, Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J. Bacteriol., 177:3259–3268.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, S., Ohman, D.E. (2004). Alginate Biosynthesis. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics