Skip to main content

Catabolism of PAHS

  • Chapter
Pseudomonas

Abstract

Polycyclic aromatic hydrocarbons (PAHs) refer to hydrocarbons containing two or more fused benzene rings in a linear, angular, and cluster arrangement (Figure 1). PAHs are mainly formed as products from the combustion of fossil fuels, as by-products of industrial processing and during the cooking of foods91. PAHs enter the environment from a multiplicity of sources which include direct aerial fallout, chronic leakage of industrial or sewage effluent, accidental discharge during transport, use and disposal of petroleum products, and from natural sources such as oil seepage and surface water run-off from forest and prairie fire sites. More specifically, industrial effluent from coal gasification and liquefaction processes, waste incineration, coke, carbon black, and other petroleum-derived products releases high quantities of PAHs into the environment. PAH contamination, particularly from the high-molecular-weight types, in soil and aquifers is a cause of great environmental concern because of their toxic, mutagenic, and carcinogenic effects on experimental animals and their potential health risk to humans19, 38, 95. Some PAHs are classified as priority pollutants to be monitored in aquatic and terrestrial ecosystems by the U.S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, K., Iwabuchi, T., Sano, H., and Harayama, S., 1999, Structure of the ring cleavage product of l-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J. Bacteriol., 181:757–763.

    PubMed  CAS  Google Scholar 

  2. Annweiler, E., Materna, A., Safinowski, M., Kappler, A., Richnow, H.H., Michaelis, W., and Meckenstock, R.U., 2000, Anaerobic degradation of 2-methylnaphthalene by a sulfatereducing enrichment culture. Appl. Environ. Microbiol., 66:5329–5333.

    Article  PubMed  CAS  Google Scholar 

  3. Annweiler, E., Michaelis, W., and Meckenstock, R.U., 2002, Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl. Environ. Microbiol., 68:852–858.

    Article  PubMed  CAS  Google Scholar 

  4. Aronstein, B.N., Cavillo, Y.M., and Alexander, M., 1991, Eifect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol., 25:1728–1731.

    Article  CAS  Google Scholar 

  5. Balashova, N.V, Stolz, A., Knackmuss, HJ., Kosheleva, I.A., Naumov, A.V, and Boronin, A.M., 2001, Purification and characterization of a salicylate hydroxylase involved in l-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation, 12:179–188.

    Article  PubMed  CAS  Google Scholar 

  6. Banerjee, D.K., Fedorak, P.M., Hashimoto, A., Masliyah, J.H., Pickard, M.A., and Gray, M.R., 1995, Monitoring the biological treatment of anthracene-contaminated soil in a rotating-drum bioreactor. Appl. Microbiol Biotechnol., 43:521–528.

    Article  CAS  Google Scholar 

  7. Barnsley, E.A., 1975, The bacterial degradation of fluoranthene and benzo[a]pyrene. Can. J. Microbiol., 21:1004–1008.

    Article  PubMed  CAS  Google Scholar 

  8. Barnsley, E.A., 1983, Phthalate pathway of phenanthrene metabolism formation of 2′-carboxybenzalpyruvate. J. Bacteriol., 154:113–117.

    PubMed  CAS  Google Scholar 

  9. Boldrin, B., Thiem, A., and Fritsche, C., 1993, Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ. Microbiol., 59:1927–1930.

    PubMed  CAS  Google Scholar 

  10. Boonchan, S., Britz, M.L., and Stanley, G.A., 1998, Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophila. Biotechnol Bioeng., 59:482–494.

    Article  PubMed  CAS  Google Scholar 

  11. Bosch, R., Garcia-Valdes, E., and Moore, E.R.B., 1999, Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzen AN10. Gene, 236:149–157.

    Article  PubMed  CAS  Google Scholar 

  12. Bosch, R., Garcia-Valdes, E., and Moore, E.R., 2000, Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzen AN10. Gene, 245:65–74.

    Article  PubMed  CAS  Google Scholar 

  13. Bossert, I.D. and Bartha, R., 1986, Structure biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull Environ. Contam. Toxicol., 37:490–495.

    Article  PubMed  CAS  Google Scholar 

  14. Boxall, A.B.A. and Maltby, L., 1997, The effects of motorway runoff on freshwater ecosystems. 3. Toxicant confirmation. Arch. Environ. Contam. Toxicol., 33:9–16.

    Article  PubMed  CAS  Google Scholar 

  15. Bugg, T., Foght, J.M., Pickard, M.A., and Gray, M.R., 2000, Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ. Microbiol., 66:5387–5392.

    Article  PubMed  CAS  Google Scholar 

  16. Bury, S.J. and Miller, C.A., 1993, Effect of micellar solubilization on biodegradation rates of hydrocarbons. Environ. Sci. Technol., 27:104–110.

    Article  CAS  Google Scholar 

  17. Caldini, G., Cenci, G., Manenti, R., and Morozzi, G., 1995, The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl. Microbiol. Biotechnol., 44:225–229

    Article  CAS  Google Scholar 

  18. Cerniglia, C.E., 1984, Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol., 30:31–37.

    Article  PubMed  CAS  Google Scholar 

  19. Cerniglia, C.E., 1992, Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3:351–368.

    Article  CAS  Google Scholar 

  20. Cerniglia, C.E. and Heitkamp, M.A., 1989, Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) in aquatic environment. In U. Varanasi (ed.), Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment, pp. 41–68. CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  21. Cerniglia, C.E. and Heitkamp, M.A., 1990, Polycyclic aromatic hydrocarbon degradation by Mycobacterium. Methods Enzymol., 188:148–153.

    Article  PubMed  CAS  Google Scholar 

  22. Coates, J.D., Woodward, J., Allen, J., Philip, P., and Lovley, D.R., 1997, Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol., 63:3589–3593.

    PubMed  CAS  Google Scholar 

  23. Dagher, F., Deziel, E., Lirerte, P., Paquette, G., Bisaillon, J.-G., and Villemur, R., 1997, Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can. J. Microbiol., 46:368–377.

    Article  Google Scholar 

  24. Dagley, S., 1978, Pathways for the utilization of organic growth substrates. The Bacteria, 6:305–388.

    CAS  Google Scholar 

  25. Davis, M.W., Glaser, J.A., Evans, J.W., and Lamar, R.T., 1933, Field evaluation of the lignindegrading fungus Panerochaete sordida to treat creosote-contaminated soil. Environ. Sci. Tech., 27:2572–2576.

    Article  Google Scholar 

  26. Dean-Ross, D., Moody, J.D., Freeman, J.P., Doerge, D.R., and Cerniglia, C.E., 2001, Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol. Lett., 204:205–211.

    Article  PubMed  CAS  Google Scholar 

  27. Denome, S.A., Stanley, D.C., Olson, E.S., and Young, K.D., 1993, Metabolism of dibenzo-thiophene and naphthalene in Pseudomonas strains: Complete DNA sequence of an upper naphthalene catabolic pathway. J. Bacteriol., 175:6890–6901.

    PubMed  CAS  Google Scholar 

  28. Desai, J.D. and Banat, I.M., 1997, Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev., 61:47–64.

    PubMed  CAS  Google Scholar 

  29. Doong, R.A. and Lei, W.G., 2003, Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J. Hazard. Mater, 96:15–27.

    Article  PubMed  CAS  Google Scholar 

  30. Dunn, N.W. and Gunsalus, I.C., 1973, Transmissible plasmid coding for the early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol., 114:974–979.

    PubMed  CAS  Google Scholar 

  31. Eastcott, L., Shiu, W.T., and Mackay, D., 1988, Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations. Oil Chem. Pollut., 4:191–216.

    Article  CAS  Google Scholar 

  32. Eaton, R.W. and Chapman, P.J., 1992, Bacterial metabolism of naphthalene: Construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J. Bacteriol., 174:7542–7554.

    PubMed  CAS  Google Scholar 

  33. Edwards, N.T., 1983, Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment—a review. J. Environ. Qual., 12:427–441.

    Article  CAS  Google Scholar 

  34. Ellis, B., Harold, P., and Kronberg, H., 1991, Bioremediation of a creosote contaminated site. Environ. Technol., 12:447–459.

    Article  CAS  Google Scholar 

  35. Evans, W.C., Fernley, H.N., and Griffiths, E., 1965, Oxidative metabolism of phenanthrene and anthracene by soil Pseudomonads; the ring fission mechanism. Biochem. J., 95: 819–821.

    PubMed  CAS  Google Scholar 

  36. Fawell, J.K. and Hunt, S., 1988, The polycyclic aromatic hydrocarbons. In J.K. Fawell and S. Hunt (eds), Environmental Toxicology: Organic Pollutants, pp. 241–269. Ellis Horwood, West Sussex.

    Google Scholar 

  37. Fuenmayor, S.L., Wild, M., Boyes, A.L., and Williams, P.A., 1998, A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.1 Bacteriol., 180:2522–2530.

    CAS  Google Scholar 

  38. Fujikawa, K., Fort, F.L., Samefima, K., and Sakamoto, Y., 1993, Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycyclic aromatic hydrocarbons as assayed in the DNA repair test. Mutat Res., 290:175–182.

    Article  PubMed  CAS  Google Scholar 

  39. Galushko, A., Minz, D., Schink, B., and Widdel, F., 1999, Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol., 1:415–420.

    Article  PubMed  CAS  Google Scholar 

  40. García-Junco, M., De Olmedo, E., and Ortega-Calvo, J.J., 2001, Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Env. Microbiol., 3:561–569.

    Article  Google Scholar 

  41. Ghosh, D.K. and Mishra, A.K., 1983, Oxidation of phenanthrene by strain of Micrococcus: Evidence of protocatechuate pathway. Curr. Microbiol., 9:219–224.

    Article  CAS  Google Scholar 

  42. Gibson, D.T. and Parales, R.E., 2000, Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol., 11:236–243.

    Article  PubMed  CAS  Google Scholar 

  43. Gibson, D.T. and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons. In D.T. Gibson (ed.), Microbial Degradation of Organic Compounds, pp. 181–252. Dekker, New York.

    Google Scholar 

  44. Gibson, D.T., Venkatanayarana, M., Jerina, D.M., Yagi, H., and Yeh, H., 1975, Oxidation of the carcinogens benzo[a]pyrene and benzo[a]anthracene to dihydrodiols by a bacterium. Science, 189:295–297.

    Article  PubMed  CAS  Google Scholar 

  45. Giger, W. and Blumer, M., 1974, Polycyclic aromatic hydrocarbons in the environment; isolation and characterization by chromatography, visible, ultraviolet and mass spectrometry. Anal. Chem., 46:1663–1671.

    Article  PubMed  CAS  Google Scholar 

  46. Goyal, A.K. and Zylstra, G.J., 1996, Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol., 62:230–236.

    PubMed  CAS  Google Scholar 

  47. Grimberg, S.J., Stringfellow, W.T., and Aitken, M.D., 1996, Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri PI6 in the presence of a nonionic surfactant. Appl. Environ. Microbiol., 62:2387–2392.

    PubMed  CAS  Google Scholar 

  48. Grimm, A.C. and Harwood, C.S., 1999, NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol., 181:3310–3316.

    PubMed  CAS  Google Scholar 

  49. Grosser, R.J., Warshawsky, D., and Vestal, J.R., 1991, Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carboazole in soils. Appl. Environ. Microbiol., 57:3462–3469.

    PubMed  CAS  Google Scholar 

  50. Gschwend, P.M. and Hites, R.A., 1981, Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta, 45:2359–2367.

    Article  CAS  Google Scholar 

  51. Habe, H. and Omori, T., 2003, Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem., 67:225–243.

    Article  PubMed  CAS  Google Scholar 

  52. Harayama, S. 1997, Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotechnol., 8:268–273.

    Article  PubMed  CAS  Google Scholar 

  53. Harayama, S. and Timmis, K.N., 1988, Catabolism of aromatic hydrocarbons by Pseudomonas. In D.A. Hopwood and K.E Chater (eds), Genetics of Bacterial Diversity, pp. 151–174. Academic Press, New York.

    Google Scholar 

  54. Harayama, S., Kok, M., and Neidle, E.L., 1992, Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol., 46:565–601.

    Article  PubMed  CAS  Google Scholar 

  55. Heitkamp, M.A. and Gerniglia, C.E., 1987, The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environ. Toxicol. Chem., 6:535–546.

    Article  CAS  Google Scholar 

  56. Heitkamp, M.A., Freeman, J.P., Miller, D.W., and Cerniglia, C.E., 1988, Pyrene degradation by a Mycobacterium sp.: Identification of ring oxidation and ring fission products. Appl. Environ. Microbiol., 54:2556–2565.

    PubMed  CAS  Google Scholar 

  57. Herbes, S.E. and Schwall, L.R., 1978, Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl. Environ. Microbiol., 35:306–316.

    PubMed  CAS  Google Scholar 

  58. Hites, R.A., LaFlamme, R.E., and Farrington, J.W., 1977, Sedimentary polycyclic aromatic hydrocarbons: The historical record. Science, 198:829–831.

    Article  PubMed  CAS  Google Scholar 

  59. Hites, R.A., LaFlamme, R.E., and Windsor, J.G., 1980, Polycyclic aromatic hydrocarbons in marine/aquatic sediments: Their ubiquity. In L. Pertakis and E.T. Weiss (eds), Petroleum in the Marine Environment, pp. 289–311. Advances in Chemistry Series, American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  60. Ho, Y., Jackson, M., Yang, Y., Mueller, J.G., and Pritchard, PH., 2000, Characterization of fluoranthene-and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. J. Ind. Microbiol. Biotechnol., 24:100–112.

    Article  CAS  Google Scholar 

  61. Holman, H.-Y.N., Tsang, Y.W., and Holman, W.R., 1999, Mineralization of sparsely water-soluble polycyclic aromatic hydrocarbons in a water table fluctuation zone. Environ. Sci. Technol., 33:1819–1824.

    Article  CAS  Google Scholar 

  62. Houghton, J.E. and Shanley, M.S., 1994, Catabolic potential of Pseudomonads: A regulatory perspective. In G.R. Chaudhry (ed.), Biological Degradation and Bioremediation of Toxic Chemicals, pp. 11–32. Kluwer, New York.

    Google Scholar 

  63. Huntley, S.L., Bonnevie, NX., Wenning, R.J., and Bedbury, H., 1993, Distribution of polycyclic aromatic hydrocarbons (PAHs) in three northern New Jersey waterways. Bull. Environ. Contam. Toxicol., 51:865–872.

    Article  PubMed  CAS  Google Scholar 

  64. Iwabuchi, T. and Harayama, S., 1997, Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J. Bacteriol., 179:6488–6494.

    PubMed  CAS  Google Scholar 

  65. Iwabuchi, T. and Harayama, S., 1998, Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J. Biol. Chem., 273:8332–8336.

    Article  PubMed  CAS  Google Scholar 

  66. Iwabuchi, T. and Harayama, S., 1998, Biochemical and genetic characterization of trans-2′-carboxybenzalpyruvate hydratase-aldolase from a phenanthrene-degrading Nocardioides strain. J. Bacteriol., 180:945–949.

    PubMed  CAS  Google Scholar 

  67. Jahan, K., Ahmed, T, and Maier, W.J., 1997, Factors affecting the nonionic surfactant enhanced biodegradation of phenanthrene. Water Environ. Res., 69:317–325.

    Article  CAS  Google Scholar 

  68. Johnson, A.C. and Larsen, D., 1985, The distribution of polycyclic aromatic hydrocarbons in the surficial sediments of Penobscot Bay (Maine, U.S.A.) in relation to possible sources and to other sites worldwide. Mar. Environ. Res., 15:1–16.

    Article  CAS  Google Scholar 

  69. Juhasz, A.L., Britz, M.L., and Stanley, G.A., 1997, Degradation of fluoranthene, pyrene, benz[β]anthracene and dibenz[a,z]anthracene by Burkholderia cepacia. J. Appl Microbiol., 83:189–198.

    Article  CAS  Google Scholar 

  70. Juhasz, A.L., Stanley, G.A., and Britz, M.L., 2000, Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett. Appl. Microbiol., 30:396–401.

    Article  PubMed  CAS  Google Scholar 

  71. Kanaly, R.A. and Harayama, S., 2000, Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol., 182:2059–2067.

    Article  PubMed  CAS  Google Scholar 

  72. Kanaly, R.A., Harayama, S., and Watanabe, K., 2002, Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl. Environ. Microbiol., 68:5826–5833.

    Article  PubMed  CAS  Google Scholar 

  73. Karimi-Lofabad, S., Pickard, M.A., and Gray, M.R., 1996, Reactions of polynuclear aromatic hydrocarbons on soil. Environ. Sci. Tech., 30:1145–1151.

    Article  Google Scholar 

  74. Kasai, Y., Inoue, J., and Harayama, S., 2001, The TOL plasmid pWWO xylN gene product from Pseudomonas putida is involved in m-xylene uptake. J. Bacteriol., 183:6662–6666.

    Article  PubMed  CAS  Google Scholar 

  75. Keith, L.H. and Telliard, W.A., 1979, Priority pollutants I—a perspective view. Environ. Sci. Technol., 13:416–423.

    Article  Google Scholar 

  76. Kelley, I. and Cerniglia, C.E., 1991, The metabolism of fluoranthene by species of Mycobacterium. J. Ind. Microbiol., 7:19–26.

    Article  CAS  Google Scholar 

  77. Kelley, I., Freeman, J.P., Evans, F.E., and Cerniglia, C.E., 1993, Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR1. Appl. Environ. Microbiol., 59:800–806.

    PubMed  CAS  Google Scholar 

  78. Kelley, I., Freeman, J.P., Evans, F.E., and Cerniglia, C.E., 1991, Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by Mycobacterium sp. Appl. Environ. Microbiol., 57:636–641.

    PubMed  CAS  Google Scholar 

  79. Kern, W., 1947, The occurrence of chrysene in soil. Helv. Chim. Acta, 30:1595–1599.

    Article  PubMed  CAS  Google Scholar 

  80. Khan, A.A., Wang, R.F., Cao, W.W., Doerge, D.R., Wennerstrom, D., and Cerniglia, C.E., 2001, Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol., 67:3577–3585.

    Article  PubMed  CAS  Google Scholar 

  81. Kiyohara, H. and Nagao, K., 1978, The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol., 105:69–75.

    Article  CAS  Google Scholar 

  82. Kiyohara, H., Nagao, K., Kouno, K., and Yano, K., 1982, Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ. Microbiol., 43:458–461.

    PubMed  CAS  Google Scholar 

  83. Kiyohara, H., Torigoe, S., Kaida, N., Asaki, T., Iida, T., Hayashi, H., and Takigawa, N., 1994, Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J. Bacteriol., 176:2439–2443

    PubMed  CAS  Google Scholar 

  84. Kleespies, M., Kroppenstedt, R.M., Rainey, F.A., Webb, L.E., and Stackebrandt, E., 1996, Mycobacterium holderi, sp. nov., a new member of the fast-growing mycobacteria capable of degrading polycyclic aromatic hydrocarbons. Int. J. Syst. Bacteriol., 46:683–687.

    Article  PubMed  CAS  Google Scholar 

  85. Koeber, R., Bayoma, J.M., and Niessner, R., 1999, Determination of benzo[a]pyrene diones in air particulate matter with liquid chromatography mass spectrometry. Environ. Sci. Technol., 33:1552–1558.

    Article  CAS  Google Scholar 

  86. Kurkela, S., Lehaslasiho, H., Palva, E.T., and Terri, T.H., 1988, Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene, 73:355–362.

    Article  PubMed  CAS  Google Scholar 

  87. Lamoureux, E.M. and Brownawell, B.J., 1999, Chemical and biological availability of sediment-sorbed hydrophobic organic contaminants. Environ. Toxicol. Chem., 18:1733–1741.

    Article  CAS  Google Scholar 

  88. Langworthy, D.E., Stapleton, R.D., Sayler, G.S., and Findlay, R.H., 1998, Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl. Environ. Microbiol., 64:3422–3428.

    PubMed  CAS  Google Scholar 

  89. Laurie, A.D. and Lloyd-Jones, G., 1999, The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J. Bacteriol., 181:531–540.

    PubMed  CAS  Google Scholar 

  90. Lee, S.D. and Grant, L., 1981, Health and ecological assessment of polynuclear aromatic hydrocarbons. Pathotox Publishers, Inc., Park Forest South, IL.

    Google Scholar 

  91. Lijinsky, W., 1991, The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutal. Res., 259:251–261.

    Article  CAS  Google Scholar 

  92. Lim, L.H., Harrison, R.M., and Harrad, S., 1999, The contribution of traffic to atmospheric concentrations of polycyclic aromatic hydrocarbons. Environ. Sci. Technol., 33:3538–3542.

    Article  CAS  Google Scholar 

  93. Martens, D., Maguhn, J., Spitzauer, P., and Kettrup, A., 1997, Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in an agricultural ecosystem. Fresenius’J. Anal. Chem., 359:546–554.

    Article  CAS  Google Scholar 

  94. Mason, J.R. and Cammack, R., 1992, The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol., 46:277–305.

    Article  PubMed  CAS  Google Scholar 

  95. Mastrangela, G., Fadda, E., and Marzia, V., 1997, Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect, 104:1166–1170.

    Article  Google Scholar 

  96. McNally, D.L., Mihelcic, J.R., and Lueking, D.R., 1998, Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol., 32:2633–2639.

    Article  CAS  Google Scholar 

  97. Means, J.C., Ward, S.G., Hassett, J.J., and Banwart, W.L., 1980, Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol., 14:1524–1528.

    Article  PubMed  CAS  Google Scholar 

  98. Meckenstock, R.U., Annweiler, E., Michaelis, W., Richnow, H.H., and Schink, B., 2000, Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl. Environ. Microbiol., 66:2743–2747.

    Article  PubMed  CAS  Google Scholar 

  99. Mihelcic, J.R. and Luthy, R.G., 1988, Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol., 54:1182–1187.

    PubMed  CAS  Google Scholar 

  100. Moody, J.D., Freeman, J.P., Doerge, D.R., and Cerniglia, C.E., 2001, Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol., 67:1476–1483.

    Article  PubMed  CAS  Google Scholar 

  101. Mueller, J.G., Chapman, P.J., Blattmann, B.O., and Pritchard, P.H., 1990, Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas pauchimobilis. Appl. Environ. Microbiol., 56:1079–1086

    PubMed  CAS  Google Scholar 

  102. Neu, T.R., 1996, Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev., 60:151–166.

    PubMed  CAS  Google Scholar 

  103. Ohkouchi, N., Kawamura, K., and Kawahata, H., 1999, Distributions of three-to seven-ring polynuclear aromatic hydrocarbons on the deep sea floor in the central Pacific. Environ. Sci. Technol., 33:3086–3090.

    Article  CAS  Google Scholar 

  104. Parales, R.E. and Harwood, C.S., 2002, Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol., 5:266–273.

    Article  PubMed  CAS  Google Scholar 

  105. Patel, T.R. and Gibson, D.T., 1974, Purification and properties of (a)-ds-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J. Bacteriol., 119:879–888

    PubMed  CAS  Google Scholar 

  106. Pinyakong, O., Habe, H., and Omori, T., 2003, The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J. Gen. Appl. Microbiol., 49:1–19.

    Article  PubMed  CAS  Google Scholar 

  107. Pitt, R., Field, R., Lalor, M., and Brown, M., 1995, Urban stormwater toxic pollutants: Assessment, sources and treatability. Water Environ. Res., 67:260–275.

    Article  CAS  Google Scholar 

  108. Prak, D.J. and Pritchard, PH., 2002, Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 505. Can. J. Microbiol., 48:151–158.

    Article  PubMed  CAS  Google Scholar 

  109. Rehmann, K., Hertkorn, N., and Kettrup, A.A., 2001, Fluoranthene metabolism in Mycobacterium sp. strain KR20: Identity of pathway intermediates during degradation and growth. Microbiology, 147:2783–2794.

    PubMed  CAS  Google Scholar 

  110. Renner, R., 1999, EPA to strengthen persistent, bioaccumulative, and toxic pollutant controls— mercury first to be targeted. Environ. Sci. Technol., 33:62A.

    Article  PubMed  CAS  Google Scholar 

  111. Rockne, K.J., Chee-Sanford, J.C., Sanford, R.A., Hedlund, B.P., Staley, J.T., and Strand, S.E., 2000, Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol., 66:1595–1601.

    Article  PubMed  CAS  Google Scholar 

  112. Ron, E.Z. and Rosenberg, E., 2001, Natural roles of biosurfactants. Environ. Micrvbiol., 3:229–236.

    Article  CAS  Google Scholar 

  113. Ron, E.Z. and Rosenberg, E., 2002, Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol., 13:249–252.

    Article  PubMed  CAS  Google Scholar 

  114. Rothermich, M.M., Hayes, L.A., and Lovley, D.R., 2002, Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ. Sci. Technol., 36:4811–4817.

    Article  PubMed  CAS  Google Scholar 

  115. Rouse, J.D., Sabatini, D.A., Suflita, J.M., and Harwell, J.H., 1994, Influence of surfactants on microbial degradation of organic compounds. Crit. Rev. Environ. Technol., 24:325–370.

    Article  CAS  Google Scholar 

  116. Saito, A., Iwabuchi, T., and Harayama, S., 1999, Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere, 38:1331–1337.

    Article  PubMed  CAS  Google Scholar 

  117. Saito, A., Iwabuchi, T., and Harayama, S., 2000, A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: Expression in Escherichia coli. J. Bacteriol., 182:2134–2141

    Article  PubMed  CAS  Google Scholar 

  118. Samanta, S.K., Chakraborti, A.K., and Jain, R.K., 1999, Degradation of phenanthrene by different bacteria: Evidence for novel transformation sequences involving the formation of 1-naphthol. Appl. Microbiol. Biotechnol., 53:98–107.

    Article  PubMed  CAS  Google Scholar 

  119. Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W., and Warshwsky, D., 1996, Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl. Environ. Microbiol., 62:13–19.

    PubMed  CAS  Google Scholar 

  120. Sepic, E., Bricelj, M., and Leskovsek, H., 1998, Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR1: Isolation and identification of metabolites. J. Appl. Microbiol., 85:746–754.

    Article  PubMed  CAS  Google Scholar 

  121. Shuttleworth, K.L. and Cerniglia, C.E., 1995, Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol., 54:291–302.

    Article  PubMed  CAS  Google Scholar 

  122. Simon, M.J., Osslund, T.D., Saunders, R., Ensley, B.D., Suggs, S., Harcourt, A., Suen, W.-C., Cruden, D.L., Gibson, D.T., and Zylstra, G.J., 1993, Sequence of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB9816-4. Gene, 127:31–37.

    Article  PubMed  CAS  Google Scholar 

  123. Sims, J.L., Sims, R.C., and Matthews, J.E., 1990, Approach to bioremediation of contaminated soil. Haz. Waste Haz. Mater, 7:117–149.

    Article  CAS  Google Scholar 

  124. Sims, R.C. and Overcash, M.R., 1983, Polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev., 88:1–68.

    Article  CAS  Google Scholar 

  125. Smith, J.R., Nakles, D.V, Sherman, D.F., Neuhauser, E.F., and Loehr, R.C., 1989, Environmental fate mechanism influencing biological degradation of coal-tar derived polynuclear aromatic hydrocarbons in soil systems. In The Third International Conference on New Frontiers for Hazardous Waste Management, pp. 397–405. U.S. Environmental Protection Agency, Washington DC.

    Google Scholar 

  126. Smith, M.R., 1990, The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation, 1:191–206.

    Article  PubMed  CAS  Google Scholar 

  127. Story, S.P, Parker, S.H., Kline, J.D., Tzeng, T.R., Mueller, J.G., and Kline, E.L., 2000, Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, fluoranthene by Sphingomonas paucimobilis var. EPA505. Gene, 260:155–169.

    Article  PubMed  CAS  Google Scholar 

  128. Takizawa, N., Kaida, N., Torigoe, S., Moritani, T., Sawada, T., Satoh, S., and Kiyohara, H., 1994, Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J. Bacteriol., 176:2444–2449.

    PubMed  CAS  Google Scholar 

  129. Tiehm, A., 1994, Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol., 60:258–263.

    PubMed  CAS  Google Scholar 

  130. Treadway, S.L., Yamagimachi, K.S., Lankenau, E., Lessard, P.A., Stephanopoulos, G., and Sinskey, A.J., 1999, Isolation and characterization of indene bioconversion genes from Rhodococcus strain 124. Appl. Microbiol. Biotechnol., 51:786–793.

    Article  PubMed  CAS  Google Scholar 

  131. Tsuda, M. and Iino, T., 1990, Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol. Gen. Genet, 223:33–39.

    Article  PubMed  CAS  Google Scholar 

  132. van Brummelen, T.C., Verweij, R.A., Wedzinga, S.A., and van Gestel, C.A.M., 1996, Enrichment of polycyclic aromatic hydrocarbons in forest soils near a blast furnace plant. Chemosphere, 32:293–314.

    Article  Google Scholar 

  133. van der Meer, J.R., de Vos, W.M., Harayama, S., and Zehnder, J.B., 1992, Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev., 56:677–694.

    PubMed  Google Scholar 

  134. Vila, J., Lopez, Z., Sabate, J., Minguillon, C., Solanas, A.M., and Grifoll, M., 2001, Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain API: Actions of the isolate on two-and three-ring polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol., 67:5497–5505.

    Article  PubMed  CAS  Google Scholar 

  135. Volkering, F., Breure, A.M., Sterkenburg, A., and van Andel, J.G., 1992, Microbial degradation of polycyclic aromatic hydrocarbons: Effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol., 36:548–552.

    Article  CAS  Google Scholar 

  136. Wagrowski, D.M. and Hites, R.A., 1997, Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ. Sci. Technol., 31:279–282.

    Article  CAS  Google Scholar 

  137. Walter, U., Beyer, M., Klein, J., and Rehm, H.-J., 1991, Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol., 34:671–676.

    Article  CAS  Google Scholar 

  138. Weis, L.M., Rummel, A.M., Masten, S.J., Trosko, J.E., and Upham, B.L., 1998, Bay and baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of gap junctional intercellular communication. Environ. Health Perspect., 106:17–22.

    Article  PubMed  CAS  Google Scholar 

  139. Weissenfeis, W.D., Beyer, M., and Klein, J., 1990, Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol., 32:479–484.

    Article  Google Scholar 

  140. Whitman, B.E., Lueking, D.R., and Mihelcic, J.R., 1998, Naphthalene uptake by a Pseudomonas fluorescens isolate. Can. J. Microbiol., 44:1086–1093.

    PubMed  CAS  Google Scholar 

  141. Wick, L.Y., de Munain, A.R., Springael, D., and Harms, H., 2002, Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl. Microbiol. Biotechnol., 58:378–385.

    Article  PubMed  CAS  Google Scholar 

  142. Williams, P.A. and Sayers, J.R., 1994, The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation, 5:195–217.

    Article  PubMed  CAS  Google Scholar 

  143. Willumsen, P.A. and Arvin, E., 1999, Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis. Environ. Sci. Technol., 33:2571–2578

    Article  CAS  Google Scholar 

  144. Wild, S.R., Obbard, J.P., Munn, C.I., Berrow, M.L., and Jones, K.C., 1991, The long-term persistence of polynuclear aromatic hydrocarbons (PAHs) in an agricultural soil amended with metal-contaminated sewage sludges. Sci. Total Environ., 101:235–253.

    Article  CAS  Google Scholar 

  145. Yang, Y., Chen, R.F., and Shiaris, M.P, 1994, Metabolism of naphthalene, fluorene, and phenanthrene: Preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J. Bacteriol., 176:2158–2164.

    PubMed  CAS  Google Scholar 

  146. Yen, K.M. and Gunsalus, I.C., 1982, Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. USA, 79:874–878.

    Article  PubMed  CAS  Google Scholar 

  147. Yen, K.M. and Serdar, CM., 1988, Genetics of naphthalene catabolism in pseudomonads. Crit. Rev. Microbiol., 15:247–268.

    Article  PubMed  CAS  Google Scholar 

  148. Zeng, E. and Vista, C.L., 1997, Organic pollutants in the coastal environment off San Diego, California. 1. Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 16:179–188.

    Article  CAS  Google Scholar 

  149. Zhang, X. and Young, L.Y., 1997, Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl. Environ. Microbiol., 63:4759–4764.

    PubMed  CAS  Google Scholar 

  150. Zhou, N.-Y., Fuenmayor, S.L., and Williams, P.A., 2001, nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J. Bacteriol., 183:700–708.

    Article  PubMed  CAS  Google Scholar 

  151. Zylstra, G.J. and Gibson, D.T., 1991, Aromatic hydrocarbon degradation. In J.K. Setlow (ed.), A Molecular Approach in Genetic Engineering: Principles and Methods, vol. 13, pp. 183–203. Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kasai, Y., Harayama, S. (2004). Catabolism of PAHS. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics